Research Article
BibTex RIS Cite

4,4'-Diaminodifenil Sülfür Bazlı Imin Bileşiğinin Spektral ve DNA Bağlama Özellikleri

Year 2023, Volume: 6 Issue: 1, 818 - 831, 10.03.2023
https://doi.org/10.47495/okufbed.1180912

Abstract

Bu araştırmada, antikanser ilaçların temelini oluşturan ve iyi derecede biyolojik aktiviteye sahip olduğu bilinen, yeni bir 4,4'-Diaminodifenil sülfit bazlı Schiff bazı bileşiği [6,6'-((1E,1'E)-((thiobis (4,1-phenylene)) bis(azaneylylidene)) bis(methaneylylidene)) bis(3-(diethylamino) phenol) (A)] başarıyla sentezlenmiştir. Sentezlenen Schiff bazı bileşiğinin yapısal karekterizasyonu, FT-IR ve 1H-13C NMR, spektroskopileri ile belirlenmiştir. Ayrıca, bileşiğin moleküler yapısı, tek kristalli bir X-ışını kırınım çalışmasıyla belirlenmiştir. Bileşiğin DNA bağlama yeteneği, UV-vis spektroskopisi kullanılarak ölçülmüştür. Spektral değişimlerden faydalanılarak bileşiğe ait DNA bağlama sabiti Kb (M-1)= 6.25x105 olarak hesaplanmıştır. Bulunan Kb değeri interkalatif bir etkişimin varlığını önermektedir.

