Research Article
BibTex RIS Cite

On Vertex-Edge Degree Based Properties of Sierpinski Graphs

Year 2023, Volume: 6 Issue: 1, 151 - 160, 10.03.2023
https://doi.org/10.47495/okufbed.1099362

Abstract

Network science and graph theory are two important branches of mathematics and computer science. Many problems in engineering and physics are modeled with networks and graphs. Topological analysis of networks enable researchers to analyse networks in relation some physical and engineering properties without conducting expensive experimental studies. Topological indices are numerical descriptors which defined by using degree, distance and eigen-value notions in any graph. Most of the topological indices are defined as by using classical degree concept in graph theory, network and computer science. Recently two novel degree parameters have been defined in graph theory: Vertex-edge degree and Edge-vertex degree. Vertex-edge degree and edge-vertex degree based topological indices have been defined as parallel to their corresponding classical degree counterparts. Generalized Sierpinski networks have an important place of applications in view of engineering science especially in computer science. Classical degree based topological properties of generalized Sierpinski graphs have been investigated by many studies. In this article, vertex-edge degree based topological indices values of generalized Sierpinski graphs have been computed.

References

  • Abolaban, F. A., Ahmad, A., & Asim, M. A. 2021. “Computation of Vertex-Edge Degree Based Topological Descriptors for Metal Trihalides Network”, IEEE Access: 9, 65330-65339.
  • Cancan, M. 2019. “On Harmonic and Ev-Degree Molecular Topological Properties of DOX, RTOX and DSL Networks”, CMC-Computers Materials & Continua: 59(3), 777-786.
  • Chellali, M., Haynes, T. W., Hedetniemi, S. T., & Lewis, T. M. 2017. “On ve-degrees and ev-degrees in graphs”, Discrete Mathematics: 340(2), 31-38.
  • Daniele P. 2009. “On some metric properties of Sierpinsk graphs S(n,k)”, Ars Combinatoria: 90, 145-160.
  • Ediz S. 2017. “Predicting Some Physicochemical Properties of Octane Isomers: A Topological Approach Using ev-Degree and ve-Degree Zagreb Indices”, International Journal of Systems Science and Applied Mathematics: 2 (5) 87-92. doi: 10.11648/j.ijssam.20170205.12
  • Ediz, S. 2018. “On ve-degree molecular topological properties of silicate and oxygen networks”, International Journal of Computing Science and Mathematics: 9(1), 1-12. https://dx.doi.org/10.1504/IJCSM.2018.090730
  • Ediz, S. 2017. “A new tool for QSPR researches: Ev-degree randić index”, Celal Bayar University Journal of Science: 13(3), 615-618.
  • Fan, C., Munir, M. M., Hussain, Z., Athar, M., & Liu, J. B. 2021. “Polynomials and General Degree-Based Topological Indices of Generalized Sierpinski Networks”, Complexity: 2021.
  • Fathalikhani, K., Babai, A., & Zemljič, S. S. 2020. “The Graovac-Pisanski index of Sierpiński graphs”, Discrete Applied Mathematics: 285, 30-42.
  • Horoldagva, B., Das, K. C., & Selenge, T. A. 2019. “On ve-Degree and ev-Degree of Graphs”, Discrete Optimization: 31, 1-7.
  • Husain, S., Imran, M., Ahmad, A., Ahmad, Y., & Elahi, K. 2022. “A Study of Cellular Neural Networks with Vertex-Edge Topological Descriptors”, CMC- CMC-Computers Materials & Continua: 70(2), 3433-3447.
  • Imran, M., Gao, W., & Farahani, M. R. 2017. “On topological properties of Sierpinski networks”, Chaos, Solitons & Fractals: 98, 199-204.
  • Kirmani, S. A. K., Ali, P., Azam, F., & Alvi, P. A. 2021. “On Ve-Degree and Ev-Degree Topological Properties of Hyaluronic Acid‐Anticancer Drug Conjugates with QSPR”, Journal of Chemistry:2021.
  • Liu, J. B., Zhao, J., He, H., & Shao, Z. 2019. “Valency-based topological descriptors and structural property of the generalized sierpiński networks”, Journal of Statistical Physics: 177(6), 1131-1147.
  • Liu, J. B., Siddiqui, H. M. A., Nadeem, M. F., & Binyamin, M. A. 2021. “Some topological properties of uniform subdivision of Sierpiński graphs”, Main Group Metal Chemistry: 44(1), 218-227.
  • Refaee, E. A., & Ahmad, A. 2021. “A Study of Hexagon Star Network with Vertex-Edge-Based Topological Descriptors”, Complexity: 2021.
  • Siddiqui, H. M. A. 2020. “Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs”, Hacettepe Journal of Mathematics and Statistics: 49(2), 754-765.
  • Şahin, B., & Ediz, S. 2018. “On ev-degree and ve-degree topological indices”, Iranian Journal of Mathematical Chemistry: 9(4), 263-277.
  • Şahin, B., & Şahin, A. 2021. “ve-degree, ev-degree and First Zagreb Index Entropies of Graphs”, Computer Science: 6(2), 90-101.
  • Zhang, J., Siddiqui, M. K., Rauf, A., & Ishtiaq, M. 2021. “On ve-degree and ev-degree based topological properties of single walled titanium dioxide nanotube”, Journal of Cluster Science: 32(4), 821-832.
  • Żyliński, P. 2019. “Vertex-edge domination in graphs”, Aequationes mathematicae: 93(4), 735-742.

