Research Article
BibTex RIS Cite

Comboutea (Kombucha) ve Comboutea Üretim Atıkları Karışık Mikroorganizma Kültürünün Topraklardaki Bazal Solunum ve Mikrobiyal Biyokütle Karbon İçeriği Üzerine Etkisi.

Year 2022, Volume: 37 Issue: 2, 275 - 290, 30.06.2022
https://doi.org/10.7161/omuanajas.961243

Abstract

Bu çalışmanın amacı, kombu çayı ve liyofilize edilmiş kombu çayı kültürünün toprağın bazı biyolojik özellikleri üzerindeki etkilerini belirlemektir. Bu çalışma serada saksı denemesi olarak 2 farklı toprak üzerinde gerçekleştirilmiştir. 4 kg toprak bulunan saksılara 4 doz kombu çayı (0, 10, 20, 30 ml/saksı) ve 4 doz liyofilize eilmiş kombu çayı kültürü (0, 0.25, 0.50 ve 0.75 mg/saksı) uygulanmıştır. Deneme sonunda saksılardan alınan topraklarda toprak solunumu ve mikrobiyal biyokütle karbon analizleri yapılmıştır. Analiz sonuçlarına göre, kombu çayı ve liyofilize edilmiş kombu çayı kültürünün toprak tekstürüne bağlı olarak toprak solunumunu ve mikrobiyal biyokütle karbon içeriğini artırdığı belirlenmiştir.

