Research Article
BibTex RIS Cite

Elmada mavi küfe neden olan Penicillium expansum’a karşı bazı bor tuzlarının antifungal etkisi

Year 2019, Volume: 34 Issue: 3, 250 - 258, 15.10.2019
https://doi.org/10.7161/omuanajas.515031

Abstract





Mavi küf
hastalığına neden olan Penicillium
expansum
yumuşak çekirdekli meyvelerde hasat sonrası görülen önemli
patojenlerden biri olup, meyve enfeksiyonu için yaraya ihtiyaç duyan
nekrotrofik bir fungustur. Bu çalışmada, etidot-67 ve boraks dekahidratın P. expansum’a karşı etkinliği hem in vitro hem de in vivo
denemelerle değerlendirilmiştir. In vitro
denemelerde, hem etidot-67 hem de boraks dekahidrat P. expansum’un misel gelişmesini, spor çimlenmesini ve çim tüpü
uzunluğunu güçlü bir şekilde engellemiştir. Her iki tuzun engelleyici etkileri
onların artan konsantrasyonları ile yakından ilişkili bulunmuştur. Bor tuzları P. expansum'un misel gelişmesini %0.25
konsantrasyonda tamamen engellerken, bu tuzlar fungusun spor çimlenmesini ve
çim tüp uzamasını %0.125 konsantrasyonunda tamamen engellemiştir. Ayrıca, test
edilen tuzların toksisitelerinin birbirine yakın olduğu, yani etidot-67 ve
boraks dekahidratın EC50 değerlerinin sırasıyla 0.067 ve 0.071
olduğu belirlenmiştir. Etidot-67 ve boraks dekahidratın minimum engelleyici
konsantrasyon (MIC) değerleri %0.25 iken, aynı tuzların minimum fungisidal
konsantrasyon (MFC) değerleri %1'den büyük bulunmuştur. In vivo
denemelerde, fungus inokülasyonundan sonra (tedavi edici aktivite), etidot-67
ve boraks dekahidratın %3.0 konsantrasyonu uygulanmış elma meyvelerinde mavi
küf gelişimi, kontrol uygulaması ile kıyaslandığında, sırasıyla %92.8 ve
%78.9’a kadar önemli derecede azalmıştır (P<0.05). Bununla birlikte, aynı
konsantrasyonda, fungus (1x104 konidi mL-1) ile
inokülasyondan önce (koruyucu aktivite) bor tuzları ile muamele edilen elma
meyvelerindeki lezyon alanı kontrol uygulaması ile kıyaslandığında sırasıyla
%94.3 ve %98.3 azalmıştır. Bu sonuçlar, bor tuzlarının P. expansum'un neden olduğu elma meyvesinin hasat sonrası
hastalığının kontrolü için sentetik fungisitlere potansiyel bir alternatif
olarak kullanılabileceğini göstermektedir.