Sierpinski Graflarının Tepe-Ayrıt Temelli Derece Özellikleri Üzerine

Year 2023, Volume: 6 Issue: 1, 151 - 160, 10.03.2023
https://doi.org/10.47495/okufbed.1099362

Abstract

Ağ bilimi ve graf teorisi, matematik ve bilgisayar biliminin iki önemli dalıdır. Mühendislik ve fizikle ilgili birçok problem, ağlar ve graflarla modellenir. Ağların topolojik analizi, araştırmacıların pahalı deneysel çalışmalar yürütmeden, ağları bazı fiziksel ve mühendislik özellikleriyle ilgili olarak analiz etmelerini sağlar. Topolojik indeksler, herhangi bir grafta derece, uzaklık ve öz değer kavramları kullanılarak tanımlanan sayısal tanımlayıcılardır. Topolojik indekslerin çoğu, graf teorisi, ağ ve bilgisayar bilimlerinde klasik derece kavramı kullanılarak tanımlanır. Yakın zamanda graf teorisinde iki yeni derece parametresi tanımlanmıştır: Tepe-ayrıt derecesi ve ayrıt-tepe derecesi. Tepe-ayrıt ve ayrıt-tepe derece temelli topolojik indeksler, klasik derece karşılıklarına parallel olarak tanımlanmıştır. Genelleştirilmiş Sierpinski ağları mühendislik bilimi açısından özellikle bilgisayar bilimleri açısından önemli bir uygulama alanına sahiptir. Genelleştirilmiş Sierpinski graflarının klasik derece tabanlı topolojik özellikleri birçok çalışmada incelenmiştir. Bu makalede, genelleştirilmiş Sierpinski grafiklerinin tepe-ayrıt derece temelli topolojik indeks değerleri hesaplandı.