References

  • Albiach, R., Canet, R., Pomares, F., & Ingelmo, F. (2000). Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresource Technology, 75, 43-48.
  • Anderson, J. P. E. (1982). Soil respiration. in: A. L. Page, R. H. Miller and D. R. Keeney (eds.), Methods of soil analysis, part 2-chemical and microbiological properties, Madison, Wisconsin, American Society of Agronomy, Soil Science Society of America 831-871.
  • Anderson, J.P.E., & Domsch, K.H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10, 215-221.
  • Aşkın, T., Kızılkaya, R., Gülser, C., & Bayraklı, B. (2004). Ondokuzmayıs üniversitesi kampus topraklarının bazı mikrobiyolojik özellikleri. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 19, 31-36.
  • Bastida, F., Kandeler, E., Moreno J.L., Ros, M., Garcia, C., & Hernandez, T. (2008). Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Applied Soil Ecology, 40, 318-329.
  • Bauer-Petrovska, B., & Petrushevska-Tozi, L. (2000). Mineral and water soluble vitamin content in the Comboutea drink. International Journal of Food Science and Technology, 35, 201-205.
  • Blanch, P.J. (1996). Characterization of the tea fungus metabolites. Biotechnology Letters, 18, 139-142.
  • Çakmakçı, R., Dönmez, M.F., & Erdoğan, Ü. (2007). The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish Journal of Agriculture and Forestry, 31, 189-199.
  • Dufresne, C., & Farnworth, E. (2000). Tea, comboutea, and health: a review. Food Research International, 33, 409-421.
  • Emtiazi, G., Naderi, A., & Etemadifar, Z. (2004). Effect of nitrogen fixing bacteria on growth of potato tubers. Advances in Food Sciences, 26, 56-58.
  • Fatemeh, M., Gholamreza, A., Sanaz, A., Reza, S., Mir Hadi, S., Alireza, R., & Abbas, M. (2015). Comboutea tea ameliorates experimental autoimmune encephalomyelitis in mouse model of multiple sclerosis. Food and Agricultural Immunology, 26, 782-793.
  • Frankenberger, W.T., & Dick, W.A. (1983). Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal, 47, 945-951.
  • Garcia-Gil, J. C., Ceppi, S., Velasca, M., Polo, A., & Senesi, N. (2004). Longterm effects of amendment with municipal solid waste compost on the elemental and acid functional group composition and ph-buffer capacity of soil humic acid. Geoderma, 121, 135-140.
  • Hadas, A., Kautsky, L., Goek, M., & Kara. E.E. (2004). Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biology and Biochemistry, 36, 255-266.
  • Haktanır, K., & Arcak, S. (1997). Toprak Biyolojisi. Ankara: Ankara Üniversitesi Ziraat Fakültesi Yayınları No. 1486.
  • İsmailçelebioğlu, N. (1969). Muhtelif bölgelerden izole edilen Azotobacter chroococcum ile aşılamanın, Erzurum Kan siltli kili ve Palandöken çakıllı tınında yetiştirilen buğday ve patates bitkilerinin verimi üzerine etkisi. Erzurum Atatürk Üniversitesi Yayınları No: 274
  • Jayabalan, R., Malini, K., Sathishkumar, M., Swaminathan, K., & Yun, S.E. (2010). Biochemical characteristics of tea fungus produced during comboutea fermentation. Food Science and Biotechnology, 19, 843-847.
  • Jayabalan, R., Marimuthu, S., & Swaminathan, K. (2007). Changes in content of organic acids and tea polyphenols during comboutea tea fermentation. Food Chemistry, 102, 392–398.
  • Joergensen, R.G., & Potthoff, M. (2005). Microbial reaction in activity, biomass, and community structure after longterm continuous mixing of a grassland soil. Soil Biology and Biochemistry, 37, 1249-1258.
  • Katarzyna, E.E., & Edyta, M.P. (2020). Comboutea from alternative raw materials-The review. Critical Reviews in Food Science and Nutrition, 60, 3185-3194.
  • Kaur, K., Kapoor, K.K., & Gupta, A.P. (2005). Impact of organic manures with and without mineral fertilizers on soil chemical and biological properties under tropical conditions. Journal of Plant Nutrition and Soil Sciences, 168, 117-162.
  • Kızılkaya, R., Ekberli, İ., & Kars, N. (2007). Tütün atığı ve buğday samanı uygulanmış toprakta üreaz aktivitesi ve kinetiği. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi, 13, 186-194.
  • Kızılkaya, R., Aşkın, T., & Özdemir, N. (2003). Use of enzyme activities as a soil erodobility indicator. Indian Journal of Agricultural Sciences, 73, 446-450.
  • Kızılkaya, R., & Aşkın, T. (2007). The spatial variability of soil dehydrogenase activity: a survey in urban soils. Agriculturae Conspectus Scientificus, 72, 89-94.
  • Kizilkaya, R., Aşkın, T., Bayraklı, B., & Sağlam, M. (2004). Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology, 40, 95-102.
  • Kumar, V., & Joshi, V. (2016). Comboutea: technology, microbiology, production, composition and therapeutic value. International Journal of Food and Fermentation Technology, 6, 13-24.
  • Malek, A.E. (1971). Free-Living nitrogen-fixing bacteria in Egyptian soils and their possible contribution to soil fertility. Plant and Soil special, 2, 423-442.
  • Mayser, P., Fromme, S., Leitzmann, C., & Gründer, K. (1995). The yeast spectrum of the 'tea fungus Comboutea. Mycoses, 38, 289-295.
  • Mo, H., Zhu,, Y., & Chen, Z. (2008). Microbial fermented tea e a potential source of natural food preservatives. Trends in Food Science and Technology, 19, 124-130.
  • Murugesan, G.S., Sathishkumar, M., Jayabalan, R., Binupriya, A.R., Swaminathan, K., & Yun, S.E. (2009). Hepatoprotective and curative properties of Comboutea tea against carbon tetrachlorideinduced toxicity. Journal of Microbiology and Biotechnology, 19, 397–402.
  • Nannipieri, P., Ceccanti, B., & Grego, S. (1990). Ecological significance of the soil biological activity in soil. Bollag, J.M. and Stotzky, G. (Eds.). Soil Biochemistry (415-471). New York: Marcel Dekker.
  • Narula, N., Kumar, V., Behl, R.K., Duebel, A.A., Gransee, A., & Merbach, W. (2000). Effect of P solubilizing Azotobacter chroococcum on N, P, K uptake in P responsive wheat genotypes grown under green house conditions. Journal of Plant Nutrition and Soil Science, 163, 393–398.
  • Saravanan, P., Pakshirajan, K., & Prabirkumar, S. (2008). Biodegradation of phenol and m-cresol in a batch and fed batch operated internal loop airlift bioreactor by indigenous mixed microbial culture predominantly Pseudomonas sp. Bioresource Technology, 99, 8553-8558.
  • Parfitt, R.L., Yeates, G.W., Ross, D.J., Mackay, A.D., & Budding, P.J. (2005). Relationships between soil biota, nitrogen and phosphorus availability, and pasture growth under organic and conventional management. Applied Soil Ecology, 28, 1-13.
  • Rogers, J.E., & Li, S.W. (1985). Effect of heavy metal and other inorganic ions on soil microbial activity: soil dehydrogenase assay as a simple toxicity test. Bulletin of Environmental Contamination and Toxicology, 34, 858-865.
  • Rowell, D.L. (1996). Soil science: methods and applications. London, UK: 3rd Edition Longman.
  • Sreeramulu, G., Zhu, Y., & Knol, W. (2000). Comboutea fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry, 48, 2589-2594.
  • Srinivasan, R. (1997). Probable gastrointestinal toxicity of Comboutea tea. Journal of General Internal Medicine, 12, 643-633.
  • Suresh, D., Sneh, G., Krishan, K., & Mool, M. (2004). Microbial biomass carbon and microbial activities of soils receiving chemical fertilizers and organic amendments. Archives of Agronomy and Soil Science, 50, 641-647.
  • Vekemans, X., Godden, B., & Penninckx, M.J. (1989). Factor analysis of the relationships between several physico-chemical and microbiological characteristics of some Belgian agricultural soils. Soil Biology and Biochemistry, 21, 53-57.

