Research Article
BibTex RIS Cite

Hasandağ Volkanik Materyali Üzerinde Oluşan Toprakların Ayrışma Oranları ve Kütle Dengesi

Year 2021, Volume: 36 Issue: 1, 81 - 92, 15.02.2021
https://doi.org/10.7161/omuanajas.789497

Abstract

Kayaçların yerkabuğu ile astenosfer arasındaki dolaşımı kayaç döngüsü olarak adlandırılmaktadır. Kayaç ve minerallerde oluşan bu değişim yerkabuğunun şekillenmesinde rol oynayan jeolojik süreçlerdir. Bu nedenle farklı doğal ortamlarda toprak oluşum süreçlerinin belirlenmesi, toprağın daha iyi tanımlanmasını ve anlaşılmasını sağlar. Bu çalışmanın amacı, volkanik ana materyal üzerinde oluşmuş dört volkanik toprak profilinde, toprak oluşumundan ve toprak sınıflandırmasından sorumlu fiziksel, kimyasal ve mineralojik özellikleri değerlendirmek ve bu toprakların pedojenik evrimini karşılaştırmalı olarak incelemektir. Bu amaçla seçilen 4 toprak profilinden horizon esasına göre alınan örneklerin mineralojik, jeokimyasal ve fizyokimyasal özellikleri belirlenmiştir. Kimyasal alterasyon indeksi (CIA), Kimyasal Ayrışma İndeksi (CIW), Parker ayrışma İndeksi (WIP) Üretkenlik İndeksi (PI), Plajiyoklaz alterasyon İndeksi (PIA), Bazlar / seskioksit oranı (Baz / R2O3) indeksi kullanılarak pedejenik süreçler ve ayrışma oranları hesaplanmıştır. Ayrıca incelenen toprakların pedojenik süreçlerini aydınlatmak amacıyla ana elementlerin kayıp, kazanç ve dönüşümleri Kütle dengesi modeli ile belirlenmiştir. İncelenen tüm profillerde ayrışma indeksi değerleri jeolojik yaş ile uyumlu olarak dağılım göstermiştir. Bu da, söz konusu toprakların zamana bağlı olarak düşük yoğunluklu ayrışma işlemlerine tabi tutulduğunu göstermektedir. Bölgedeki dominat toprak oluşturma süreçleri; : 1. Solumdan bazik katyonlarının ve Al'ın yıkanması ve kaybı, 2. Demir ve alüminyumun kumdan ve silt boyutundaki fraksiyonlardan ikincil kil ve kristalize Fe minerallerine dönüşümü şeklinde gerçekleşmiştir. Pedonlardaki fiziksel, kimyasal ve mineralojik özelliklerin benzer ve sınırlı varyasyonu ve pedonlar arasındaki ayrışma indekslerinin ve kütle dengesi modelinin çok sınırlı varyasyonu, pedonların benzer aşınma seviyelerine sahip olduğunu göstermektedir. Elde edilen sonuçlar, incelenen alandaki toprak oluşumunu rakım, yöney, yükselti eğimi ve zaman tarafından belirlendiğini göstermektedir.

Supporting Institution

TÜBİTAK

Project Number

110O301

Thanks

Bu çalışma, TOVAG 110O301 nolu proje ile TÜBİTAK tarafından desteklenmiştir.