References

  • Anonymous, 2019a. http://www.fao.org/faostat/en/#data/QC (Erişim tarihi: 18.01.2019)
  • Anonymous, 2019b. Bitki koruma ürünleri veri tabanı programı. Available at https://bku.tarim.gov.tr. (Erişim tarihi: 15 Ocak 2019).
  • Arslan U, Ilhan K, Karabulut O.A., 2006. Evaluation of food additives and low-toxicity compounds for the control of bean rust and wheatleaf rust. Journal of Phytopathology, 154:534-541.
  • Arslan, U., Ilhan, K., Karabulut, O.A., 2013. Evaluation of the use of ammonium bicarbonate and oregano (Origanum vulgare ssp. hirtum) extract on the control of apple scab. Journal of Phytopathology, 161:382-388.
  • Cao B., Li H., Tian S., Qin G. 2012. Boron improves the biocontrol activity of Cryptococcus laurentii against Penicillium expansum in jujube fruit. Postharvest Biology and Technology, 68: 16-21.
  • Conway, W.S., Leverentz, B., Janisiewicz, W.F., Blodgett, A.B., Saftner, R.A,. Camp, M.J., 2004. Integrating heat treatment, biocontrol and sodium bicarbonate to reduce postharvest decay of apple caused by Colletotrichum acutatum and Penicillium expansum. Postharvest Biology Technology. 34: 11–20.
  • Conway, W.S., Leverentz,B., Janisiewicz, W.F., Saftner, R.A., Camp, M.J., 2005. Improving biocontrol using antagonist mixtures with heat and/or sodium bicarbonate to control postharvest decay of apple fruit Postharvest Biology Technology, 36: 235–244.
  • Droby, S., Wisniewski, M.E., El Ghaouth, A., Wilson, C. 2003. Influence of food additives on the control of postharvest rots of apple and peach and efficacy of the yeast-based biocontrol product Aspire. Postharvest Biology and Technology, 27: 127-135.
  • Grant, I.R. and Patterson, M.F., 1991. Effect of irradiation and modified atmosphere packaging on the microbiological safety of minced pork stored under temperature abuse conditions. International Journal of Food Science Tecnology. https://doi.org/10.1111/j.1365-2621.1991.tb01997.x
  • Hervieux, V., Yaganza, E.S., Arul, J., Tweddell, R.J., 2002. Effect of organic and inorganic salts on the development of Helminthosporium solani, the causal agent of potato silver scurf. Plant Disease, 86: 1014-1018.
  • Janisiewicz, W.J., 1998, Biocontrol of Postharvest Diseases of Temperate Fruits: Challenges and Opportunities. In: Plant - Microbe Interactions and Biological Control. J.Boland and L.D.Kaykendall, eds. Marcel-Dekker, Inc, New York, 171-189.
  • Karabulut, Ö.A., Arslan, Ü., Kuruoğlu, G. ve İlhan, K., 2005. Integrated Control Of Postharvest Diseases Of Sweet Cherry With Yeast Antagonists and Sodium Bicarbonate Applications Within A Hydrocooler. Postharvest Biology and Technology, 37:135-141.
  • Li Y., Yang Z., Bi Y., Zhang J., Wang D., 2012. Antifungal effect of borates against Fusarium sulphureum on potato tubers and its possible mechanisms of action. Postharvest Biology and Technology, 74,55-61.
  • Mari, M., Leoni, O., Iori, R., Cembali, T., 2002. Antifungal vapour-phase activity of allyl-isothiocyanate against Penicillim expansum on pears. Plant Pathol. 51, 231–236.
  • Mills, A. A. S., Platt, H. W., Hurta, R. A. R. 2005. Salt compounds as control agents of late blight and pink rot of potatoes in storage. Can. Journal Plant Pathoogy, 27:204-209.
  • Mecteau, M.R., Arul, J., Tweddell, R.J., 2002. Effect of organic and inorganic salts on the growth and development of Fusarium sambucinum, a causal agent of potato dry rot. Mycological Research, 106: 688-696.
  • Mlikota Gabler, F., Smilanick, J.L., 2001. Postharvest control of table grape gray mold on detached berries with carbonate and bicarbonate salts and disinfectants. American Journal of Enology and Viticulture, 52, 12-20.
  • Nunes C., Usall J., Teixido N, de Eribe X.O., Vinas I. 2001. Control of post-harvest decay of apples by preharvest and post-harvest application of ammonium molybdate. Pest Management Sci. 57: 1093-1099.
  • Palou, L., Marcilla, A., Rojas-Argudo, C., Alonso, M.,. Jacas, J.A., Angel del Rio, M., 2007. Effects of X-ray irradiation and sodium carbonate treatments on postharvest Penicillium decay and quality attributes of clementine mandarins. Postharvest Biology and Technology, 46: 252–261.
  • Punja, Z. K., Grogan, R. G., 1982. Effects of inorganic salts, carbonate-bicarbonate anions, ammonia, and the modifying influence of pH on sclerotial germination of Sclerotium rolfsii. Phytopathology 72:635-639.
  • Qin, G., Tian, S., Chan, Z., Li, B., 2007. Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum. Mol. Cell. Proteomics, 6: 425–438.
  • Qin G., Zong Y., Chen Q., Hua D. and Tian S., 2010. Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. International Journal of Food Microbiology, 138:145-150.
  • Rolshausen, P.E., and Gubler, W.D. 2005. Use of boron for the control of Eutypa dieback of grapevines. Plant Dis. 89: 734-738.
  • Shi X., Li B., Qin G., Tian S., 2012. Mechanism of antifungal action of borate against Colletotrichum gloeosporioides related to mitochondrial degradation in spores. Postharvest Biology and Technology,67: 138–143.
  • Spadaro, D., Vola, R., Piano, S., and Gullino, M.L., 2002. Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biology and Technology, 24, 123–134.
  • Snowdown A. L., 1991, A. Colour atlas of postharvest diseases and disorders of fruit and vegetables general introdiction and fruits. pp.11-53.Wolfe Scientific Ltd.
  • Temur, C. and Tiryaki, O, 2012. Combination of irradiation and sodium carbonate to control postharvest Penicillium decay of apples. The Journal of Turkish Phytopathology, 42:47-56.
  • Thomidis, T., Exadaktylou, E., 2010. Effect of boron on the development of brown rot (Monilinia laxa) on peaches. Crop Protection, 29, 572–576.
  • Thompson, D. P., 1989. Fungitoxic activity of essential oil componentson food storage fungi. Mycologia, 81: 151–153.
  • Tripathi, P., Dubey, N.K., Banerji, R., Chansouria, J.P.N., 2004. Evaluation ofsome essential oils as botanical fungi toxicants in management of post-harvest rotting of citrus fruits. World J. Microbiol Biotechnol., 20: 317–321.
  • Türkkan M., Erper I., (2014) Evaluation of antifungal activity of sodium salts against onion basal rot caused by Fusarium oxysporum f.sp. cepae. Plant Prot Sci, 50: 19–25.
  • Türkkan, M., Erper, İ., 2015. Inhibitory influence of organic and inorganic sodium salts and synthetic fungicides againts bean root rot pathogens. Gesunde Pflanzen, 67: 83-94.
  • Türkkan, M., Özcan, M., Erper, İ. 2017. Antifungal effect of carbonate and bicarbonate salts against Botrytis cinerea, the casual agent of grey mould of kiwifruit. Akademik Ziraat Dergisi, 6(2):103-110.
  • Wisniewski, M. E, Droby, S., El-Ghaouth, A. Wilson, C. L, 1998. The use of food additives to control postharvest decay and enhance biocontrol activity of yeast antagonist, in Proc Internat Congress Plant pathol, August 9-16, Edinburg, Scotlant, (Abstract 5.2.61).
  • Vilanova , L., Vinas, I., Torres, R., Usall, J., Buron-Moles, G., Teixidó, N., 2014. Increasing maturity reduces wound response and lignification processes against Penicillium expansum (pathogen) and Penicillium digitatum (non-host pathogen) infection in apples. Postharvest Biology and Technology, 88: 54-60.
  • Zhang, J. and Timmer, L.W., 2007. Preharvest application of fungicides for postharvest disease control on early season tangerine hybrids in Florida. Crop Protection 26, 886–893.