Effect of Comboutea (Kombucha) and Mix Microorganisms Culture of Comboutea Production Waste on Basal Respiration and Microbial Biomass Carbon Content of Soils

Year 2022, Volume: 37 Issue: 2, 275 - 290, 30.06.2022
https://doi.org/10.7161/omuanajas.961243

Abstract

In this study, it is aimed to determine the effects of comboutea and lyophilized comboutea culture on soil some soil biological features. This study was carried out on 2 different soils as a pot experiment in the greenhouse. 4 doses of comboutea (0, 10, 20, 30 ml/pot) and 4 doses of lyophilized comboutea culture (0, 0.25, 0.50, and 0.75 mg/pot) were applied on the soils with 4 kg soil in apiece pot. At the end of the experiment, basal respiration (BR) and microbial biomass carbon (MBC) analyzes were made on the soils taken from the pots. According to the analysis results, it was observed that upregulation in the amount of comboutea and lyophilized waste of comboutea culture increased caused an improvement of BR and MBC of soils based on the soil texture.

References

  • Albiach, R., Canet, R., Pomares, F., & Ingelmo, F. (2000). Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresource Technology, 75, 43-48.
  • Anderson, J. P. E. (1982). Soil respiration. in: A. L. Page, R. H. Miller and D. R. Keeney (eds.), Methods of soil analysis, part 2-chemical and microbiological properties, Madison, Wisconsin, American Society of Agronomy, Soil Science Society of America 831-871.
  • Anderson, J.P.E., & Domsch, K.H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10, 215-221.
  • Aşkın, T., Kızılkaya, R., Gülser, C., & Bayraklı, B. (2004). Ondokuzmayıs üniversitesi kampus topraklarının bazı mikrobiyolojik özellikleri. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 19, 31-36.
  • Bastida, F., Kandeler, E., Moreno J.L., Ros, M., Garcia, C., & Hernandez, T. (2008). Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Applied Soil Ecology, 40, 318-329.
  • Bauer-Petrovska, B., & Petrushevska-Tozi, L. (2000). Mineral and water soluble vitamin content in the Comboutea drink. International Journal of Food Science and Technology, 35, 201-205.
  • Blanch, P.J. (1996). Characterization of the tea fungus metabolites. Biotechnology Letters, 18, 139-142.
  • Çakmakçı, R., Dönmez, M.F., & Erdoğan, Ü. (2007). The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish Journal of Agriculture and Forestry, 31, 189-199.
  • Dufresne, C., & Farnworth, E. (2000). Tea, comboutea, and health: a review. Food Research International, 33, 409-421.
  • Emtiazi, G., Naderi, A., & Etemadifar, Z. (2004). Effect of nitrogen fixing bacteria on growth of potato tubers. Advances in Food Sciences, 26, 56-58.
  • Fatemeh, M., Gholamreza, A., Sanaz, A., Reza, S., Mir Hadi, S., Alireza, R., & Abbas, M. (2015). Comboutea tea ameliorates experimental autoimmune encephalomyelitis in mouse model of multiple sclerosis. Food and Agricultural Immunology, 26, 782-793.
  • Frankenberger, W.T., & Dick, W.A. (1983). Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal, 47, 945-951.
  • Garcia-Gil, J. C., Ceppi, S., Velasca, M., Polo, A., & Senesi, N. (2004). Longterm effects of amendment with municipal solid waste compost on the elemental and acid functional group composition and ph-buffer capacity of soil humic acid. Geoderma, 121, 135-140.
  • Hadas, A., Kautsky, L., Goek, M., & Kara. E.E. (2004). Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biology and Biochemistry, 36, 255-266.
  • Haktanır, K., & Arcak, S. (1997). Toprak Biyolojisi. Ankara: Ankara Üniversitesi Ziraat Fakültesi Yayınları No. 1486.
  • İsmailçelebioğlu, N. (1969). Muhtelif bölgelerden izole edilen Azotobacter chroococcum ile aşılamanın, Erzurum Kan siltli kili ve Palandöken çakıllı tınında yetiştirilen buğday ve patates bitkilerinin verimi üzerine etkisi. Erzurum Atatürk Üniversitesi Yayınları No: 274
  • Jayabalan, R., Malini, K., Sathishkumar, M., Swaminathan, K., & Yun, S.E. (2010). Biochemical characteristics of tea fungus produced during comboutea fermentation. Food Science and Biotechnology, 19, 843-847.
  • Jayabalan, R., Marimuthu, S., & Swaminathan, K. (2007). Changes in content of organic acids and tea polyphenols during comboutea tea fermentation. Food Chemistry, 102, 392–398.