References

  • A, Sharma, V, Rajamani , 2000 Major Element, REE, and Other Trace Element Behavior in Amphibolite Weathering under Semiarid Conditions in Southern India The Journal of Geology 108. 487-496.
  • Anonim, 1962, Maden Tetkik Arama Genel Müdürlüğü Türkiye Jeoloji Haritası.
  • Anonim, 1994, Meteoroloji Bülteni. Meteoroloji İşleri Genel Müdürlüğü Ortalama ve Ekstrem Kıymetler
  • Aydar, A., Gourgaud, A.,1998, The Geology of Mount Hasan Stratovolcano, Central Anatolia, Turkey, Journal of Volcanology and Geothermal Research, V: 85, Elseiver Science B.V., Page: 129-152.
  • Birkeland, P.W., 1999. Soils and Geomorphology, 3rd ed. Oxford Univ. Press, New York.
  • Blake, G. R., Hartge, K. H., 1986. Bulk Density. in: Klute, A., (Ed.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy Monograph No: 9. SSSA, Madison, WI, Pp. 363-375. ( S: 393).
  • Bouyoucous, G. J., 1951, Recalibration of the Hydrometer Method for Making Mechanical Analysis of Soils. Agron, 43 (434-438).
  • Bricker SB, Ferreira JG, Simas T (2003) An integrated methodology for assessment of estuarine trophig, status. Ecol Modelling 169:39–60.
  • Brimhall, G.H. & Dietrich, W.E., 1987. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochimica et Cosmochimica Acta 51, 567–587.
  • Brimhall, G.H., Chadwick, O.A., Lewis, C.J., Compston, W., Williams, I.S., Danti, K.J.,Dietrich, W.E., Power, M.E., Hendricks, D.,Bratt, J., 1991a, Deformational mass transport and invasive processes in soil evolution. Science 255, 695-702.
  • Brimhall, G.H., Lewis, C.J., Ague, J.J., Dietrich, W.E., Hampel, J., Teague, T., Rix, P.,1988, Metal enrichment in bauxites by deposition of chemically mature aeolian dust. Nature 333(30), 819–824.
  • Brimhall, G.H., Lewis, C.J., Ford, C., Bratt, J., Taylor, G., Warin, O., 1991b, Quantitative geochemical approach to pedogenesis: importance of parent material reduction, volumetric expansion, and eolian influx in laterization. Geoderma 51, 51-91.
  • Brimhall, G.H.,Dietrich, W.E., 1987, Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochimica et Cosmochimica Acta 51, 567–587.
  • Carr, R.G., Rodgers, K.A., Black, P.M., 1980. The chemical and mineralogical changes accompanying the laterization of basalt at Kerikeri, North Auckland. J. R. Soc. N.Z. 10, 247–258.
  • Chadwick, O.A., Brimhall, G.H., Hendricks, D.M., 1990, From ablack to a gray box—a mass balance interpretation of pedogenesis. Geomorphology 3, 369–390.
  • Chao, T. T., Sanzolone, R.F., 1992, Decomposition Techniques. Journal of Geochemical Exploration. 106 (44-65).
  • Chesworth, W., Dejou, J., Larroque, P., 1981. The weathering of basalt and relative mobilities of the major elements at Belbex, France. Geochim. Cosmochim. Acta 45, 1235– 1243.
  • Egli, M. & Fitze, P., 2000. Formulation of pedologic mass balance based on immobile elements: a revision. Soil Science 165, 437-443.
  • Emre, Ö., 1991, Hasan Dagı-Keçiboyduran Dagı Yöresi Volkanizmasının Jeomorfolojisi, İ.Ü. Deniz Bilimleri ve Cografya Enstitüsü Doktora Tezi, (Yayınlanmamıs), İstanbul, Shf: 1-198.
  • Fedo, C.M., Eriksson, K.A., Krogstad, E.J., 1996. Geochemistry of shales from the Archean (- 3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source-area weathering. Geochimica et Cosmochitnica Acta 60, 175 1 - 1763.
  • Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921– 924.
  • Harden, J.W., 1988, Genetic interpretations of elemental and chemical differences in a soil chronosequence, California, Geoderma 43, 179–193 Harnois, L., 1988, The CIW index: a new Chemical Index of Weathering. Sedimentary Geology 55, 319– 322.
  • Hızalan, E., Ünalan, H., 1966, Toprakta Önemli Kimyasal Analizler. A. Ü. Ziraat Fakültesi Yayınları 278.
  • Hocaoğlu, Ö. L., 1970, Diyarbakır, Erzurum, Rize Bölgelerinde Bazalt Kayalarından Oluşan Topraklardaki Kil Mineralleri Üzerinde Bir Araştırma. Atatürk Üniversitesi Ziraat Fakültesi No 33.