Antifungal effect of some boron salts against Penicillium expansum, the casual agent of blue mold of apple

Year 2019, Volume: 34 Issue: 3, 250 - 258, 15.10.2019
https://doi.org/10.7161/omuanajas.515031

Abstract

Penicillium
expansum
causing blue mold disease is one of the most
important pathogens of pome fruit and is a necrotrophic fungus that requires
wounds to infect the fruit. In the present study, the efficacy of etidot-67 and
borax decahydrate against P. expansum were evaluated in both in vitro
and in
in vivo. In in vitro
experiments, both etidot-67 and borax decahydrate strongly inhibited mycelial
growth, spore germination and germ tube elongation of P. expansum. The
inhibitory effects of both salts were closely correlated with their increasing
concentrations. While boron salts completely inhibited the mycelial growth of P.
expansum
at %0.25 concentration, these salts completely inhibited spore
germination and germ tube elongation of the fungus at %0.125 concentration.
Additionally, it was determined that the toxicity of the salts tested were
close to each other, namely EC50 values of Etidot-67 and borax decahydrate
were 0.067 and 0.071, respectively. While the minimum inhibition concentration
(MIC) values of the etidot-67 and borax decahydrate were %0.25, the minimum
fungicidal concentration (MFC) values of the same salts were found to be
greater than 1%. In
in vivo experiments, blue
mold development in apple fruits treated with 3.0% concentration of etidot-67
and borax decahydrate after fungal inoculation (curative activity) was
significantly reduced by %92.8 and %78.9, respectively, compared with the
control treatment (P<0.05). However, at same concentration, lesion area on
apple fruits treated with the salts before inoculation with the fungus (1x104
conidia mL-1) (preventive activity) reduced by %94.3 and %98.3,
respectively. These results show that both boron salts can be used as a
potential alternative to synthetic fungicides for the control of the
postharvest disease of apple fruit caused by P. expansum.

