Research Article
BibTex RIS Cite

Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers

Year 2023, Volume: 6 Issue: 1, 594 - 604, 10.03.2023
https://doi.org/10.47495/okufbed.1117644

Abstract

In this study, we define a type of bi-periodic Fibonacci and Lucas numbers which are called bi-periodic Fibonacci and Lucas Gaussian quaternions. We also give the relationship between negabi-periodic Fibonacci and Lucas Gaussian quaternions and bi-periodic Fibonacci and Lucas Gaussian quaternions. Moreover, we obtain the Binet’s formula, generating function, d’Ocagne’s identity, Catalan’s identity, Cassini’s identity, like-Tagiuri’s identity, Honberger’s identity and some formulas for these new type numbers. Some algebraic proporties of bi-periodic Fibonacci and Lucas Gaussian quaternions which are connected between Gaussian quaternions and bi-periodic Fibonacci and Lucas numbers are investigated.

References

  • Adler SL., Quaternionic quantum mechanics and quantum fields. New York Oxford Univ. Press; 1994.
  • Baez J., The Octonians. Bull. Amer. Math. Soc. 2001; 145(39): 145-205.
  • Bilgici G., Two generalizations of Lucas sequence. Applied Mathematics and Computation 2014; 245: 526-538.
  • Çimen CB., İpek A., On Pell quaternions and Pell-Lucas quaternions. Adv. Appl. Clifford Algebras 2016; 26(1): 39–51.
  • Edson M., Yayenie O., A new generalization of Fibonacci sequences and the extended Binet’s formula. INTEGERS Electron. J. Comb. Number Theor 2009; 9: 639-654.
  • Falcon S., Plaza A., On the Fibonacci k-numbers. Chaos, Solitions &Fractals 2007; 32(5): 1615-1624.
  • George AH., Some formula for the Fibonacci sequence with generalization. Fibonacci Quart 1969; 7: 113-130.
  • Gökbaş H., A note BiGaussian Pell and Pell-Lucas numbers. Journal of Science and Arts 2021; 3(56): 669-680.
  • Harman CJ., Complex Fibonacci numbers. The Fibonacci Quart 1981; 19(1): 82-86.
  • Horadam AF., A generalized Fibonacci sequence. Math. Mag. 1961; 68: 455-459.
  • Horadam AF., Complex Fibonacci numbers and Fibonacci quaternions. Amer. Math. Montly 1963; 70: 289-291.
  • Pethe SP., Phadte CN., A generalization of the Fibonacci sequence. Applications of Fibonacci numbers 1992; 5: 465-472.
  • Pond JC., Generalized Fibonacci summations. Fibonacci Quart 1968; 6: 97-108.
  • Ramirez J., Some combinatorial properties of the k-Fibonacci and the k-Lucas quaternions. An. Şt. Univ. Ovidius Constanta 2015; 23(2): 201-212.
  • Ward JP., Quaternions and Cayley numbers. Algebra and Applications. Kluwer Academic Publishers, London, 1997.

Biperiodic Fibonacci ve Lucas Sayılarını İçeren Gaussian Quaternionlar

Year 2023, Volume: 6 Issue: 1, 594 - 604, 10.03.2023
https://doi.org/10.47495/okufbed.1117644

Abstract

Bu çalışmada, bi-periodic Fibonacci ve Lucas sayılarının, bi-periodic Fibonacci ve Lucas Gaussian quaternionlar olarak isimlendirilen yeni bir tipi tanımlanmıştır. Çalışma içerisinde, negabi-periodic Fibonacci ve Lucas Gaussian quaternionlarla bi-periodic Fibonacci ve Lucas Gaussian quaternionlar arasındaki ilişkiden de bahsedilmiştir. Ayrıca, bu sayılar için Binet’s formülü, dizinin genelleştirme fonksiyonu, d’Ocagne’s eşitliği, Catalan’s eşitliği, Cassini’s eşitliği, , like-Tagiuri’s eşitliği, Honberger’s eşitliği ve bazı toplam formülleri verilmiştir. Bi-periodic Fibonacci ve Lucas Gaussian quaternionların bazı cebirsel özellikleri ele alınmıştır.

References

  • Adler SL., Quaternionic quantum mechanics and quantum fields. New York Oxford Univ. Press; 1994.
  • Baez J., The Octonians. Bull. Amer. Math. Soc. 2001; 145(39): 145-205.
  • Bilgici G., Two generalizations of Lucas sequence. Applied Mathematics and Computation 2014; 245: 526-538.
  • Çimen CB., İpek A., On Pell quaternions and Pell-Lucas quaternions. Adv. Appl. Clifford Algebras 2016; 26(1): 39–51.
  • Edson M., Yayenie O., A new generalization of Fibonacci sequences and the extended Binet’s formula. INTEGERS Electron. J. Comb. Number Theor 2009; 9: 639-654.
  • Falcon S., Plaza A., On the Fibonacci k-numbers. Chaos, Solitions &Fractals 2007; 32(5): 1615-1624.
  • George AH., Some formula for the Fibonacci sequence with generalization. Fibonacci Quart 1969; 7: 113-130.
  • Gökbaş H., A note BiGaussian Pell and Pell-Lucas numbers. Journal of Science and Arts 2021; 3(56): 669-680.
  • Harman CJ., Complex Fibonacci numbers. The Fibonacci Quart 1981; 19(1): 82-86.
  • Horadam AF., A generalized Fibonacci sequence. Math. Mag. 1961; 68: 455-459.
  • Horadam AF., Complex Fibonacci numbers and Fibonacci quaternions. Amer. Math. Montly 1963; 70: 289-291.
  • Pethe SP., Phadte CN., A generalization of the Fibonacci sequence. Applications of Fibonacci numbers 1992; 5: 465-472.
  • Pond JC., Generalized Fibonacci summations. Fibonacci Quart 1968; 6: 97-108.
  • Ramirez J., Some combinatorial properties of the k-Fibonacci and the k-Lucas quaternions. An. Şt. Univ. Ovidius Constanta 2015; 23(2): 201-212.
  • Ward JP., Quaternions and Cayley numbers. Algebra and Applications. Kluwer Academic Publishers, London, 1997.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section RESEARCH ARTICLES
Authors

Hasan Gökbaş 0000-0002-3323-8205

Publication Date March 10, 2023
Submission Date May 17, 2022
Acceptance Date September 16, 2022
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Gökbaş, H. (2023). Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 594-604. https://doi.org/10.47495/okufbed.1117644
AMA Gökbaş H. Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. March 2023;6(1):594-604. doi:10.47495/okufbed.1117644
Chicago Gökbaş, Hasan. “Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. 1 (March 2023): 594-604. https://doi.org/10.47495/okufbed.1117644.
EndNote Gökbaş H (March 1, 2023) Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 1 594–604.
IEEE H. Gökbaş, “Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 6, no. 1, pp. 594–604, 2023, doi: 10.47495/okufbed.1117644.
ISNAD Gökbaş, Hasan. “Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/1 (March 2023), 594-604. https://doi.org/10.47495/okufbed.1117644.
JAMA Gökbaş H. Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6:594–604.
MLA Gökbaş, Hasan. “Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 1, 2023, pp. 594-0, doi:10.47495/okufbed.1117644.
Vancouver Gökbaş H. Gaussian Quaternions Including Biperiodic Fibonacci and Lucas Numbers. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6(1):594-60.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.