Research Article
BibTex RIS Cite

Farklı Bor Bileşikleri Katkısının Yaş Çekim Yöntemiyle Üretilen Poliakrilonitril-ko-Vinil Asetat Liflerinin Termal Özelliklerine Etkisinin Araştırılması

Year 2024, Volume: 7 Issue: 5, 2333 - 2345, 10.12.2024
https://doi.org/10.47495/okufbed.1457421

Abstract

Bu makalede, farklı bor bileşikleri katkısının yaş çekim yöntemiyle üretilen poliakrilonitril-ko-vinil asetat P(AN-VAc) liflerinin termal özelliklerine etkisi araştırılmıştır. P(AN-VAc) liflerinin termal özelliklerini geliştirmek amacıyla, lif çekim çözeltilerine farklı bor bileşikleri (borik asit (BA), boraks (B), çinko borat (ZB) ve bunların ikili karışımları) ilave edilmiştir. Referans lif numunesi dışındaki tüm bor katkılı P(AN-VAc) lifleri için (P(AN-VAc)) ve bor bileşiklerinin katkı oranları sırasıyla %90 ve %10 olacak şekilde sabit tutulmuştur. %100 P(AN-VAc)'dan üretilen bor katkısız lifler referans lif numunesi olarak kullanılmıştır. Bor katkılı ve katkısız üretilen tüm liflerin Fourier Dönüşümlü İnfra-Red (FTIR) spektrumlarında P(AN-VAc)'a ait karakteristik pikler gözlemlenirken, bor bileşiği ilave edilen liflerin FTIR spektrumlarında ise ayrıca bor bileşiklerine ait pikler de gözlemlenmiştir. Termogravimetrik analiz (TGA) ve diferansiyel taramalı kalorimetre (DSC) ölçümlerinden elde edilen sonuçlar, bor katkılı P(AN-VAc) liflerinin ısıl direncinde bor katkısız P(AN-VAc) liflerine kıyasla önemli derecede iyileşmeler olduğunu göstermiştir. Sonuçta, P(AN-VAc) liflerinin ısıl direncine en etkili bor bileşiklerinin sırasıyla ZB, BA ve B olduğu tespit edilmiştir.

Ethical Statement

Yazarlar herhangi bir kişi, kurum, şirket vb. ile çıkar çatışması olmadığını beyan ederler.

Supporting Institution

Kahramanmaraş Sütçü İmam Üniversitesi, Bilimsel Araştırma Projeleri Birimi

Project Number

2013/6-16YLS

Thanks

Yazarlar, Kahramanmaraş Üniversitesi Bilimsel Araştırma Projeleri (BAP) birimi Sütçü İmam'a 2013/6-16YLS hibe numarasıyla verdiği finansman desteğinden dolayı teşekkürlerini sunarlar.