References

  • Kajal A, Bala S, Kamboj S, et al (2013) Schiff Bases: A Versatile Pharmacophore. J Catal 2013:1–14. https://doi.org/10.1155/2013/893512
  • Sonmez F, Gunesli Z, Kurt BZ, et al (2019) Synthesis, antioxidant activity and SAR study of novel spiro-isatin-based Schiff bases. Mol Divers 23:829–844. https://doi.org/10.1007/s11030-018-09910-7
  • Kalantari R, Asadi Z (2020) DNA/BSA binding of a new oxovanadium (IV) complex of glycylglycine derivative Schiff base ligand. J Mol Struct 1219:128664. https://doi.org/10.1016/j.molstruc.2020.128664
  • Abu-Dief AM, Mohamed IMA (2015) A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ J Basic Appl Sci 4:119–133. https://doi.org/10.1016/j.bjbas.2015.05.004
  • Jamshidvand A, Sahihi M, Mirkhani V, et al (2018) Studies on DNA binding properties of new Schiff base ligands using spectroscopic, electrochemical and computational methods: Influence of substitutions on DNA-binding. J Mol Liq 253:61–71. https://doi.org/10.1016/j.molliq.2018.01.029
  • Puchtler H, Meloan SN (1981) On Schiff’s bases and aldehyde-fuchsin: A review from H. Schiff to R.D. Lillie. Histochemistry 72:321–332. https://doi.org/10.1007/BF00501774
  • Habibi MH, Askari E (2013) Synthesis, structural characterization, thermal, and electrochemical investigations of a square pyramid manganese(III) complex with a Schiff base ligand acting as N2O2 tetradentate in equatorial and as O monodendate in axial positions: Application as a pr. Synth React Inorganic, Met Nano-Metal Chem 43:406–411. https://doi.org/10.1080/15533174.2012.740741
  • Li JF, Dong C (2009) Study on the interaction of morphine chloride with deoxyribonucleic acid by fluorescence method. Spectrochim Acta - Part A Mol Biomol Spectrosc 71:1938–1943. https://doi.org/10.1016/j.saa.2008.07.033
  • Radi AE, El-Naggar AE, Nassef HM (2014) Electrochemical and Spectral studies on the Interaction of the Antiparasitic Drug Nitazoxanide with DNA. Electrochim Acta 129:259–265. https://doi.org/10.1016/j.electacta.2014.02.092
  • Tumer F, Golcu A, Tumer M, et al (2017) Multifunctional metallo porphyrin-imine conjugates: Photophysical, electrochemical, DNA binding and SOD enzyme mimetic studies. J Photochem Photobiol A Chem 346:236–248. https://doi.org/10.1016/j.jphotochem.2017.06.010
  • Güngör SA, Tümer M, Köse M, Erkan S (2021) N-substituted benzenesulfonamide compounds: DNA binding properties and molecular docking studies. J Biomol Struct Dyn 40:7424–7438. https://doi.org/10.1080/07391102.2021.1897683
  • Abu-Dief AM, El-khatib RM, Aljohani FS, et al (2021) Synthesis and intensive characterization for novel Zn(II), Pd(II), Cr(III) and VO(II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. J Mol Struct 1242:130693. https://doi.org/10.1016/j.molstruc.2021.130693
  • Wang L, Bian G, Wang L, et al (2005) Fluorescence determination of DNA with 1-pyrenebutyric acid nanoparticles coated with β-cyclodextrin as a fluorescence probe. Spectrochim Acta - Part A Mol Biomol Spectrosc 61:1201–1205. https://doi.org/10.1016/j.saa.2004.06.042
  • Shokohi-Pour Z, Chiniforoshan H, Momtazi-Borojeni AA, Notash B (2016) A novel Schiff base derived from the gabapentin drug and copper (II) complex: Synthesis, characterization, interaction with DNA/protein and cytotoxic activity. J Photochem Photobiol B Biol 162:34–44. https://doi.org/10.1016/j.jphotobiol.2016.06.022
  • Jayamani A, Sengottuvelan N, Chakkaravarthi G (2014) Synthesis, structural, electrochemical, DNA interaction, antimicrobial and molecular docking studies on dimeric copper(II) complexes involving some potential bidentate ligands. Polyhedron 81:764–776. https://doi.org/10.1016/j.poly.2014.05.076
  • Dolomanov O V., Bourhis LJ, Gildea RJ, et al (2009) OLEX2: A complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726
  • Sheldrick GM (2015) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv 71:3–8. https://doi.org/10.1107/S2053273314026370
  • Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8. https://doi.org/10.1107/S2053229614024218
  • Gungor O, Kocer F, Kose M (2020) Cu(II) complexes of biguanidine ligands: Structural characterisation, DNA binding and antimicrobial properties. J Mol Struct 1204:127533. https://doi.org/10.1016/j.molstruc.2019.127533
  • Anjomshoa M, Fatemi SJ, Torkzadeh-Mahani M, Hadadzadeh H (2014) DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2- pyridyl)-1,2,4-triazine. Spectrochim Acta - Part A Mol Biomol Spectrosc 127:511–520. https://doi.org/10.1016/j.saa.2014.02.048
  • Vijayalakshmi R, Kanthimathi M, Subramanian V, Nair BU (2000) Interaction of DNA with [ Cr ( Schi ¡ base )( H 2 O ) 2 ] ClO 4. Science (80- ) 1475:157–162
  • Psomas G (2008) Mononuclear metal complexes with ciprofloxacin: Synthesis, characterization and DNA-binding properties. J Inorg Biochem 102:1798–1811. https://doi.org/10.1016/j.jinorgbio.2008.05.012
  • Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res 32:. https://doi.org/10.1093/nar/gnh101

Crystal Structure and DNA Binding Properties of A Sulfide Bridged Dimeric Schiff Base Compound

Year 2023, Volume: 6 Issue: 1, 818 - 831, 10.03.2023
https://doi.org/10.47495/okufbed.1180912

Abstract

In this research, a novel 4,4'-Diaminodiphenyl sulfide-based Schiff base compound [6,6'-((1E,1'E)-((thiobis (4,1-phenylene)) bis(azaneylylidene)) bis(methaneylylidene)) bis(3-(diethylamino) phenol) (A)], which is known to have good biological activity and forms the basis of anticancer drugs, was successfully synthesized. Structural characterization of the synthesized Schiff base compound was determined by FT-IR and 1H-13C NMR, spectroscopies. Also, the molecular structure of the compound was determined by a single-crystal X-ray diffraction study. The DNA binding ability of the compound was measured using UV-vis spectroscopy. Using the spectral changes, the DNA binding constant of the compound was calculated as Kb (M-1)= 6.25x105. The Kb value found suggests the existence of an intercalative interaction.