  • Jenkins D A, Jones R G W., (1980). Traceelements in rock, soil, plantandanimal: introduction. In: Davies, B.E. (Ed.), AppliedSoilTraceElements. John Wileyand Son Ltd.,pp. 1–20.
  • Jenny, H., 1941, Factors of Soil Formation. McGraw-Hill, Newyork, Pp:281.
  • Ketin, İ., 1983, Türkiye Jeolojisine Genel Bir Bakiş Istanbul teknik üniversitesi yayınları 595 s.
  • Langley-Turnbaugh, S.J. & Bockheim, J.G., 1998. Mass balance of soil evolution on late Quaternary marine terraces in coastal Oregon. Geoderma 84, 265–288 .
  • Nieuwenhuyse, A. & van Breemen, N., 1997. Quantitative aspects of weathering and neoformation in selected Costa Rican volcanic soils. Journal of the Soil Science Society of America 61, 1450–1458.
  • Marshall, C.E., Haseman, J.F., 1942, The quantitativeevaluation of soil formation and development by heavy mineral studies: a Grundy silt loam profile. Soil Sci. Soc. Am. Proc. 7, 448–453.
  • Maynard, J.B., 1992. Chemistry of modem soils as a guide to interpreting Precambrian paleosols. Journal of Geology 100, 279-289.
  • McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993.Geochemical approach to sedimentation, provenance, and tectonics. Spec. Pap.-Geol. Soc. Am. 284, 21–40.
  • Merritts, D.J., Chadwick, O.A., Hendricks, D.M., Brimhall, G.H., Lewis, C.J., 1992, The mass balance of soil evolution on late Quaternary marine terraces, northern California. GSA Bulletin 104, 1456–1470.
  • Nesbitt, H.W., 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279, 206– 210.
  • Nesbitt, H.W., Wilson, R.E., 1992. Recent chemical weathering of basalt. Am. J. Sci. 292, 740– 777.
  • Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 7 1 5 -7 17.
  • Nesbitt, H.W., Young, G.M., 1989, Formation and diagenesis of weathering profiles. J. Geol. 97, 129–147.
  • NS Duzgoren-Aydin, A Aydin, J Malpas 2002 Re-assessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong - Engineering geology, 63, 99-119.
  • Owens, L.B. and Watson, J.P., 1979. Rate of weathering and soil formation on granite in Rhodesia, Soil Sci. Soc. Am. J., 43" 160-166.
  • Oyama, M., Takehara, H., 1967, Revised Standard Soil Color Charts Japon.
  • Pasquare, G., 1966, Outtlines of the Neogene and Quaternary volcanism of Asia Minor. Accad. Naz. Dei Linc., 40, 1077-1085.
  • Reiche, R. 1950. A Survey of weathering Processes and Products. University of New Mexico Publication in Geology. The University of New Mexico Press. Soil Science: 123p 400-408.
  • Soil Survey Laboratory Methods Manual, 2004, United States Department of Agriculture Natural Resources Conservation Service, Soil Survey Investigations, Report No. 42.
  • Soil Survey Manual,1993, Soil Survey Manual. USDA Handbokk, No 18.
  • Soil Survey Staff.,1999, Soil Taxonomy. A Basic System of Soil Classification for Making and interpreting Soil Survey. USDA agriculture Handbook Washington D.C. No: 436
  • Sutton, S. J., Maynard J. B. 1992. Multiple alteration events in the history of a sub-Huronian regolith at Lauzon Bay, Ontario Canadian Journal of Earth Sciences 29,432-445.
  • Toshiyuki Wakatsuki and Azwar Rasyidin 1992. Rates of weathering and soil formation. Geoderma, 52 (1992) 251-263.
  • U.S. Salinity lab. Staff, 1954, Diagnesis and Improvement of Saline and Alkali Soils. Agricultural Handbook., No 60 USDA
  • White, A.F., 1983. Surface chemistry and dissolution kinetic of glassy rocks. Geochim. Cosmochim. Acta 47, 805– 816.
  • White, A.F., 1995. Chemical weathering rates of silicate minerals in soils. In: White, A.F., Brantley, S.L. (Eds)., Chemical Waethering Rates of Silicate Minerals. Reviews in Mineralogy, vol. 31, Mineralogical Society of America, pp. 407–461
  • Yılmaz, Y., 1984, Türkiye’nin Jeolojik Tarihinde Magmatik Etkinlik ve Tektonik Evrimle ilişkisi, Ketin Sempozyumu, Türkiye Jeoloji Kurumu Yay., İstanbul, Shf: 63-81.