References

  • Bahrami SH., Bajaj P., Sen K. Effect of coagulation conditions on properties of poly(acrylonitrile / carboxylic acid) fibers. Journal of Applied Polymer Science 2003; 89(7): 1825-1837.
  • BISFA. Terminology of man-made fibers. Brussels, 2000.
  • BOREN. http://www.boren.gov.tr/en/boron/areas-of-application/flame-retardants (URL accessed on 09.05.2018).
  • Bozdoğan F., Karacan İ., Kitagawa T. Characterization of structure and properties of polyacrylonitrile-based acrylic fibres. Journal of Material Science and Technology 2000; 8(8): 119-139.
  • Bozdoğan F., Karacan İ., Tiyek İ. Characterisation of structure and properties of a selection of polyacrylonitrile (PAN)-based acrylic fibers produced in Turkey. Ege University Textile and Apparel Research-Application Center Publication 2004; İzmir.
  • Capone GJ. Wet-spinning technology. In: Masson JC. (ed.) Acrylic fiber technology and applications. Marcel Dekker Inc. 1995; New York.
  • Chai Y., Liu J., Zhao Y., Yan N. Characterization of modified phenol formaldehyde resole resins synthesized in situ with various boron compounds. Industrial & Engineering Chemistry Research 2016; 55(37): 9840–9850.
  • David C. Thermal degradation of polymers. In: Bamford CH., Tipper CFH. (ed.) Comprehensive chemical kinetics. Elsevier Scientific Publishing Company 1975; Amsterdam – Oxford – New York.
  • Duquesne S., Jimenez M., Bourbigot S. Fire retardancy and fire protection of materials using ıntumescent coatings – A versatile solution? In: Hull RT., Kandola BK. (ed.) Fire retardancy of polymers: new strategies and mechanisms. Royal Society of Chemistry (RSC) Publishing 2009; Cambridge.
  • Falkai BV. Dry-spinning technology. In: Masson JC. (ed.) Acrylic fiber technology and applications. Marcel Dekker Inc. 1995; New York.
  • Frushour BG., Knorr RS. Acrylic fibers. In: Lewin M., Pearce EM. (ed.) Handbook of fiber science and technology: Fiber chemistry. Marcel Dekker Inc. 1985; New York.
  • Frushour BG. Acrylic polymer characterization in the solid state and in solution. In: Masson JC. (ed.) Acrylic fiber technology and applications. Marcel Dekker Inc. 1995; New York.
  • Guo B., Zha D., Li B., Yin P., Li P. Polyvinyl alcohol microspheres reinforced thermoplastic starch composites. Materials 2018; 11(4): 640.
  • Guo Y., Zuo C., Tan W., Liu Y., Jiang L., Yu D., Ren Y., Liu X. Fabricating flame retardant polyacrylonitrile fibers modified by sodium lignosulfonate and copper ions. Degradation and Stability 2022; 206: 110176.
  • Hilado CJ. Flammability handbook for plastics. Technomic Publishing Company Inc. 1998; Lancaster, Basel. Karacan İ., Erdoğan G. A study on structural characterization of thermal stabilization stage of polyacrylonitrile fibers prior to carbonization. Fibers and Polymers 2012; 13(3): 329-338.
  • Köytepe S., Vural S., Seçkin T. Molecular design of nanometric zinc borate-containing polyimide as a route to flame retardant materials. Materials Research Bulletin 2009; 44(2): 369-376.
  • Kracklauer J. Smoke and tenability: A perspective on the materials approach to the fire problem. In: Lewin M., Atlas SM., Pearce EM. (ed.) Flame - retardant polymeric materials. Plenum Press 1978; New York.
  • Lomakin DM., Zaikov GE. New concepts in polymer science: Ecological aspects of polymer flame retardancy. CRC Press 1999; Utrecth.
  • Liu Y., Yu X., Guo Y., Liu X. Preparation of flame retardant, smoke suppression and reinforced polyacrylonitrile composite fiber by using fully biomass intumescent flame retardant system and its sustainable recycle application. Composites Part A: Applied Science and Manufacturing 2023; 173: 107705.
  • Liu Y., Zhang J., Ren Y., Zhang G., Liu X., Qu H. Biomaterial arginine encountering with UV grafting technology to prepare flame retardant coating for polyacrylonitrile fabric. Progress in Organic Coatings 2022; 163: 106599.
  • Lu SY., Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Progress in Polymer Science 2002; 27(8): 1661-1712.
  • Marosfoi BB., Szabo A., Kiss K., Marosi G. Use of organosilicone composites as flame retardant additives and coatings for polypropylene. In: Hull TR., Kandola BK. (ed.) Fire retardancy of polymers: New strategies and mechanisms. RSC (Royal Society of Chemistry) Publishing 2009; Cambridge.
  • Morgan AB., Jurs JL., Tour MT. Synthesis, flame‐retardancy testing, and preliminary mechanism studies of nonhalogenated aromatic boronic acids: A new class of condensed‐phase polymer flame‐retardant additives for acrylonitrile–butadiene–styrene and polycarbonate. Journal of Applied Polymer Science 2000; 76(8): 1257-1268.
  • Peng H., Wang D., Fu S. Simultaneous exfoliation and functionalization of MoS2 nanosheets by molecular-designed poly (ionic liquid): Integrated interfacial crosslinking effect for mechanical and flame retardance enhancement of polyacrylonitrile composite fiber. Composites Communications 2021; 27: 100902.
  • Rahimi-Aghdam T., Shariatinia Z., Hakkarainen M., Haddadi-Asl V. Nitrogen and phosphorous doped graphene quantum dots: Excellent flame retardants and smoke suppressants for polyacrylonitrile nanocomposites. Journal of Hazardous Materials 2020; 381: 121013.
  • Ren Y., Zhang Y., Gu Y., Zeng Q. Flame retardant polyacrylonitrile fabrics prepared by organic-inorganic hybrid silica coating via sol-gel technique. Progress in Organic Coatings 2017; 112: 225-233.
  • Seventekin N. Kimyasal lifler. İzmir: E.Ü. Tekstil ve Konfeksiyon Araştırma ve Uygulama Merkezi Yayınları 2001; İzmir.
  • Tiyek İ., Bozdoğan F. Investigation of the changes occurred in the inner structure of wet spun acrylic fibers by using x-ray diffraction method on the fiber production stages. Textile and Apparel 2008a; 18(1): 15-22.
  • Tiyek İ., Bozdoğan F. Investigation of the influence of coagulation bath temperature on the inner structure of wet spun acrylic fibers by using x-ray diffraction method. Textile and Apparel 2008b; 18(2): 114-120.
  • Tiyek İ. Akrilik lif üretiminde koagülasyon banyosu parametrelerinin lif fiziksel özelliklerine etkisi üzerine bir araştırma. Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Doktora Tezi 2006.
  • Uslu İ., Tunç T., Keskin S., Öztürk MK. Synthesis and characterization of boron doped alumina stabilized zirconia fibers. Fibers and Polymers 2011; 12(3): 303-309.
  • Wade B., Knorr R. Polymerization. In: Masson JC. (ed.) Acrylic fiber technology and applications. Marcel Dekker Inc. 1995; New York.
  • Wentworth G. Thermal and actinic degradation. In: Masson JC. (ed.) Acrylic fiber technology and applications. Marcel Dekker Inc. 1995; New York.
  • Wyman P., Crook V., Ebdon J., Hunt B., Joseph P. Flame-retarding effects of dialkyl-p-vinylbenzyl phosphonates in copolymers with acrylonitrile. Polymer International 2006; 55(7): 764-771.

