Research Article
BibTex RIS Cite

The Effects of Long-Term Land Uses on Organic Carbon Associated With Aggregate Fractions in the Çarşamba Plain

Year 2025, Volume: 40 Issue: 2, 257 - 276, 30.06.2025

Abstract

Land uses and associated management practices can significantly change soil properties in agricultural areas. These changes in soil properties can cause both a decrease in soil fertility in agricultural areas and an increase in the sensitivity of agricultural soils to various processes such as climate change, erosion, and desertification. The current study investigated the effects of long-term land use types on soil properties in alluvial soils located in the Çarşamba plain. Soil properties such as aggregate size distribution, soil organic carbon (SOC) content associated with aggregates and soil organic carbon stock (SOCStock), structure stability index (SSI), aggregate stability index (ASI), unstable aggregate index (ELT), mean weighted diameter (MWD) and geometric mean diameter (GMD) were measured in soil samples collected from five different land use types (vegetable, cherry, persimmon, maize, and rice) and three different soil depths (0.0-7.5 cm, 7.5-15.0 cm, and 15.0-30.0 cm). The results showed that different land use types statistically affected all the examined soil properties (p<0.05, p<0.01). The highest and lowest SSI values were obtained in persimmon land use (2.2%) and rice land use (1.8%), respectively, while the same land uses were found to have the statistically highest values (0.8) for ASI. Vegetable land use had the highest statistical impact on aggregate-associated SOC content across most of the examined aggregate sizes. Therefore, it is recommended to perform rotation cropping systems that increase organic matter (OM) input to reduce the adverse effects of land uses and soil management on aggregates-related SOC content and SOCStock in alluvial areas.

Ethical Statement

This study did not require ethics committee approval.

Supporting Institution

This study did not receive financial support from any institution.