Weathering rates and mass balance of soils developed on hasandağ volcanic materials

Year 2021, Volume: 36 Issue: 1, 81 - 92, 15.02.2021
https://doi.org/10.7161/omuanajas.789497

Abstract

The circulation of rocks between the earth's crust and the asthenosphere is called the rock cycle. This change in rocks and minerals is the geological processes that play a role in the shaping of the earth's crust. Therefore, the determination of soil formation processes in different natural environments allows soil to be defined better than that. The objectives of the present work were to assess the physical, chemical and mineralogical characteristics and pedolojical processes responsible for soil genesis and soil classification of four volcanic soil profiles derived volcanic parent material and to study and compare the pedogenic evolution of these soils. To achieve this, soil samples were collected from the horizons to investigate their mineralogical, geochemical and physiochemical properties. Chemical alteration Index (CIA), (CIW), Parker weathering, Index (WIP), Product Index (PI), plagioclase Alteration Index (PIA), Bases / sesquioxide Rate (Base/R2O3) are used to compare the pedogenic processes as a case study . The pedogenic processes were also evaluated used to Mass-balance analysis to quantify elemental losses, gains and transformations for soils studied. Weathering index values were distributed in harmony with the geological age in all studied profiles. This shows that the soils in question are subjected to low intensity decomposition processes depending on time. Dominat soil-forming processes include 1. desilication and loss of base cations and Al from the solum, 2. transformation of iron and aluminum from sand and silt-size fractions to secondary clay and crystalline Fe minerals. The similar and limited variation of physical, chemical and mineralogical properties in pedons, and very limited variation of the weathering indexes and mass balance pattern across pedones indicate that pedones have similar levels of weathering. Our results imply that the rate of elemental mass-balance changes is determined by factors influencing its leaching altitude, facing sites, elevational gradient and time in the studied area.