Investigation of the Effect of Addition of Different Boron Compounds on Thermal Properties of Polyacrylonitrile-co-Vinyl Acetate Fibers Produced by Wet Spinning Method

Year 2024, Volume: 7 Issue: 5, 2333 - 2345, 10.12.2024
https://doi.org/10.47495/okufbed.1457421

Abstract

In this article, the effect of different boron compounds additives on the thermal properties of wet spun polyacrylonitrile-co-vinyl acetate P(AN-VAc) fibers was investigated. Different boron compounds (boric acid (BA), borax (B), zinc borate (ZB) and their binary mixtures) were added to fiber spinning solutions in order to improve the thermal characteristics of P(AN-VAc) fibers. For all boron-added P(AN-VAc) fibers except the reference fiber sample, the proportions of (P(AN-VAc)) and boron compounds were kept constant at 90% and 10%, respectively. Boron-free fiber produced from 100% P(AN-VAc) was used as the reference fiber sample. While characteristic peaks of P(AN-VAc) were observed in the Fourier Transform Infra-Red (FTIR) spectra of all fibers produced with or without boron additives, peaks belonging to boron compounds were also observed in the FTIR spectra of boron-added fibers. The results obtained from the measurements of thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC) indicated that there were significant improvements in the thermal resistance of boron-added P(AN-VAc) fibers compared to boron-free P(AN-VAc) fiber. As a result, it was determined that the most effective boron compounds on the thermal resistance of the P(AN-VAc) fibers were ZB, BA and B, respectively.