Thanks

--

References

  • Ahmad, E.H., Demisie, W., Zhang, M., 2017. Effects of land use on concentrations and chemical forms of phosphorus in different-size aggregates. Eurasian Soil Sci. 50 (12), 1435-1443.
  • Akpa, S.I.C.C., Odeh, I.O.A.A., Bishop, T.F.A.A., Hartemink, A.E., Amapu, I.Y., 2016. Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma, 271: 202-215.
  • Alidoust, E., Afyuni, M., Hajabbasi, M.A., Mosaddeghi, M.R., 2018. Soil carbon sequestration potential as affected by soil physical and climatic factors under different land uses in a semiarid region. Catena, 171: 62-71.
  • Berhe, A.A., Kleber, M., 2013. Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology. Earth Surf. Process. Landf. 38, 908-912.
  • Bhattacharyya, R., Kundu, S., Srivastva, A.K., Gupta, H.S., Prakash, V., Bhatt, J.C., 2011. Long term fertilization effects on soil organic carbon pools in a sandy loam soil of the Indian sub-Himalayas. Plant Soil. 341, 109–124.
  • Briar, S.S., Fonte, S.J., Park, I., Six, J., Scow, K., Ferris, H. 2011. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biol. Biochem. 43, 905-914.
  • Centenaro, G., Hudek, C., Zanella, A., Crivellaro, A., 2018. Root-soil physical and biotic interactions with a focus on tree root systems: a review. Appl. Soil Ecol. 123, 318-327. https://doi.org/10.1016/j.apsoil.2017.09.017.
  • Chaplot, V., Abdalla, K., Alexis, M., Darboux, F., Dlamini, P., Everson, C., Mchunu, C., Muller-Nedebock, D., Mutema, M., Quenea, K., Thenga, H., Chivenge, P., 2015. Surface organic carbon enrichment to explain greater CO2 emissions from short-term no-tilled soils. Agric. Ecosyst. Environ. 203, 110-118.
  • Das, S., Bhattacharyya, R., Saha, N.D., Ghosh, A., Khan, S.A., Ahmed, N., Dey, A., Bhatia, A., Pramanik, P., Kumar, S.N., Agarwal, B.K., Shahi, D.K., 2022. Soil aggregate-associated carbon and organic carbon pools as affected by conversion of forest lands to agriculture in an acid soil of India. Soil & Tillage Research, 223: 105443.
  • Devine, S., Markewitz, D., Hendrix, P., Coleman, D., 2014. Soil aggregates and associated organic matter under conventional tillage, no-tillage, and forest succession after three decades. PLos One, 9(1): e84988.
  • Dorji, T., Odeh, I.O.A., Field, D.J., Baillie, I.C., 2014. Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, eastern Himalayas. For. Ecol. Manag. 318, 91-102.
  • Elliott, E.T., 1986. Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 50, 627-633.
  • Encyclopedia of Soil Science, ESS, 2008. Aggregate stability to drying and wetting. In: Chesworth, C. (Ed). Encyclopedia of Soil Science. Springer. pp. 28–33.
  • Gadekar, D.J., Santosh, Z.A., Ramdas, R.V., Sonawane, V.V., Balu, S.P., 2024. Physical and biıological characteristics of soil: A perspective study. ShodhKosh: Journal of Visual and Performing Arts, 5(6), 219-228.
  • Garten Jr., C.T., 2002. Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA. Biomass Bioenergy, 23, 93–102.
  • Gartzia-Bengoetxea, N., Gonzalez-Arias, A., Merino, A., Martinez de Arano, I., 2009. Soil organic matter in soil physical fractions in adjacent semi-natural and cultivated stands in temperate Atlantic forests. Soil Biol. Biochem. 41, 1674-1683.
  • Gee, G.W., Bauder, J.W., 1986. Particle size analysis. In: Klute, A. (Ed). Methods of soil analysis, Part I: Physical and mineralogical properties. American Society of Agronomy, Madison, WI, pp. 91-100.
  • Gould, I.J., Quinton, J.N., Weigelt, A., De Deyn, G.B., Bardgett, R.D., 2016. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol. Lett. 19, 1140-1149.
  • Grossman, R.B., Reinsch, T.G., 2002. Bulk density and linear extensibility. In: Dane, J.H., Topp, G.C. (Eds). Methods of Soil Analysis, Part IV: Physical Methods. Soil Science Society of America Book Series No. 5, Madison, WI, pp. 201-228.