References

  • Anonymous, 2019a. http://www.fao.org/faostat/en/#data/QC (Erişim tarihi: 18.01.2019)
  • Anonymous, 2019b. Bitki koruma ürünleri veri tabanı programı. Available at https://bku.tarim.gov.tr. (Erişim tarihi: 15 Ocak 2019).
  • Arslan U, Ilhan K, Karabulut O.A., 2006. Evaluation of food additives and low-toxicity compounds for the control of bean rust and wheatleaf rust. Journal of Phytopathology, 154:534-541.
  • Arslan, U., Ilhan, K., Karabulut, O.A., 2013. Evaluation of the use of ammonium bicarbonate and oregano (Origanum vulgare ssp. hirtum) extract on the control of apple scab. Journal of Phytopathology, 161:382-388.
  • Cao B., Li H., Tian S., Qin G. 2012. Boron improves the biocontrol activity of Cryptococcus laurentii against Penicillium expansum in jujube fruit. Postharvest Biology and Technology, 68: 16-21.
  • Conway, W.S., Leverentz, B., Janisiewicz, W.F., Blodgett, A.B., Saftner, R.A,. Camp, M.J., 2004. Integrating heat treatment, biocontrol and sodium bicarbonate to reduce postharvest decay of apple caused by Colletotrichum acutatum and Penicillium expansum. Postharvest Biology Technology. 34: 11–20.
  • Conway, W.S., Leverentz,B., Janisiewicz, W.F., Saftner, R.A., Camp, M.J., 2005. Improving biocontrol using antagonist mixtures with heat and/or sodium bicarbonate to control postharvest decay of apple fruit Postharvest Biology Technology, 36: 235–244.
  • Droby, S., Wisniewski, M.E., El Ghaouth, A., Wilson, C. 2003. Influence of food additives on the control of postharvest rots of apple and peach and efficacy of the yeast-based biocontrol product Aspire. Postharvest Biology and Technology, 27: 127-135.
  • Grant, I.R. and Patterson, M.F., 1991. Effect of irradiation and modified atmosphere packaging on the microbiological safety of minced pork stored under temperature abuse conditions. International Journal of Food Science Tecnology. https://doi.org/10.1111/j.1365-2621.1991.tb01997.x
  • Hervieux, V., Yaganza, E.S., Arul, J., Tweddell, R.J., 2002. Effect of organic and inorganic salts on the development of Helminthosporium solani, the causal agent of potato silver scurf. Plant Disease, 86: 1014-1018.
  • Janisiewicz, W.J., 1998, Biocontrol of Postharvest Diseases of Temperate Fruits: Challenges and Opportunities. In: Plant - Microbe Interactions and Biological Control. J.Boland and L.D.Kaykendall, eds. Marcel-Dekker, Inc, New York, 171-189.
  • Karabulut, Ö.A., Arslan, Ü., Kuruoğlu, G. ve İlhan, K., 2005. Integrated Control Of Postharvest Diseases Of Sweet Cherry With Yeast Antagonists and Sodium Bicarbonate Applications Within A Hydrocooler. Postharvest Biology and Technology, 37:135-141.
  • Li Y., Yang Z., Bi Y., Zhang J., Wang D., 2012. Antifungal effect of borates against Fusarium sulphureum on potato tubers and its possible mechanisms of action. Postharvest Biology and Technology, 74,55-61.
  • Mari, M., Leoni, O., Iori, R., Cembali, T., 2002. Antifungal vapour-phase activity of allyl-isothiocyanate against Penicillim expansum on pears. Plant Pathol. 51, 231–236.
  • Mills, A. A. S., Platt, H. W., Hurta, R. A. R. 2005. Salt compounds as control agents of late blight and pink rot of potatoes in storage. Can. Journal Plant Pathoogy, 27:204-209.
  • Mecteau, M.R., Arul, J., Tweddell, R.J., 2002. Effect of organic and inorganic salts on the growth and development of Fusarium sambucinum, a causal agent of potato dry rot. Mycological Research, 106: 688-696.
  • Mlikota Gabler, F., Smilanick, J.L., 2001. Postharvest control of table grape gray mold on detached berries with carbonate and bicarbonate salts and disinfectants. American Journal of Enology and Viticulture, 52, 12-20.