Ethical Statement

Authors declare that there is no conflict of interest with any person, institute, company, etc

Supporting Institution

University of Kahramanmaraş Sütçü İmam, unit of Scientific Research Projects (BAP)

Project Number

2013/6-16YLS

Thanks

The authors would like to extend their polite thanks to the University of Kahramanmaraş Sütçü İmam, unit of Scientific Research Projects (BAP) for its funding support with a grant number of 2013/6-16YLS.

References

  • Bahrami SH., Bajaj P., Sen K. Effect of coagulation conditions on properties of poly(acrylonitrile / carboxylic acid) fibers. Journal of Applied Polymer Science 2003; 89(7): 1825-1837.
  • BISFA. Terminology of man-made fibers. Brussels, 2000.
  • BOREN. http://www.boren.gov.tr/en/boron/areas-of-application/flame-retardants (URL accessed on 09.05.2018).
  • Bozdoğan F., Karacan İ., Kitagawa T. Characterization of structure and properties of polyacrylonitrile-based acrylic fibres. Journal of Material Science and Technology 2000; 8(8): 119-139.
  • Bozdoğan F., Karacan İ., Tiyek İ. Characterisation of structure and properties of a selection of polyacrylonitrile (PAN)-based acrylic fibers produced in Turkey. Ege University Textile and Apparel Research-Application Center Publication 2004; İzmir.
  • Capone GJ. Wet-spinning technology. In: Masson JC. (ed.) Acrylic fiber technology and applications. Marcel Dekker Inc. 1995; New York.
  • Chai Y., Liu J., Zhao Y., Yan N. Characterization of modified phenol formaldehyde resole resins synthesized in situ with various boron compounds. Industrial & Engineering Chemistry Research 2016; 55(37): 9840–9850.
  • David C. Thermal degradation of polymers. In: Bamford CH., Tipper CFH. (ed.) Comprehensive chemical kinetics. Elsevier Scientific Publishing Company 1975; Amsterdam – Oxford – New York.
  • Duquesne S., Jimenez M., Bourbigot S. Fire retardancy and fire protection of materials using ıntumescent coatings – A versatile solution? In: Hull RT., Kandola BK. (ed.) Fire retardancy of polymers: new strategies and mechanisms. Royal Society of Chemistry (RSC) Publishing 2009; Cambridge.
  • Falkai BV. Dry-spinning technology. In: Masson JC. (ed.) Acrylic fiber technology and applications. Marcel Dekker Inc. 1995; New York.
  • Frushour BG., Knorr RS. Acrylic fibers. In: Lewin M., Pearce EM. (ed.) Handbook of fiber science and technology: Fiber chemistry. Marcel Dekker Inc. 1985; New York.
  • Frushour BG. Acrylic polymer characterization in the solid state and in solution. In: Masson JC. (ed.) Acrylic fiber technology and applications. Marcel Dekker Inc. 1995; New York.
  • Guo B., Zha D., Li B., Yin P., Li P. Polyvinyl alcohol microspheres reinforced thermoplastic starch composites. Materials 2018; 11(4): 640.
  • Guo Y., Zuo C., Tan W., Liu Y., Jiang L., Yu D., Ren Y., Liu X. Fabricating flame retardant polyacrylonitrile fibers modified by sodium lignosulfonate and copper ions. Degradation and Stability 2022; 206: 110176.
  • Hilado CJ. Flammability handbook for plastics. Technomic Publishing Company Inc. 1998; Lancaster, Basel. Karacan İ., Erdoğan G. A study on structural characterization of thermal stabilization stage of polyacrylonitrile fibers prior to carbonization. Fibers and Polymers 2012; 13(3): 329-338.
  • Köytepe S., Vural S., Seçkin T. Molecular design of nanometric zinc borate-containing polyimide as a route to flame retardant materials. Materials Research Bulletin 2009; 44(2): 369-376.
  • Kracklauer J. Smoke and tenability: A perspective on the materials approach to the fire problem. In: Lewin M., Atlas SM., Pearce EM. (ed.) Flame - retardant polymeric materials. Plenum Press 1978; New York.