  • Guo, L., Shen, J., Li, B., Li, Q., Wang, C., Guan, Y., D’Acqui, L.P., Luo, Y., Tao, Q., Xu, Q., Li, H., Yang, J., Tang, X., 2020. Impacts of agricultural land use change on soil aggregate stability and physical protection of organic C. Science of the Total Environment, 707: 136076.
  • Haghighi, F., Gorji, M., Shorafa, M., 2010. A study of effects of land use changes on soil physical properties and organic matter. Land Degradation and Development, 21: 496-502.
  • Hendershot, W.H., Lalande, H., Duquette, M., 1993. Soil reaction and exchangeable acidity. In: Carter, M.R. (Ed). Soil Sampling and Methods of Analysis. Lewis Publishers, pp. 141-145.
  • Igwe, C.A., Obalum, S.E., 2013. Microaggregate stability of tropical soils and its roles on soil erosion hazard prediction. In: Grundas, S. (Ed). Advances in Agrophysical Research, InTech, Rijeka, Croatia. pp. 175-192.
  • İç, S., 2024. The change of soil physical quality depending on long‑term land use types in a semi‑arid ecosystem. Environ Monit Assess. 196: 1211. https://doi.org/10.1007/s10661-024-13396-2.
  • Kemper, W.D., Chepil, W.S., 1965. Size distribution of aggregates. In: Black, C.A. (Ed). Methods of soil analysis, Part I. Agronomy Monograph, Madison, WI, pp. 499-510.
  • Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Klute, A., Campbell, G.S., Jacson, R.D., Mortland, M.M., Nielsen, D.R. (Eds.). Methods of Soil Analysis, Part I, ASA and SSSA, Madison, WI, pp. 425-442.
  • Korkanç, S.Y., Korkanç, M., Mert, M.H., Geçili, A., Serengil, Y., 2022. Effects of land‑use change on the soil organic carbon and selected soil properties in the Sultan Marshes, Turkey. Wetlands, 42: 58. https://doi.org/10.1007/s13157-022-01577-z.
  • Li, X.G., Li, F.M., Zed, R., Zhan, Z.Y., Singh, B., 2007. Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland. Geoderma, 139: 98-105.
  • Liu, Z., Sun, Z.H., Wang, H.Y., Cao, S.L., Chen, T.Q., Qu, S.D., Lei, N., Dong, Q.G., 2020. Effects of straw decomposition on aggregate composition and aggregate-associated organic carbon in different soil mineral types. Applied Ecology and Environmental Research, 18(5): 6511-6528.
  • Modak, K., Ghosh, A., Bhattacharyya, R., Biswas, D.R., Das, T.K., Das, S., Singh, G., 2019. Response of oxidative stability of aggregate-associated soil organic carbon and deep soil carbon sequestration to zero-tillage in subtropical India. Soil and Tillage Research, 195: 104370.
  • Nelson, D.W., Sommers, L.E., 1982. Total Carbon, Organic Carbon and Organic Matter. In: Page, A.L., Miller, R.H., Kenney, D.R. (Eds). Methods of Soil Analysis, Part II. American Society of Agronomy, Madison, WI, pp. 539-579.
  • Okolo, C.C., Gebresamuel, G., Zenebe, A., Haile, M., 2020. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment. Agriculture, Ecosystems & Environment, 297: 106924.
  • Peres, G., Cluzeau, D., Menasseri, S., Soussana, J.F., Bessler, H., Engels, C., Habekost, M., Gleixner, G., Weigelt, A., Weisser, W.W., Scheu, S., Eisenhauer, N., 2013. Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient. Plant and Soil, 373:285-299.
  • Pieri, C., 1992. Fertility of soils: A future for farming in the West African savannah. Springer Series in Physical Environment. Springer-Verlag, Berlin.
  • Plaza-Bonilla, D., Cantero-Martinez, C., Alvaro-Fuentes, J., 2013. Soil aggregation and organic carbon protection in a notillage chronosequence under Mediterranean conditions. Geoderma, 193-194: 76-82.
  • Rhoades, J.D., 1986. Soluble salts. In: Klute, A. (Ed). Methods of soil analysis, Part II: Chemical and Microbiological Properties. ASA and SSSA publications, Madison, WI, pp. 167-179.
  • Rillig, M.C., Wright, S.F., Eviner, V.T., 2002. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil, 238: 325-333.
  • Sağlam, M., Selvi, K.C., Dengiz, O., Gürsoy, E.F., 2014. Affects of different tillage managements on soil physical quality in a clayey soil. Environmental Monitoring and Assessment, 187(1): 4185.