  • Joergensen, R.G., & Potthoff, M. (2005). Microbial reaction in activity, biomass, and community structure after longterm continuous mixing of a grassland soil. Soil Biology and Biochemistry, 37, 1249-1258.
  • Katarzyna, E.E., & Edyta, M.P. (2020). Comboutea from alternative raw materials-The review. Critical Reviews in Food Science and Nutrition, 60, 3185-3194.
  • Kaur, K., Kapoor, K.K., & Gupta, A.P. (2005). Impact of organic manures with and without mineral fertilizers on soil chemical and biological properties under tropical conditions. Journal of Plant Nutrition and Soil Sciences, 168, 117-162.
  • Kızılkaya, R., Ekberli, İ., & Kars, N. (2007). Tütün atığı ve buğday samanı uygulanmış toprakta üreaz aktivitesi ve kinetiği. Ankara Üniversitesi Ziraat Fakültesi Tarım Bilimleri Dergisi, 13, 186-194.
  • Kızılkaya, R., Aşkın, T., & Özdemir, N. (2003). Use of enzyme activities as a soil erodobility indicator. Indian Journal of Agricultural Sciences, 73, 446-450.
  • Kızılkaya, R., & Aşkın, T. (2007). The spatial variability of soil dehydrogenase activity: a survey in urban soils. Agriculturae Conspectus Scientificus, 72, 89-94.
  • Kizilkaya, R., Aşkın, T., Bayraklı, B., & Sağlam, M. (2004). Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology, 40, 95-102.
  • Kumar, V., & Joshi, V. (2016). Comboutea: technology, microbiology, production, composition and therapeutic value. International Journal of Food and Fermentation Technology, 6, 13-24.
  • Malek, A.E. (1971). Free-Living nitrogen-fixing bacteria in Egyptian soils and their possible contribution to soil fertility. Plant and Soil special, 2, 423-442.
  • Mayser, P., Fromme, S., Leitzmann, C., & Gründer, K. (1995). The yeast spectrum of the 'tea fungus Comboutea. Mycoses, 38, 289-295.
  • Mo, H., Zhu,, Y., & Chen, Z. (2008). Microbial fermented tea e a potential source of natural food preservatives. Trends in Food Science and Technology, 19, 124-130.
  • Murugesan, G.S., Sathishkumar, M., Jayabalan, R., Binupriya, A.R., Swaminathan, K., & Yun, S.E. (2009). Hepatoprotective and curative properties of Comboutea tea against carbon tetrachlorideinduced toxicity. Journal of Microbiology and Biotechnology, 19, 397–402.
  • Nannipieri, P., Ceccanti, B., & Grego, S. (1990). Ecological significance of the soil biological activity in soil. Bollag, J.M. and Stotzky, G. (Eds.). Soil Biochemistry (415-471). New York: Marcel Dekker.
  • Narula, N., Kumar, V., Behl, R.K., Duebel, A.A., Gransee, A., & Merbach, W. (2000). Effect of P solubilizing Azotobacter chroococcum on N, P, K uptake in P responsive wheat genotypes grown under green house conditions. Journal of Plant Nutrition and Soil Science, 163, 393–398.
  • Saravanan, P., Pakshirajan, K., & Prabirkumar, S. (2008). Biodegradation of phenol and m-cresol in a batch and fed batch operated internal loop airlift bioreactor by indigenous mixed microbial culture predominantly Pseudomonas sp. Bioresource Technology, 99, 8553-8558.
  • Parfitt, R.L., Yeates, G.W., Ross, D.J., Mackay, A.D., & Budding, P.J. (2005). Relationships between soil biota, nitrogen and phosphorus availability, and pasture growth under organic and conventional management. Applied Soil Ecology, 28, 1-13.
  • Rogers, J.E., & Li, S.W. (1985). Effect of heavy metal and other inorganic ions on soil microbial activity: soil dehydrogenase assay as a simple toxicity test. Bulletin of Environmental Contamination and Toxicology, 34, 858-865.
  • Rowell, D.L. (1996). Soil science: methods and applications. London, UK: 3rd Edition Longman.
  • Sreeramulu, G., Zhu, Y., & Knol, W. (2000). Comboutea fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry, 48, 2589-2594.
  • Srinivasan, R. (1997). Probable gastrointestinal toxicity of Comboutea tea. Journal of General Internal Medicine, 12, 643-633.
  • Suresh, D., Sneh, G., Krishan, K., & Mool, M. (2004). Microbial biomass carbon and microbial activities of soils receiving chemical fertilizers and organic amendments. Archives of Agronomy and Soil Science, 50, 641-647.
  • Vekemans, X., Godden, B., & Penninckx, M.J. (1989). Factor analysis of the relationships between several physico-chemical and microbiological characteristics of some Belgian agricultural soils. Soil Biology and Biochemistry, 21, 53-57.
There are 40 citations in total.