  • Lomakin DM., Zaikov GE. New concepts in polymer science: Ecological aspects of polymer flame retardancy. CRC Press 1999; Utrecth.
  • Liu Y., Yu X., Guo Y., Liu X. Preparation of flame retardant, smoke suppression and reinforced polyacrylonitrile composite fiber by using fully biomass intumescent flame retardant system and its sustainable recycle application. Composites Part A: Applied Science and Manufacturing 2023; 173: 107705.
  • Liu Y., Zhang J., Ren Y., Zhang G., Liu X., Qu H. Biomaterial arginine encountering with UV grafting technology to prepare flame retardant coating for polyacrylonitrile fabric. Progress in Organic Coatings 2022; 163: 106599.
  • Lu SY., Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Progress in Polymer Science 2002; 27(8): 1661-1712.
  • Marosfoi BB., Szabo A., Kiss K., Marosi G. Use of organosilicone composites as flame retardant additives and coatings for polypropylene. In: Hull TR., Kandola BK. (ed.) Fire retardancy of polymers: New strategies and mechanisms. RSC (Royal Society of Chemistry) Publishing 2009; Cambridge.
  • Morgan AB., Jurs JL., Tour MT. Synthesis, flame‐retardancy testing, and preliminary mechanism studies of nonhalogenated aromatic boronic acids: A new class of condensed‐phase polymer flame‐retardant additives for acrylonitrile–butadiene–styrene and polycarbonate. Journal of Applied Polymer Science 2000; 76(8): 1257-1268.
  • Peng H., Wang D., Fu S. Simultaneous exfoliation and functionalization of MoS2 nanosheets by molecular-designed poly (ionic liquid): Integrated interfacial crosslinking effect for mechanical and flame retardance enhancement of polyacrylonitrile composite fiber. Composites Communications 2021; 27: 100902.
  • Rahimi-Aghdam T., Shariatinia Z., Hakkarainen M., Haddadi-Asl V. Nitrogen and phosphorous doped graphene quantum dots: Excellent flame retardants and smoke suppressants for polyacrylonitrile nanocomposites. Journal of Hazardous Materials 2020; 381: 121013.
  • Ren Y., Zhang Y., Gu Y., Zeng Q. Flame retardant polyacrylonitrile fabrics prepared by organic-inorganic hybrid silica coating via sol-gel technique. Progress in Organic Coatings 2017; 112: 225-233.
  • Seventekin N. Kimyasal lifler. İzmir: E.Ü. Tekstil ve Konfeksiyon Araştırma ve Uygulama Merkezi Yayınları 2001; İzmir.
  • Tiyek İ., Bozdoğan F. Investigation of the changes occurred in the inner structure of wet spun acrylic fibers by using x-ray diffraction method on the fiber production stages. Textile and Apparel 2008a; 18(1): 15-22.
  • Tiyek İ., Bozdoğan F. Investigation of the influence of coagulation bath temperature on the inner structure of wet spun acrylic fibers by using x-ray diffraction method. Textile and Apparel 2008b; 18(2): 114-120.
  • Tiyek İ. Akrilik lif üretiminde koagülasyon banyosu parametrelerinin lif fiziksel özelliklerine etkisi üzerine bir araştırma. Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Doktora Tezi 2006.
  • Uslu İ., Tunç T., Keskin S., Öztürk MK. Synthesis and characterization of boron doped alumina stabilized zirconia fibers. Fibers and Polymers 2011; 12(3): 303-309.
  • Wade B., Knorr R. Polymerization. In: Masson JC. (ed.) Acrylic fiber technology and applications. Marcel Dekker Inc. 1995; New York.
  • Wentworth G. Thermal and actinic degradation. In: Masson JC. (ed.) Acrylic fiber technology and applications. Marcel Dekker Inc. 1995; New York.
  • Wyman P., Crook V., Ebdon J., Hunt B., Joseph P. Flame-retarding effects of dialkyl-p-vinylbenzyl phosphonates in copolymers with acrylonitrile. Polymer International 2006; 55(7): 764-771.
There are 34 citations in total.