References

  • Kajal A, Bala S, Kamboj S, et al (2013) Schiff Bases: A Versatile Pharmacophore. J Catal 2013:1–14. https://doi.org/10.1155/2013/893512
  • Sonmez F, Gunesli Z, Kurt BZ, et al (2019) Synthesis, antioxidant activity and SAR study of novel spiro-isatin-based Schiff bases. Mol Divers 23:829–844. https://doi.org/10.1007/s11030-018-09910-7
  • Kalantari R, Asadi Z (2020) DNA/BSA binding of a new oxovanadium (IV) complex of glycylglycine derivative Schiff base ligand. J Mol Struct 1219:128664. https://doi.org/10.1016/j.molstruc.2020.128664
  • Abu-Dief AM, Mohamed IMA (2015) A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ J Basic Appl Sci 4:119–133. https://doi.org/10.1016/j.bjbas.2015.05.004
  • Jamshidvand A, Sahihi M, Mirkhani V, et al (2018) Studies on DNA binding properties of new Schiff base ligands using spectroscopic, electrochemical and computational methods: Influence of substitutions on DNA-binding. J Mol Liq 253:61–71. https://doi.org/10.1016/j.molliq.2018.01.029
  • Puchtler H, Meloan SN (1981) On Schiff’s bases and aldehyde-fuchsin: A review from H. Schiff to R.D. Lillie. Histochemistry 72:321–332. https://doi.org/10.1007/BF00501774
  • Habibi MH, Askari E (2013) Synthesis, structural characterization, thermal, and electrochemical investigations of a square pyramid manganese(III) complex with a Schiff base ligand acting as N2O2 tetradentate in equatorial and as O monodendate in axial positions: Application as a pr. Synth React Inorganic, Met Nano-Metal Chem 43:406–411. https://doi.org/10.1080/15533174.2012.740741
  • Li JF, Dong C (2009) Study on the interaction of morphine chloride with deoxyribonucleic acid by fluorescence method. Spectrochim Acta - Part A Mol Biomol Spectrosc 71:1938–1943. https://doi.org/10.1016/j.saa.2008.07.033
  • Radi AE, El-Naggar AE, Nassef HM (2014) Electrochemical and Spectral studies on the Interaction of the Antiparasitic Drug Nitazoxanide with DNA. Electrochim Acta 129:259–265. https://doi.org/10.1016/j.electacta.2014.02.092
  • Tumer F, Golcu A, Tumer M, et al (2017) Multifunctional metallo porphyrin-imine conjugates: Photophysical, electrochemical, DNA binding and SOD enzyme mimetic studies. J Photochem Photobiol A Chem 346:236–248. https://doi.org/10.1016/j.jphotochem.2017.06.010
  • Güngör SA, Tümer M, Köse M, Erkan S (2021) N-substituted benzenesulfonamide compounds: DNA binding properties and molecular docking studies. J Biomol Struct Dyn 40:7424–7438. https://doi.org/10.1080/07391102.2021.1897683
  • Abu-Dief AM, El-khatib RM, Aljohani FS, et al (2021) Synthesis and intensive characterization for novel Zn(II), Pd(II), Cr(III) and VO(II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. J Mol Struct 1242:130693. https://doi.org/10.1016/j.molstruc.2021.130693
  • Wang L, Bian G, Wang L, et al (2005) Fluorescence determination of DNA with 1-pyrenebutyric acid nanoparticles coated with β-cyclodextrin as a fluorescence probe. Spectrochim Acta - Part A Mol Biomol Spectrosc 61:1201–1205. https://doi.org/10.1016/j.saa.2004.06.042
  • Shokohi-Pour Z, Chiniforoshan H, Momtazi-Borojeni AA, Notash B (2016) A novel Schiff base derived from the gabapentin drug and copper (II) complex: Synthesis, characterization, interaction with DNA/protein and cytotoxic activity. J Photochem Photobiol B Biol 162:34–44. https://doi.org/10.1016/j.jphotobiol.2016.06.022
  • Jayamani A, Sengottuvelan N, Chakkaravarthi G (2014) Synthesis, structural, electrochemical, DNA interaction, antimicrobial and molecular docking studies on dimeric copper(II) complexes involving some potential bidentate ligands. Polyhedron 81:764–776. https://doi.org/10.1016/j.poly.2014.05.076
  • Dolomanov O V., Bourhis LJ, Gildea RJ, et al (2009) OLEX2: A complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726
  • Sheldrick GM (2015) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv 71:3–8. https://doi.org/10.1107/S2053273314026370
  • Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8. https://doi.org/10.1107/S2053229614024218
  • Gungor O, Kocer F, Kose M (2020) Cu(II) complexes of biguanidine ligands: Structural characterisation, DNA binding and antimicrobial properties. J Mol Struct 1204:127533. https://doi.org/10.1016/j.molstruc.2019.127533
  • Anjomshoa M, Fatemi SJ, Torkzadeh-Mahani M, Hadadzadeh H (2014) DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2- pyridyl)-1,2,4-triazine. Spectrochim Acta - Part A Mol Biomol Spectrosc 127:511–520. https://doi.org/10.1016/j.saa.2014.02.048
  • Vijayalakshmi R, Kanthimathi M, Subramanian V, Nair BU (2000) Interaction of DNA with [ Cr ( Schi ¡ base )( H 2 O ) 2 ] ClO 4. Science (80- ) 1475:157–162
  • Psomas G (2008) Mononuclear metal complexes with ciprofloxacin: Synthesis, characterization and DNA-binding properties. J Inorg Biochem 102:1798–1811. https://doi.org/10.1016/j.jinorgbio.2008.05.012
  • Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res 32:. https://doi.org/10.1093/nar/gnh101
There are 23 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section RESEARCH ARTICLES
Authors