References

  • Abolaban, F. A., Ahmad, A., & Asim, M. A. 2021. “Computation of Vertex-Edge Degree Based Topological Descriptors for Metal Trihalides Network”, IEEE Access: 9, 65330-65339.
  • Cancan, M. 2019. “On Harmonic and Ev-Degree Molecular Topological Properties of DOX, RTOX and DSL Networks”, CMC-Computers Materials & Continua: 59(3), 777-786.
  • Chellali, M., Haynes, T. W., Hedetniemi, S. T., & Lewis, T. M. 2017. “On ve-degrees and ev-degrees in graphs”, Discrete Mathematics: 340(2), 31-38.
  • Daniele P. 2009. “On some metric properties of Sierpinsk graphs S(n,k)”, Ars Combinatoria: 90, 145-160.
  • Ediz S. 2017. “Predicting Some Physicochemical Properties of Octane Isomers: A Topological Approach Using ev-Degree and ve-Degree Zagreb Indices”, International Journal of Systems Science and Applied Mathematics: 2 (5) 87-92. doi: 10.11648/j.ijssam.20170205.12
  • Ediz, S. 2018. “On ve-degree molecular topological properties of silicate and oxygen networks”, International Journal of Computing Science and Mathematics: 9(1), 1-12. https://dx.doi.org/10.1504/IJCSM.2018.090730
  • Ediz, S. 2017. “A new tool for QSPR researches: Ev-degree randić index”, Celal Bayar University Journal of Science: 13(3), 615-618.
  • Fan, C., Munir, M. M., Hussain, Z., Athar, M., & Liu, J. B. 2021. “Polynomials and General Degree-Based Topological Indices of Generalized Sierpinski Networks”, Complexity: 2021.
  • Fathalikhani, K., Babai, A., & Zemljič, S. S. 2020. “The Graovac-Pisanski index of Sierpiński graphs”, Discrete Applied Mathematics: 285, 30-42.
  • Horoldagva, B., Das, K. C., & Selenge, T. A. 2019. “On ve-Degree and ev-Degree of Graphs”, Discrete Optimization: 31, 1-7.
  • Husain, S., Imran, M., Ahmad, A., Ahmad, Y., & Elahi, K. 2022. “A Study of Cellular Neural Networks with Vertex-Edge Topological Descriptors”, CMC- CMC-Computers Materials & Continua: 70(2), 3433-3447.
  • Imran, M., Gao, W., & Farahani, M. R. 2017. “On topological properties of Sierpinski networks”, Chaos, Solitons & Fractals: 98, 199-204.
  • Kirmani, S. A. K., Ali, P., Azam, F., & Alvi, P. A. 2021. “On Ve-Degree and Ev-Degree Topological Properties of Hyaluronic Acid‐Anticancer Drug Conjugates with QSPR”, Journal of Chemistry:2021.
  • Liu, J. B., Zhao, J., He, H., & Shao, Z. 2019. “Valency-based topological descriptors and structural property of the generalized sierpiński networks”, Journal of Statistical Physics: 177(6), 1131-1147.
  • Liu, J. B., Siddiqui, H. M. A., Nadeem, M. F., & Binyamin, M. A. 2021. “Some topological properties of uniform subdivision of Sierpiński graphs”, Main Group Metal Chemistry: 44(1), 218-227.
  • Refaee, E. A., & Ahmad, A. 2021. “A Study of Hexagon Star Network with Vertex-Edge-Based Topological Descriptors”, Complexity: 2021.
  • Siddiqui, H. M. A. 2020. “Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs”, Hacettepe Journal of Mathematics and Statistics: 49(2), 754-765.
  • Şahin, B., & Ediz, S. 2018. “On ev-degree and ve-degree topological indices”, Iranian Journal of Mathematical Chemistry: 9(4), 263-277.
  • Şahin, B., & Şahin, A. 2021. “ve-degree, ev-degree and First Zagreb Index Entropies of Graphs”, Computer Science: 6(2), 90-101.
  • Zhang, J., Siddiqui, M. K., Rauf, A., & Ishtiaq, M. 2021. “On ve-degree and ev-degree based topological properties of single walled titanium dioxide nanotube”, Journal of Cluster Science: 32(4), 821-832.
  • Żyliński, P. 2019. “Vertex-edge domination in graphs”, Aequationes mathematicae: 93(4), 735-742.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section RESEARCH ARTICLES
Authors

Süleyman Ediz 0000-0003-0625-3634

Publication Date March 10, 2023
Submission Date April 6, 2022
Acceptance Date August 2, 2022
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Ediz, S. (2023). On Vertex-Edge Degree Based Properties of Sierpinski Graphs. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 151-160. https://doi.org/10.47495/okufbed.1099362
AMA Ediz S. On Vertex-Edge Degree Based Properties of Sierpinski Graphs. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. March 2023;6(1):151-160. doi:10.47495/okufbed.1099362
Chicago Ediz, Süleyman. “On Vertex-Edge Degree Based Properties of Sierpinski Graphs”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. 1 (March 2023): 151-60. https://doi.org/10.47495/okufbed.1099362.
EndNote Ediz S (March 1, 2023) On Vertex-Edge Degree Based Properties of Sierpinski Graphs. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 1 151–160.
IEEE S. Ediz, “On Vertex-Edge Degree Based Properties of Sierpinski Graphs”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 6, no. 1, pp. 151–160, 2023, doi: 10.47495/okufbed.1099362.
ISNAD Ediz, Süleyman. “On Vertex-Edge Degree Based Properties of Sierpinski Graphs”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/1 (March 2023), 151-160. https://doi.org/10.47495/okufbed.1099362.
JAMA Ediz S. On Vertex-Edge Degree Based Properties of Sierpinski Graphs. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6:151–160.
MLA Ediz, Süleyman. “On Vertex-Edge Degree Based Properties of Sierpinski Graphs”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 1, 2023, pp. 151-60, doi:10.47495/okufbed.1099362.
Vancouver Ediz S. On Vertex-Edge Degree Based Properties of Sierpinski Graphs. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6(1):151-60.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.