Details

Primary Language English
Subjects Fiber Technology, Textile Science
Journal Section RESEARCH ARTICLES
Authors

Nuriye Kertmen 0000-0003-2925-9078

İsmail Tiyek 0000-0002-1643-8977

Project Number 2013/6-16YLS
Publication Date December 10, 2024
Submission Date March 22, 2024
Acceptance Date July 17, 2024
Published in Issue Year 2024 Volume: 7 Issue: 5

Cite

APA Kertmen, N., & Tiyek, İ. (2024). Investigation of the Effect of Addition of Different Boron Compounds on Thermal Properties of Polyacrylonitrile-co-Vinyl Acetate Fibers Produced by Wet Spinning Method. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(5), 2333-2345. https://doi.org/10.47495/okufbed.1457421
AMA Kertmen N, Tiyek İ. Investigation of the Effect of Addition of Different Boron Compounds on Thermal Properties of Polyacrylonitrile-co-Vinyl Acetate Fibers Produced by Wet Spinning Method. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. December 2024;7(5):2333-2345. doi:10.47495/okufbed.1457421
Chicago Kertmen, Nuriye, and İsmail Tiyek. “Investigation of the Effect of Addition of Different Boron Compounds on Thermal Properties of Polyacrylonitrile-Co-Vinyl Acetate Fibers Produced by Wet Spinning Method”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7, no. 5 (December 2024): 2333-45. https://doi.org/10.47495/okufbed.1457421.
EndNote Kertmen N, Tiyek İ (December 1, 2024) Investigation of the Effect of Addition of Different Boron Compounds on Thermal Properties of Polyacrylonitrile-co-Vinyl Acetate Fibers Produced by Wet Spinning Method. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7 5 2333–2345.
IEEE N. Kertmen and İ. Tiyek, “Investigation of the Effect of Addition of Different Boron Compounds on Thermal Properties of Polyacrylonitrile-co-Vinyl Acetate Fibers Produced by Wet Spinning Method”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 7, no. 5, pp. 2333–2345, 2024, doi: 10.47495/okufbed.1457421.
ISNAD Kertmen, Nuriye - Tiyek, İsmail. “Investigation of the Effect of Addition of Different Boron Compounds on Thermal Properties of Polyacrylonitrile-Co-Vinyl Acetate Fibers Produced by Wet Spinning Method”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7/5 (December 2024), 2333-2345. https://doi.org/10.47495/okufbed.1457421.
JAMA Kertmen N, Tiyek İ. Investigation of the Effect of Addition of Different Boron Compounds on Thermal Properties of Polyacrylonitrile-co-Vinyl Acetate Fibers Produced by Wet Spinning Method. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2024;7:2333–2345.
MLA Kertmen, Nuriye and İsmail Tiyek. “Investigation of the Effect of Addition of Different Boron Compounds on Thermal Properties of Polyacrylonitrile-Co-Vinyl Acetate Fibers Produced by Wet Spinning Method”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 7, no. 5, 2024, pp. 2333-45, doi:10.47495/okufbed.1457421.
Vancouver Kertmen N, Tiyek İ. Investigation of the Effect of Addition of Different Boron Compounds on Thermal Properties of Polyacrylonitrile-co-Vinyl Acetate Fibers Produced by Wet Spinning Method. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2024;7(5):2333-45.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.