Project Number

110O301

References

  • A, Sharma, V, Rajamani , 2000 Major Element, REE, and Other Trace Element Behavior in Amphibolite Weathering under Semiarid Conditions in Southern India The Journal of Geology 108. 487-496.
  • Anonim, 1962, Maden Tetkik Arama Genel Müdürlüğü Türkiye Jeoloji Haritası.
  • Anonim, 1994, Meteoroloji Bülteni. Meteoroloji İşleri Genel Müdürlüğü Ortalama ve Ekstrem Kıymetler
  • Aydar, A., Gourgaud, A.,1998, The Geology of Mount Hasan Stratovolcano, Central Anatolia, Turkey, Journal of Volcanology and Geothermal Research, V: 85, Elseiver Science B.V., Page: 129-152.
  • Birkeland, P.W., 1999. Soils and Geomorphology, 3rd ed. Oxford Univ. Press, New York.
  • Blake, G. R., Hartge, K. H., 1986. Bulk Density. in: Klute, A., (Ed.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy Monograph No: 9. SSSA, Madison, WI, Pp. 363-375. ( S: 393).
  • Bouyoucous, G. J., 1951, Recalibration of the Hydrometer Method for Making Mechanical Analysis of Soils. Agron, 43 (434-438).
  • Bricker SB, Ferreira JG, Simas T (2003) An integrated methodology for assessment of estuarine trophig, status. Ecol Modelling 169:39–60.
  • Brimhall, G.H. & Dietrich, W.E., 1987. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochimica et Cosmochimica Acta 51, 567–587.
  • Brimhall, G.H., Chadwick, O.A., Lewis, C.J., Compston, W., Williams, I.S., Danti, K.J.,Dietrich, W.E., Power, M.E., Hendricks, D.,Bratt, J., 1991a, Deformational mass transport and invasive processes in soil evolution. Science 255, 695-702.
  • Brimhall, G.H., Lewis, C.J., Ague, J.J., Dietrich, W.E., Hampel, J., Teague, T., Rix, P.,1988, Metal enrichment in bauxites by deposition of chemically mature aeolian dust. Nature 333(30), 819–824.
  • Brimhall, G.H., Lewis, C.J., Ford, C., Bratt, J., Taylor, G., Warin, O., 1991b, Quantitative geochemical approach to pedogenesis: importance of parent material reduction, volumetric expansion, and eolian influx in laterization. Geoderma 51, 51-91.
  • Brimhall, G.H.,Dietrich, W.E., 1987, Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochimica et Cosmochimica Acta 51, 567–587.
  • Carr, R.G., Rodgers, K.A., Black, P.M., 1980. The chemical and mineralogical changes accompanying the laterization of basalt at Kerikeri, North Auckland. J. R. Soc. N.Z. 10, 247–258.
  • Chadwick, O.A., Brimhall, G.H., Hendricks, D.M., 1990, From ablack to a gray box—a mass balance interpretation of pedogenesis. Geomorphology 3, 369–390.
  • Chao, T. T., Sanzolone, R.F., 1992, Decomposition Techniques. Journal of Geochemical Exploration. 106 (44-65).
  • Chesworth, W., Dejou, J., Larroque, P., 1981. The weathering of basalt and relative mobilities of the major elements at Belbex, France. Geochim. Cosmochim. Acta 45, 1235– 1243.
  • Egli, M. & Fitze, P., 2000. Formulation of pedologic mass balance based on immobile elements: a revision. Soil Science 165, 437-443.
  • Emre, Ö., 1991, Hasan Dagı-Keçiboyduran Dagı Yöresi Volkanizmasının Jeomorfolojisi, İ.Ü. Deniz Bilimleri ve Cografya Enstitüsü Doktora Tezi, (Yayınlanmamıs), İstanbul, Shf: 1-198.
  • Fedo, C.M., Eriksson, K.A., Krogstad, E.J., 1996. Geochemistry of shales from the Archean (- 3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source-area weathering. Geochimica et Cosmochitnica Acta 60, 175 1 - 1763.
  • Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921– 924.
  • Harden, J.W., 1988, Genetic interpretations of elemental and chemical differences in a soil chronosequence, California, Geoderma 43, 179–193 Harnois, L., 1988, The CIW index: a new Chemical Index of Weathering. Sedimentary Geology 55, 319– 322.
  • Hızalan, E., Ünalan, H., 1966, Toprakta Önemli Kimyasal Analizler. A. Ü. Ziraat Fakültesi Yayınları 278.
  • Hocaoğlu, Ö. L., 1970, Diyarbakır, Erzurum, Rize Bölgelerinde Bazalt Kayalarından Oluşan Topraklardaki Kil Mineralleri Üzerinde Bir Araştırma. Atatürk Üniversitesi Ziraat Fakültesi No 33.