Mustafa Bal

Ayşegül Köse 0000-0003-3323-8149

Publication Date March 10, 2023
Submission Date September 27, 2022
Acceptance Date January 20, 2023
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Bal, M., & Köse, A. (2023). Crystal Structure and DNA Binding Properties of A Sulfide Bridged Dimeric Schiff Base Compound. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 818-831. https://doi.org/10.47495/okufbed.1180912
AMA Bal M, Köse A. Crystal Structure and DNA Binding Properties of A Sulfide Bridged Dimeric Schiff Base Compound. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. March 2023;6(1):818-831. doi:10.47495/okufbed.1180912
Chicago Bal, Mustafa, and Ayşegül Köse. “Crystal Structure and DNA Binding Properties of A Sulfide Bridged Dimeric Schiff Base Compound”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. 1 (March 2023): 818-31. https://doi.org/10.47495/okufbed.1180912.
EndNote Bal M, Köse A (March 1, 2023) Crystal Structure and DNA Binding Properties of A Sulfide Bridged Dimeric Schiff Base Compound. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 1 818–831.
IEEE M. Bal and A. Köse, “Crystal Structure and DNA Binding Properties of A Sulfide Bridged Dimeric Schiff Base Compound”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 6, no. 1, pp. 818–831, 2023, doi: 10.47495/okufbed.1180912.
ISNAD Bal, Mustafa - Köse, Ayşegül. “Crystal Structure and DNA Binding Properties of A Sulfide Bridged Dimeric Schiff Base Compound”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/1 (March 2023), 818-831. https://doi.org/10.47495/okufbed.1180912.
JAMA Bal M, Köse A. Crystal Structure and DNA Binding Properties of A Sulfide Bridged Dimeric Schiff Base Compound. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6:818–831.
MLA Bal, Mustafa and Ayşegül Köse. “Crystal Structure and DNA Binding Properties of A Sulfide Bridged Dimeric Schiff Base Compound”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 1, 2023, pp. 818-31, doi:10.47495/okufbed.1180912.
Vancouver Bal M, Köse A. Crystal Structure and DNA Binding Properties of A Sulfide Bridged Dimeric Schiff Base Compound. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6(1):818-31.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.