Research Article
BibTex RIS Cite

A Note on a Special Metric Space with Triple Fixed Points

Year 2023, Volume: 6 Issue: 2, 1285 - 1295, 05.07.2023

Abstract

This work is focused on constructing a general concept of triple fixed point of a mapping in a C*-algebra valued metric space. We also include some significant consequences of the hypotheses of our work in this paper. In addition, we provide some numerical examples for readers to see the connections between our work and other fields such as the theory of Integral Equations, Systems of Algebraic and Differential Equations and Dynamic Systems.

References

  • Agarwal, R.P., Meehan, M. and O’Regan, D. (2001). Fixed point Theory and Application. Cambridge University Press, Cambridge (pp.170).
  • Berinde, V., Borcut, M. (2011). Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal, 74, 15, 4889-4897.
  • Berinde, V., Borcut, M. (2012). Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Appl. Math. Comput. 218(10), 5929-5936.
  • Borcut, M. (2012). Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Appl.Math. Comput. 218(14),7339-7346.
  • Ciric, L. (1981). Fixed Point Mappings on Compact Metric Spaces Publications De L’institut Mathematique Nouvelle serie, 30 (44), pp. 29-31.
  • Cosentino, M., Salimi, P., and Vetro, P. (2014). Fixed point results on metric-type spaces, Acta Math. Sci., 34(4), 1237-1253.
  • Gholamian, N., Khanehgir, M., and Allahyari, R. (2017). Some Fixed Point Theorems for C*-Algebra-Valued b2-Metric Spaces, Journal of Mathematical Extension Vol. 11, No. 2, 53-69.
  • Gupta, A., and Manro, S. (2017). A New Type of Tripled Fixed Point Theorem in Partially Ordered Complete Metric Space, Advances in Analysis, Vol. 2 (2), 63-70.
  • Harandi, A. (2013). Coupled and tripled fixed point theory in partially ordered metric spaces with applications to initial value problem, Mathematical and Computer Modeling 57, 2343-2348.
  • Jha, K. (2002). Some Applications of Banach Contraction Principle, Nepal Journal of Science and Technology, Vol.4, 135-140.
  • Lin, H. (2001). An Introduction to the Classification of Amenable C*-Algebras, https://doi.org/10.1142/4751, (2001), pp.332.
  • López, S.R. (2017). Metric spaces and the Banach fixed point theorem, Lecture Note.
  • Ma , Z., Jiang,l., and Sun,H. ( 2014). C*-Algebra-valued-metric spaces and related fixed point theorems, Fixed Point Theory and Application. 206, 1-11.
  • Murphy, GJ. (1990). C*-Algebras and Operator Theory. Academic Press, London, (pp.286)
  • Özer, Ö. and Omran, S. (2016). Common Fixed Point Theorems in C*-Algebra Valued b-Metric Spaces AIP Conference Proceedings 1773, 050005.
  • Özer, Ö. and Omran, S. (2017). On the Generalized C*-Valued Metric Spaces Related With Banach Fixed Point Theory, International Journal of Advanced and Applied Sciences, Vol.4, Issue.2, (2017), 35-37.
  • Özer, Ö. and Omran, S. (2019). A Note on C*-Algebra Valued G-Metric Space Related with Fixed Point Theorems, Bulletin of the Karaganda University- Mathematics, Vol.3 (95), 44-50.
  • Srinuvasa, B., Kishore, G.N.V., and Ramprasad, D. (2019). Some Tripled Fixed Point Theorems in Bipolar Metric Spaces, International Journal of Management, Technology and Engineering, Volume IX, Issue I, 715-730.
  • Wang, S. and Guo, B. (2011). Distance in Cone Metric Spaces and common fixed point theorems, Appl. Math Lett., 24, 1735-1739.

Üçlü Sabit Noktalı Özel Bir Metrik Uzay Üzerine Bir Not

Year 2023, Volume: 6 Issue: 2, 1285 - 1295, 05.07.2023

Abstract

Bu çalışma, bir C*-cebiri değerli metrik uzayda bir eşlemenin üçlü sabit noktasının genel bir kavramını oluşturmaya odaklanmıştır. Makaleye, çalışmamıza ait varsayımların bazı önemli sonuçları da dahil edilmiştir. Bunun yanı sıra, elde edilen sonuçlarımızın uygulanabilirliğini göstermek amacı ile birkaç sayısal örnek verilmiştir. Ayrıca Banach Büzülme Prensibinin integral denklemler teorisi, türevli fonksiyonlar teorisi, cebirsel veya diferansiyel denklemler sistemi, dinamik sistemler vb. gibi bazı alanlara yönelik uygulamaları, bu tür alanlardaki diğer çalışmalardan örneklerle verilmiştir.