  • Nunes C., Usall J., Teixido N, de Eribe X.O., Vinas I. 2001. Control of post-harvest decay of apples by preharvest and post-harvest application of ammonium molybdate. Pest Management Sci. 57: 1093-1099.
  • Palou, L., Marcilla, A., Rojas-Argudo, C., Alonso, M.,. Jacas, J.A., Angel del Rio, M., 2007. Effects of X-ray irradiation and sodium carbonate treatments on postharvest Penicillium decay and quality attributes of clementine mandarins. Postharvest Biology and Technology, 46: 252–261.
  • Punja, Z. K., Grogan, R. G., 1982. Effects of inorganic salts, carbonate-bicarbonate anions, ammonia, and the modifying influence of pH on sclerotial germination of Sclerotium rolfsii. Phytopathology 72:635-639.
  • Qin, G., Tian, S., Chan, Z., Li, B., 2007. Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum. Mol. Cell. Proteomics, 6: 425–438.
  • Qin G., Zong Y., Chen Q., Hua D. and Tian S., 2010. Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. International Journal of Food Microbiology, 138:145-150.
  • Rolshausen, P.E., and Gubler, W.D. 2005. Use of boron for the control of Eutypa dieback of grapevines. Plant Dis. 89: 734-738.
  • Shi X., Li B., Qin G., Tian S., 2012. Mechanism of antifungal action of borate against Colletotrichum gloeosporioides related to mitochondrial degradation in spores. Postharvest Biology and Technology,67: 138–143.
  • Spadaro, D., Vola, R., Piano, S., and Gullino, M.L., 2002. Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biology and Technology, 24, 123–134.
  • Snowdown A. L., 1991, A. Colour atlas of postharvest diseases and disorders of fruit and vegetables general introdiction and fruits. pp.11-53.Wolfe Scientific Ltd.
  • Temur, C. and Tiryaki, O, 2012. Combination of irradiation and sodium carbonate to control postharvest Penicillium decay of apples. The Journal of Turkish Phytopathology, 42:47-56.
  • Thomidis, T., Exadaktylou, E., 2010. Effect of boron on the development of brown rot (Monilinia laxa) on peaches. Crop Protection, 29, 572–576.
  • Thompson, D. P., 1989. Fungitoxic activity of essential oil componentson food storage fungi. Mycologia, 81: 151–153.
  • Tripathi, P., Dubey, N.K., Banerji, R., Chansouria, J.P.N., 2004. Evaluation ofsome essential oils as botanical fungi toxicants in management of post-harvest rotting of citrus fruits. World J. Microbiol Biotechnol., 20: 317–321.
  • Türkkan M., Erper I., (2014) Evaluation of antifungal activity of sodium salts against onion basal rot caused by Fusarium oxysporum f.sp. cepae. Plant Prot Sci, 50: 19–25.
  • Türkkan, M., Erper, İ., 2015. Inhibitory influence of organic and inorganic sodium salts and synthetic fungicides againts bean root rot pathogens. Gesunde Pflanzen, 67: 83-94.
  • Türkkan, M., Özcan, M., Erper, İ. 2017. Antifungal effect of carbonate and bicarbonate salts against Botrytis cinerea, the casual agent of grey mould of kiwifruit. Akademik Ziraat Dergisi, 6(2):103-110.
  • Wisniewski, M. E, Droby, S., El-Ghaouth, A. Wilson, C. L, 1998. The use of food additives to control postharvest decay and enhance biocontrol activity of yeast antagonist, in Proc Internat Congress Plant pathol, August 9-16, Edinburg, Scotlant, (Abstract 5.2.61).
  • Vilanova , L., Vinas, I., Torres, R., Usall, J., Buron-Moles, G., Teixidó, N., 2014. Increasing maturity reduces wound response and lignification processes against Penicillium expansum (pathogen) and Penicillium digitatum (non-host pathogen) infection in apples. Postharvest Biology and Technology, 88: 54-60.
  • Zhang, J. and Timmer, L.W., 2007. Preharvest application of fungicides for postharvest disease control on early season tangerine hybrids in Florida. Crop Protection 26, 886–893.
There are 36 citations in total.