  • Sahoo, U.K., Singh, S.L., Gogoi, A., Kenye, A., Sahoo, S.S., 2019. Active and passive soil organic carbon pools as affected by different land use types in Mizoram, Northeast India. PLoS ONE 14(7): e0219969. https://doi.org/10.1371/journal.pone.0219969.
  • Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel-Knabner, I., Schulze, E.D., 2013. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences, 10: 1675-1691.
  • Sekaran, U., Sagar, K.L., Kumar, S., 2021. Soil aggregates, aggregate-associated carbon and nitrogen, and water retention as influenced by short and long-term no-till systems. Soil & Tillage Research, 208: 104885.
  • Sithole, N.J., Magwaza, L.S., Thibaud, G.R., 2019. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil Till. Res. 190, 147-156. https://doi.org/10.1016/j.still.2019.03.004.
  • Six, J., Paustian, K., Elliott, E.T., Combrink, C., 2000. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 64, 681-689.
  • Tang, F.K., Cui, M., Lu, Q., Liu, Y.G., Zhou, J.X., 2016. Effects of vegetation restoration on the aggregate stability and distribution of aggregate-associated organic carbon in a typical karst gorge region. Solid Earth, 7: 2213-2242.
  • Tao, Y., Zhao, C., Yan, C., Du, Z., He, W., 2018. Inter-annual changes in the aggregate-size distribution and associated carbon of soil and their effects on the straw-derived carbon incorporation under long-term no-tillage. J. Integr. Agric. 17, 2546-2557.
  • Tisdall, J.M., Oades, J.M., 1982. Organic matter and water-stable aggregates in soils. J Soil Sci. 62, 141-163. Vergani, C., Graf, F., 2016. Soil permeability, aggregate stability and root growth: A pot experiment from a soil bioengineering perspective. Ecohydrology doi:10.1002/eco.1686.
  • Wakindiki, I.C., Mainuri, Z.G., Gichaba, M., 2006. Soil use and management effects on aggregate stability and hydraulic conductivity within River Njoro Watershed in Kenya. 18th World Congress of Soil Science, July 9-15, Philadelphia, PA.
  • Wang, F., Tong, Y.A., Zhang, J.S., Gao, P.C., Coffie, J.N., 2013. Effects of various organic materials on soil aggregate stability and soil microbiological properties on the Loess Plateau of China. Plant. Plant Soil & Environment, 59: 162-168.
  • Wenzel, W.W., Duboc, O., Golestanifard, A., Holzinger, C., Mayr, K., Reiter, J., Schiefer, A., 2022. Soil and land use factors control organic carbon status and accumulation in agricultural soils of Lower Austria. Goederma, 409: 115595.
  • Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschlager, U., Vogel, H.J., Kogel-Knabner, I., 2019. Soil organic carbon storage as a key function of soils – A review of drivers and indicators at various scales. Geoderma, 333: 149-162.
  • Yousaf, B., Liu, G., Wang, R., Abbas, Q., Imtiaz, M., Liu, R., 2017. Investigating the biochar effects on C-mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13C) approach. GCB Bioenergy, 9, 1085-1099.
  • Zdruli, P., Lal, R., Cherlet, M., Kapur, S., 2017. New world atlas of desertification and issues of carbon sequestration, organic carbon stocks, nutrient depletion and implications for food security. In: Erşahin, S., Kapur, S., Akça, E., Namlı, A., Erdoğan, H.E. (Eds). Carbon Management, Technologies, and Trends in Mediterranean Ecosystems. Springer International Publishing Switzerland, pp. 13-25.
  • Zhong, Z., Wu, S., Lu, X., Ren, Z., Wu, Q., Xu, M., Ren, C., Yang, G., Han, X., 2021. Organic carbon, nitrogen accumulation, and soil aggregate dynamics as affected by vegetation restoration patterns in the Loess Plateau of China. Catena, 196: 104867.
  • Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L.V., 2017. Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports, doi: 10.1038/s41598-017-15794-8.