References

  • Agarwal, R.P., Meehan, M. and O’Regan, D. (2001). Fixed point Theory and Application. Cambridge University Press, Cambridge (pp.170).
  • Berinde, V., Borcut, M. (2011). Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal, 74, 15, 4889-4897.
  • Berinde, V., Borcut, M. (2012). Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Appl. Math. Comput. 218(10), 5929-5936.
  • Borcut, M. (2012). Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Appl.Math. Comput. 218(14),7339-7346.
  • Ciric, L. (1981). Fixed Point Mappings on Compact Metric Spaces Publications De L’institut Mathematique Nouvelle serie, 30 (44), pp. 29-31.
  • Cosentino, M., Salimi, P., and Vetro, P. (2014). Fixed point results on metric-type spaces, Acta Math. Sci., 34(4), 1237-1253.
  • Gholamian, N., Khanehgir, M., and Allahyari, R. (2017). Some Fixed Point Theorems for C*-Algebra-Valued b2-Metric Spaces, Journal of Mathematical Extension Vol. 11, No. 2, 53-69.
  • Gupta, A., and Manro, S. (2017). A New Type of Tripled Fixed Point Theorem in Partially Ordered Complete Metric Space, Advances in Analysis, Vol. 2 (2), 63-70.
  • Harandi, A. (2013). Coupled and tripled fixed point theory in partially ordered metric spaces with applications to initial value problem, Mathematical and Computer Modeling 57, 2343-2348.
  • Jha, K. (2002). Some Applications of Banach Contraction Principle, Nepal Journal of Science and Technology, Vol.4, 135-140.
  • Lin, H. (2001). An Introduction to the Classification of Amenable C*-Algebras, https://doi.org/10.1142/4751, (2001), pp.332.
  • López, S.R. (2017). Metric spaces and the Banach fixed point theorem, Lecture Note.
  • Ma , Z., Jiang,l., and Sun,H. ( 2014). C*-Algebra-valued-metric spaces and related fixed point theorems, Fixed Point Theory and Application. 206, 1-11.
  • Murphy, GJ. (1990). C*-Algebras and Operator Theory. Academic Press, London, (pp.286)
  • Özer, Ö. and Omran, S. (2016). Common Fixed Point Theorems in C*-Algebra Valued b-Metric Spaces AIP Conference Proceedings 1773, 050005.
  • Özer, Ö. and Omran, S. (2017). On the Generalized C*-Valued Metric Spaces Related With Banach Fixed Point Theory, International Journal of Advanced and Applied Sciences, Vol.4, Issue.2, (2017), 35-37.
  • Özer, Ö. and Omran, S. (2019). A Note on C*-Algebra Valued G-Metric Space Related with Fixed Point Theorems, Bulletin of the Karaganda University- Mathematics, Vol.3 (95), 44-50.
  • Srinuvasa, B., Kishore, G.N.V., and Ramprasad, D. (2019). Some Tripled Fixed Point Theorems in Bipolar Metric Spaces, International Journal of Management, Technology and Engineering, Volume IX, Issue I, 715-730.
  • Wang, S. and Guo, B. (2011). Distance in Cone Metric Spaces and common fixed point theorems, Appl. Math Lett., 24, 1735-1739.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section RESEARCH ARTICLES
Authors

Özen Özer 0000-0001-6476-0664

Publication Date July 5, 2023
Submission Date August 18, 2022
Acceptance Date December 20, 2022
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Özer, Ö. (2023). A Note on a Special Metric Space with Triple Fixed Points. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), 1285-1295.
AMA Özer Ö. A Note on a Special Metric Space with Triple Fixed Points. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. July 2023;6(2):1285-1295.
Chicago Özer, Özen. “A Note on a Special Metric Space With Triple Fixed Points”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. 2 (July 2023): 1285-95.
EndNote Özer Ö (July 1, 2023) A Note on a Special Metric Space with Triple Fixed Points. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 2 1285–1295.
IEEE Ö. Özer, “A Note on a Special Metric Space with Triple Fixed Points”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 6, no. 2, pp. 1285–1295, 2023.
ISNAD Özer, Özen. “A Note on a Special Metric Space With Triple Fixed Points”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/2 (July 2023), 1285-1295.
JAMA Özer Ö. A Note on a Special Metric Space with Triple Fixed Points. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6:1285–1295.
MLA Özer, Özen. “A Note on a Special Metric Space With Triple Fixed Points”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 2, 2023, pp. 1285-9.
Vancouver Özer Ö. A Note on a Special Metric Space with Triple Fixed Points. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6(2):1285-9.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.