  • Jenkins D A, Jones R G W., (1980). Traceelements in rock, soil, plantandanimal: introduction. In: Davies, B.E. (Ed.), AppliedSoilTraceElements. John Wileyand Son Ltd.,pp. 1–20.
  • Jenny, H., 1941, Factors of Soil Formation. McGraw-Hill, Newyork, Pp:281.
  • Ketin, İ., 1983, Türkiye Jeolojisine Genel Bir Bakiş Istanbul teknik üniversitesi yayınları 595 s.
  • Langley-Turnbaugh, S.J. & Bockheim, J.G., 1998. Mass balance of soil evolution on late Quaternary marine terraces in coastal Oregon. Geoderma 84, 265–288 .
  • Nieuwenhuyse, A. & van Breemen, N., 1997. Quantitative aspects of weathering and neoformation in selected Costa Rican volcanic soils. Journal of the Soil Science Society of America 61, 1450–1458.
  • Marshall, C.E., Haseman, J.F., 1942, The quantitativeevaluation of soil formation and development by heavy mineral studies: a Grundy silt loam profile. Soil Sci. Soc. Am. Proc. 7, 448–453.
  • Maynard, J.B., 1992. Chemistry of modem soils as a guide to interpreting Precambrian paleosols. Journal of Geology 100, 279-289.
  • McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993.Geochemical approach to sedimentation, provenance, and tectonics. Spec. Pap.-Geol. Soc. Am. 284, 21–40.
  • Merritts, D.J., Chadwick, O.A., Hendricks, D.M., Brimhall, G.H., Lewis, C.J., 1992, The mass balance of soil evolution on late Quaternary marine terraces, northern California. GSA Bulletin 104, 1456–1470.
  • Nesbitt, H.W., 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279, 206– 210.
  • Nesbitt, H.W., Wilson, R.E., 1992. Recent chemical weathering of basalt. Am. J. Sci. 292, 740– 777.
  • Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 7 1 5 -7 17.
  • Nesbitt, H.W., Young, G.M., 1989, Formation and diagenesis of weathering profiles. J. Geol. 97, 129–147.
  • NS Duzgoren-Aydin, A Aydin, J Malpas 2002 Re-assessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong - Engineering geology, 63, 99-119.
  • Owens, L.B. and Watson, J.P., 1979. Rate of weathering and soil formation on granite in Rhodesia, Soil Sci. Soc. Am. J., 43" 160-166.
  • Oyama, M., Takehara, H., 1967, Revised Standard Soil Color Charts Japon.
  • Pasquare, G., 1966, Outtlines of the Neogene and Quaternary volcanism of Asia Minor. Accad. Naz. Dei Linc., 40, 1077-1085.
  • Reiche, R. 1950. A Survey of weathering Processes and Products. University of New Mexico Publication in Geology. The University of New Mexico Press. Soil Science: 123p 400-408.
  • Soil Survey Laboratory Methods Manual, 2004, United States Department of Agriculture Natural Resources Conservation Service, Soil Survey Investigations, Report No. 42.
  • Soil Survey Manual,1993, Soil Survey Manual. USDA Handbokk, No 18.
  • Soil Survey Staff.,1999, Soil Taxonomy. A Basic System of Soil Classification for Making and interpreting Soil Survey. USDA agriculture Handbook Washington D.C. No: 436
  • Sutton, S. J., Maynard J. B. 1992. Multiple alteration events in the history of a sub-Huronian regolith at Lauzon Bay, Ontario Canadian Journal of Earth Sciences 29,432-445.
  • Toshiyuki Wakatsuki and Azwar Rasyidin 1992. Rates of weathering and soil formation. Geoderma, 52 (1992) 251-263.
  • U.S. Salinity lab. Staff, 1954, Diagnesis and Improvement of Saline and Alkali Soils. Agricultural Handbook., No 60 USDA
  • White, A.F., 1983. Surface chemistry and dissolution kinetic of glassy rocks. Geochim. Cosmochim. Acta 47, 805– 816.
  • White, A.F., 1995. Chemical weathering rates of silicate minerals in soils. In: White, A.F., Brantley, S.L. (Eds)., Chemical Waethering Rates of Silicate Minerals. Reviews in Mineralogy, vol. 31, Mineralogical Society of America, pp. 407–461
  • Yılmaz, Y., 1984, Türkiye’nin Jeolojik Tarihinde Magmatik Etkinlik ve Tektonik Evrimle ilişkisi, Ketin Sempozyumu, Türkiye Jeoloji Kurumu Yay., İstanbul, Shf: 63-81.
There are 51 citations in total.