Details

Primary Language English
Journal Section Anadolu Tarım Bilimleri Dergisi
Authors

Murat Durmuş 0000-0001-5441-8048

Rıdvan Kızılkaya 0000-0001-7475-9851

Publication Date June 30, 2022
Acceptance Date November 23, 2021
Published in Issue Year 2022 Volume: 37 Issue: 2

Cite

APA Durmuş, M., & Kızılkaya, R. (2022). Effect of Comboutea (Kombucha) and Mix Microorganisms Culture of Comboutea Production Waste on Basal Respiration and Microbial Biomass Carbon Content of Soils. Anadolu Tarım Bilimleri Dergisi, 37(2), 275-290. https://doi.org/10.7161/omuanajas.961243
AMA Durmuş M, Kızılkaya R. Effect of Comboutea (Kombucha) and Mix Microorganisms Culture of Comboutea Production Waste on Basal Respiration and Microbial Biomass Carbon Content of Soils. ANAJAS. June 2022;37(2):275-290. doi:10.7161/omuanajas.961243
Chicago Durmuş, Murat, and Rıdvan Kızılkaya. “Effect of Comboutea (Kombucha) and Mix Microorganisms Culture of Comboutea Production Waste on Basal Respiration and Microbial Biomass Carbon Content of Soils”. Anadolu Tarım Bilimleri Dergisi 37, no. 2 (June 2022): 275-90. https://doi.org/10.7161/omuanajas.961243.
EndNote Durmuş M, Kızılkaya R (June 1, 2022) Effect of Comboutea (Kombucha) and Mix Microorganisms Culture of Comboutea Production Waste on Basal Respiration and Microbial Biomass Carbon Content of Soils. Anadolu Tarım Bilimleri Dergisi 37 2 275–290.
IEEE M. Durmuş and R. Kızılkaya, “Effect of Comboutea (Kombucha) and Mix Microorganisms Culture of Comboutea Production Waste on Basal Respiration and Microbial Biomass Carbon Content of Soils”, ANAJAS, vol. 37, no. 2, pp. 275–290, 2022, doi: 10.7161/omuanajas.961243.
ISNAD Durmuş, Murat - Kızılkaya, Rıdvan. “Effect of Comboutea (Kombucha) and Mix Microorganisms Culture of Comboutea Production Waste on Basal Respiration and Microbial Biomass Carbon Content of Soils”. Anadolu Tarım Bilimleri Dergisi 37/2 (June 2022), 275-290. https://doi.org/10.7161/omuanajas.961243.
JAMA Durmuş M, Kızılkaya R. Effect of Comboutea (Kombucha) and Mix Microorganisms Culture of Comboutea Production Waste on Basal Respiration and Microbial Biomass Carbon Content of Soils. ANAJAS. 2022;37:275–290.
MLA Durmuş, Murat and Rıdvan Kızılkaya. “Effect of Comboutea (Kombucha) and Mix Microorganisms Culture of Comboutea Production Waste on Basal Respiration and Microbial Biomass Carbon Content of Soils”. Anadolu Tarım Bilimleri Dergisi, vol. 37, no. 2, 2022, pp. 275-90, doi:10.7161/omuanajas.961243.
Vancouver Durmuş M, Kızılkaya R. Effect of Comboutea (Kombucha) and Mix Microorganisms Culture of Comboutea Production Waste on Basal Respiration and Microbial Biomass Carbon Content of Soils. ANAJAS. 2022;37(2):275-90.
Online ISSN: 1308-8769