Details

Primary Language Turkish
Journal Section Plant Protection
Authors

İsmail Erper 0000-0001-7952-8489

Çağlar Kalkan

Gizem Kaçar This is me

Muharrem Türkkan

Publication Date October 15, 2019
Acceptance Date August 19, 2019
Published in Issue Year 2019 Volume: 34 Issue: 3

Cite

APA Erper, İ., Kalkan, Ç., Kaçar, G., Türkkan, M. (2019). Elmada mavi küfe neden olan Penicillium expansum’a karşı bazı bor tuzlarının antifungal etkisi. Anadolu Tarım Bilimleri Dergisi, 34(3), 250-258. https://doi.org/10.7161/omuanajas.515031
AMA Erper İ, Kalkan Ç, Kaçar G, Türkkan M. Elmada mavi küfe neden olan Penicillium expansum’a karşı bazı bor tuzlarının antifungal etkisi. ANAJAS. October 2019;34(3):250-258. doi:10.7161/omuanajas.515031
Chicago Erper, İsmail, Çağlar Kalkan, Gizem Kaçar, and Muharrem Türkkan. “Elmada Mavi küfe Neden Olan Penicillium expansum’a karşı Bazı Bor tuzlarının Antifungal Etkisi”. Anadolu Tarım Bilimleri Dergisi 34, no. 3 (October 2019): 250-58. https://doi.org/10.7161/omuanajas.515031.
EndNote Erper İ, Kalkan Ç, Kaçar G, Türkkan M (October 1, 2019) Elmada mavi küfe neden olan Penicillium expansum’a karşı bazı bor tuzlarının antifungal etkisi. Anadolu Tarım Bilimleri Dergisi 34 3 250–258.
IEEE İ. Erper, Ç. Kalkan, G. Kaçar, and M. Türkkan, “Elmada mavi küfe neden olan Penicillium expansum’a karşı bazı bor tuzlarının antifungal etkisi”, ANAJAS, vol. 34, no. 3, pp. 250–258, 2019, doi: 10.7161/omuanajas.515031.
ISNAD Erper, İsmail et al. “Elmada Mavi küfe Neden Olan Penicillium expansum’a karşı Bazı Bor tuzlarının Antifungal Etkisi”. Anadolu Tarım Bilimleri Dergisi 34/3 (October 2019), 250-258. https://doi.org/10.7161/omuanajas.515031.
JAMA Erper İ, Kalkan Ç, Kaçar G, Türkkan M. Elmada mavi küfe neden olan Penicillium expansum’a karşı bazı bor tuzlarının antifungal etkisi. ANAJAS. 2019;34:250–258.
MLA Erper, İsmail et al. “Elmada Mavi küfe Neden Olan Penicillium expansum’a karşı Bazı Bor tuzlarının Antifungal Etkisi”. Anadolu Tarım Bilimleri Dergisi, vol. 34, no. 3, 2019, pp. 250-8, doi:10.7161/omuanajas.515031.
Vancouver Erper İ, Kalkan Ç, Kaçar G, Türkkan M. Elmada mavi küfe neden olan Penicillium expansum’a karşı bazı bor tuzlarının antifungal etkisi. ANAJAS. 2019;34(3):250-8.
Online ISSN: 1308-8769