Details

Primary Language Turkish
Journal Section Anadolu Tarım Bilimleri Dergisi
Authors

Hasan Hüseyin Özaytekin 0000-0002-8287-1250

Mert Dedeoğlu 0000-0001-8611-3724

Project Number 110O301
Publication Date February 15, 2021
Acceptance Date November 3, 2020
Published in Issue Year 2021 Volume: 36 Issue: 1

Cite

APA Özaytekin, H. H., & Dedeoğlu, M. (2021). Hasandağ Volkanik Materyali Üzerinde Oluşan Toprakların Ayrışma Oranları ve Kütle Dengesi. Anadolu Tarım Bilimleri Dergisi, 36(1), 81-92. https://doi.org/10.7161/omuanajas.789497
AMA Özaytekin HH, Dedeoğlu M. Hasandağ Volkanik Materyali Üzerinde Oluşan Toprakların Ayrışma Oranları ve Kütle Dengesi. ANAJAS. February 2021;36(1):81-92. doi:10.7161/omuanajas.789497
Chicago Özaytekin, Hasan Hüseyin, and Mert Dedeoğlu. “Hasandağ Volkanik Materyali Üzerinde Oluşan Toprakların Ayrışma Oranları Ve Kütle Dengesi”. Anadolu Tarım Bilimleri Dergisi 36, no. 1 (February 2021): 81-92. https://doi.org/10.7161/omuanajas.789497.
EndNote Özaytekin HH, Dedeoğlu M (February 1, 2021) Hasandağ Volkanik Materyali Üzerinde Oluşan Toprakların Ayrışma Oranları ve Kütle Dengesi. Anadolu Tarım Bilimleri Dergisi 36 1 81–92.
IEEE H. H. Özaytekin and M. Dedeoğlu, “Hasandağ Volkanik Materyali Üzerinde Oluşan Toprakların Ayrışma Oranları ve Kütle Dengesi”, ANAJAS, vol. 36, no. 1, pp. 81–92, 2021, doi: 10.7161/omuanajas.789497.
ISNAD Özaytekin, Hasan Hüseyin - Dedeoğlu, Mert. “Hasandağ Volkanik Materyali Üzerinde Oluşan Toprakların Ayrışma Oranları Ve Kütle Dengesi”. Anadolu Tarım Bilimleri Dergisi 36/1 (February 2021), 81-92. https://doi.org/10.7161/omuanajas.789497.
JAMA Özaytekin HH, Dedeoğlu M. Hasandağ Volkanik Materyali Üzerinde Oluşan Toprakların Ayrışma Oranları ve Kütle Dengesi. ANAJAS. 2021;36:81–92.
MLA Özaytekin, Hasan Hüseyin and Mert Dedeoğlu. “Hasandağ Volkanik Materyali Üzerinde Oluşan Toprakların Ayrışma Oranları Ve Kütle Dengesi”. Anadolu Tarım Bilimleri Dergisi, vol. 36, no. 1, 2021, pp. 81-92, doi:10.7161/omuanajas.789497.
Vancouver Özaytekin HH, Dedeoğlu M. Hasandağ Volkanik Materyali Üzerinde Oluşan Toprakların Ayrışma Oranları ve Kütle Dengesi. ANAJAS. 2021;36(1):81-92.
Online ISSN: 1308-8769