Çarşamba Ovasında Agregat Fraksiyonları ile İlişkili Organik Karbon Üzerine Uzun Süreli Arazi Kullanımlarının Etkileri

Year 2025, Volume: 40 Issue: 2, 257 - 276, 30.06.2025

Abstract

Arazi kullanımı ve onunla ilişkili yönetim uygulamaları tarımsal alanlardaki toprak özelliklerini önemli ölçüde değiştirebilmektedir. Toprak özelliklerinde meydana gelen bu değişimler hem tarımsal alanlarda toprak verimliliğinin azalmasına hem de tarımsal toprakların iklim değişikliği, erozyon, çölleşme gibi çeşitli süreçlere hassasiyetinin artmasına neden olabilmektedir. Mevcut çalışmada, Çarşamba ovasında yer alan alüviyal topraklarda, uzun süreli arazi kullanım tiplerinin toprak özellikleri üzerindeki etkileri incelenmiştir. Beş farklı arazi kullanım tipinden (sebze, kiraz, Trabzon hurması, mısır ve çeltik) ve üç farklı toprak derinliğinden (0.0-7.5 cm, 7.5-15.0 cm, ve 15.0-30.0 cm) alınan toprak örneklerinde agregat büyüklük dağılımı, agregatlar ile ilişkili toprak organik karbon (TOK) içeriği ve toprak organik karbon stoğu (TOKStoğu), strüktür stabilite indeksi (SSI), agregat stabilite indeksi (ASI), kararsız agregat indeksi (AIKararsız) ,ortalama ağırlıklı çap (OAÇ) ve geometrik ortalama çap (GOÇ) gibi toprak özellikleri ölçülmüştür. Elde edilen sonuçlar, farklı arazi kullanım tiplerinin incelenen bütün toprak özelliklerini istatistiksel olarak (p<0.05, p<0.01) etkilediğini göstermiştir. En yüksek ve en düşük SSI değerleri sırasıyla Trabzon hurması arazi kullanımı (% 2.2) ve çeltik arazi kullanımında (%1.8) elde edilirken, aynı arazi kullanımlarının ASI için istatistiksel olarak en yüksek değerlere (0.8) sahip olduğu bulunmuştur. Sebze arazi kullanımı, incelenen agregat büyüklük fraksiyonlarının büyük çoğunluğunda agregatlar ile ilişkili TOK içeriği üzerine en yüksek istatistiksel etkiyi ortaya koymuştur. Bu nedenle, alüviyal alanlarda arazi kullanımları ve toprak yönetimlerinin agregatlar ile ilişkili TOK içeriği ve TOKStoğu üzerindeki olumsuz etkilerini azaltmak için organik madde (OM) girişini artıran rotasyon ekim sistemlerinin uygulanması önerilmektedir.

References

  • Ahmad, E.H., Demisie, W., Zhang, M., 2017. Effects of land use on concentrations and chemical forms of phosphorus in different-size aggregates. Eurasian Soil Sci. 50 (12), 1435-1443.
  • Akpa, S.I.C.C., Odeh, I.O.A.A., Bishop, T.F.A.A., Hartemink, A.E., Amapu, I.Y., 2016. Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma, 271: 202-215.
  • Alidoust, E., Afyuni, M., Hajabbasi, M.A., Mosaddeghi, M.R., 2018. Soil carbon sequestration potential as affected by soil physical and climatic factors under different land uses in a semiarid region. Catena, 171: 62-71.
  • Berhe, A.A., Kleber, M., 2013. Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology. Earth Surf. Process. Landf. 38, 908-912.
  • Bhattacharyya, R., Kundu, S., Srivastva, A.K., Gupta, H.S., Prakash, V., Bhatt, J.C., 2011. Long term fertilization effects on soil organic carbon pools in a sandy loam soil of the Indian sub-Himalayas. Plant Soil. 341, 109–124.
  • Briar, S.S., Fonte, S.J., Park, I., Six, J., Scow, K., Ferris, H. 2011. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biol. Biochem. 43, 905-914.
  • Centenaro, G., Hudek, C., Zanella, A., Crivellaro, A., 2018. Root-soil physical and biotic interactions with a focus on tree root systems: a review. Appl. Soil Ecol. 123, 318-327. https://doi.org/10.1016/j.apsoil.2017.09.017.
  • Chaplot, V., Abdalla, K., Alexis, M., Darboux, F., Dlamini, P., Everson, C., Mchunu, C., Muller-Nedebock, D., Mutema, M., Quenea, K., Thenga, H., Chivenge, P., 2015. Surface organic carbon enrichment to explain greater CO2 emissions from short-term no-tilled soils. Agric. Ecosyst. Environ. 203, 110-118.
  • Das, S., Bhattacharyya, R., Saha, N.D., Ghosh, A., Khan, S.A., Ahmed, N., Dey, A., Bhatia, A., Pramanik, P., Kumar, S.N., Agarwal, B.K., Shahi, D.K., 2022. Soil aggregate-associated carbon and organic carbon pools as affected by conversion of forest lands to agriculture in an acid soil of India. Soil & Tillage Research, 223: 105443.
  • Devine, S., Markewitz, D., Hendrix, P., Coleman, D., 2014. Soil aggregates and associated organic matter under conventional tillage, no-tillage, and forest succession after three decades. PLos One, 9(1): e84988.
  • Dorji, T., Odeh, I.O.A., Field, D.J., Baillie, I.C., 2014. Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, eastern Himalayas. For. Ecol. Manag. 318, 91-102.
  • Elliott, E.T., 1986. Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 50, 627-633.
  • Encyclopedia of Soil Science, ESS, 2008. Aggregate stability to drying and wetting. In: Chesworth, C. (Ed). Encyclopedia of Soil Science. Springer. pp. 28–33.
  • Gadekar, D.J., Santosh, Z.A., Ramdas, R.V., Sonawane, V.V., Balu, S.P., 2024. Physical and biıological characteristics of soil: A perspective study. ShodhKosh: Journal of Visual and Performing Arts, 5(6), 219-228.
  • Garten Jr., C.T., 2002. Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina, USA. Biomass Bioenergy, 23, 93–102.
  • Gartzia-Bengoetxea, N., Gonzalez-Arias, A., Merino, A., Martinez de Arano, I., 2009. Soil organic matter in soil physical fractions in adjacent semi-natural and cultivated stands in temperate Atlantic forests. Soil Biol. Biochem. 41, 1674-1683.
  • Gee, G.W., Bauder, J.W., 1986. Particle size analysis. In: Klute, A. (Ed). Methods of soil analysis, Part I: Physical and mineralogical properties. American Society of Agronomy, Madison, WI, pp. 91-100.
  • Gould, I.J., Quinton, J.N., Weigelt, A., De Deyn, G.B., Bardgett, R.D., 2016. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol. Lett. 19, 1140-1149.
  • Grossman, R.B., Reinsch, T.G., 2002. Bulk density and linear extensibility. In: Dane, J.H., Topp, G.C. (Eds). Methods of Soil Analysis, Part IV: Physical Methods. Soil Science Society of America Book Series No. 5, Madison, WI, pp. 201-228.
  • Guo, L., Shen, J., Li, B., Li, Q., Wang, C., Guan, Y., D’Acqui, L.P., Luo, Y., Tao, Q., Xu, Q., Li, H., Yang, J., Tang, X., 2020. Impacts of agricultural land use change on soil aggregate stability and physical protection of organic C. Science of the Total Environment, 707: 136076.
  • Haghighi, F., Gorji, M., Shorafa, M., 2010. A study of effects of land use changes on soil physical properties and organic matter. Land Degradation and Development, 21: 496-502.
  • Hendershot, W.H., Lalande, H., Duquette, M., 1993. Soil reaction and exchangeable acidity. In: Carter, M.R. (Ed). Soil Sampling and Methods of Analysis. Lewis Publishers, pp. 141-145.
  • Igwe, C.A., Obalum, S.E., 2013. Microaggregate stability of tropical soils and its roles on soil erosion hazard prediction. In: Grundas, S. (Ed). Advances in Agrophysical Research, InTech, Rijeka, Croatia. pp. 175-192.
  • İç, S., 2024. The change of soil physical quality depending on long‑term land use types in a semi‑arid ecosystem. Environ Monit Assess. 196: 1211. https://doi.org/10.1007/s10661-024-13396-2.
  • Kemper, W.D., Chepil, W.S., 1965. Size distribution of aggregates. In: Black, C.A. (Ed). Methods of soil analysis, Part I. Agronomy Monograph, Madison, WI, pp. 499-510.
  • Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Klute, A., Campbell, G.S., Jacson, R.D., Mortland, M.M., Nielsen, D.R. (Eds.). Methods of Soil Analysis, Part I, ASA and SSSA, Madison, WI, pp. 425-442.
  • Korkanç, S.Y., Korkanç, M., Mert, M.H., Geçili, A., Serengil, Y., 2022. Effects of land‑use change on the soil organic carbon and selected soil properties in the Sultan Marshes, Turkey. Wetlands, 42: 58. https://doi.org/10.1007/s13157-022-01577-z.
  • Li, X.G., Li, F.M., Zed, R., Zhan, Z.Y., Singh, B., 2007. Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland. Geoderma, 139: 98-105.
  • Liu, Z., Sun, Z.H., Wang, H.Y., Cao, S.L., Chen, T.Q., Qu, S.D., Lei, N., Dong, Q.G., 2020. Effects of straw decomposition on aggregate composition and aggregate-associated organic carbon in different soil mineral types. Applied Ecology and Environmental Research, 18(5): 6511-6528.
  • Modak, K., Ghosh, A., Bhattacharyya, R., Biswas, D.R., Das, T.K., Das, S., Singh, G., 2019. Response of oxidative stability of aggregate-associated soil organic carbon and deep soil carbon sequestration to zero-tillage in subtropical India. Soil and Tillage Research, 195: 104370.
  • Nelson, D.W., Sommers, L.E., 1982. Total Carbon, Organic Carbon and Organic Matter. In: Page, A.L., Miller, R.H., Kenney, D.R. (Eds). Methods of Soil Analysis, Part II. American Society of Agronomy, Madison, WI, pp. 539-579.
  • Okolo, C.C., Gebresamuel, G., Zenebe, A., Haile, M., 2020. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment. Agriculture, Ecosystems & Environment, 297: 106924.
  • Peres, G., Cluzeau, D., Menasseri, S., Soussana, J.F., Bessler, H., Engels, C., Habekost, M., Gleixner, G., Weigelt, A., Weisser, W.W., Scheu, S., Eisenhauer, N., 2013. Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient. Plant and Soil, 373:285-299.
  • Pieri, C., 1992. Fertility of soils: A future for farming in the West African savannah. Springer Series in Physical Environment. Springer-Verlag, Berlin.
  • Plaza-Bonilla, D., Cantero-Martinez, C., Alvaro-Fuentes, J., 2013. Soil aggregation and organic carbon protection in a notillage chronosequence under Mediterranean conditions. Geoderma, 193-194: 76-82.
  • Rhoades, J.D., 1986. Soluble salts. In: Klute, A. (Ed). Methods of soil analysis, Part II: Chemical and Microbiological Properties. ASA and SSSA publications, Madison, WI, pp. 167-179.
  • Rillig, M.C., Wright, S.F., Eviner, V.T., 2002. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil, 238: 325-333.
  • Sağlam, M., Selvi, K.C., Dengiz, O., Gürsoy, E.F., 2014. Affects of different tillage managements on soil physical quality in a clayey soil. Environmental Monitoring and Assessment, 187(1): 4185.
  • Sahoo, U.K., Singh, S.L., Gogoi, A., Kenye, A., Sahoo, S.S., 2019. Active and passive soil organic carbon pools as affected by different land use types in Mizoram, Northeast India. PLoS ONE 14(7): e0219969. https://doi.org/10.1371/journal.pone.0219969.
  • Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel-Knabner, I., Schulze, E.D., 2013. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences, 10: 1675-1691.
  • Sekaran, U., Sagar, K.L., Kumar, S., 2021. Soil aggregates, aggregate-associated carbon and nitrogen, and water retention as influenced by short and long-term no-till systems. Soil & Tillage Research, 208: 104885.
  • Sithole, N.J., Magwaza, L.S., Thibaud, G.R., 2019. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil Till. Res. 190, 147-156. https://doi.org/10.1016/j.still.2019.03.004.
  • Six, J., Paustian, K., Elliott, E.T., Combrink, C., 2000. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 64, 681-689.
  • Tang, F.K., Cui, M., Lu, Q., Liu, Y.G., Zhou, J.X., 2016. Effects of vegetation restoration on the aggregate stability and distribution of aggregate-associated organic carbon in a typical karst gorge region. Solid Earth, 7: 2213-2242.
  • Tao, Y., Zhao, C., Yan, C., Du, Z., He, W., 2018. Inter-annual changes in the aggregate-size distribution and associated carbon of soil and their effects on the straw-derived carbon incorporation under long-term no-tillage. J. Integr. Agric. 17, 2546-2557.
  • Tisdall, J.M., Oades, J.M., 1982. Organic matter and water-stable aggregates in soils. J Soil Sci. 62, 141-163. Vergani, C., Graf, F., 2016. Soil permeability, aggregate stability and root growth: A pot experiment from a soil bioengineering perspective. Ecohydrology doi:10.1002/eco.1686.
  • Wakindiki, I.C., Mainuri, Z.G., Gichaba, M., 2006. Soil use and management effects on aggregate stability and hydraulic conductivity within River Njoro Watershed in Kenya. 18th World Congress of Soil Science, July 9-15, Philadelphia, PA.
  • Wang, F., Tong, Y.A., Zhang, J.S., Gao, P.C., Coffie, J.N., 2013. Effects of various organic materials on soil aggregate stability and soil microbiological properties on the Loess Plateau of China. Plant. Plant Soil & Environment, 59: 162-168.
  • Wenzel, W.W., Duboc, O., Golestanifard, A., Holzinger, C., Mayr, K., Reiter, J., Schiefer, A., 2022. Soil and land use factors control organic carbon status and accumulation in agricultural soils of Lower Austria. Goederma, 409: 115595.
  • Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschlager, U., Vogel, H.J., Kogel-Knabner, I., 2019. Soil organic carbon storage as a key function of soils – A review of drivers and indicators at various scales. Geoderma, 333: 149-162.
  • Yousaf, B., Liu, G., Wang, R., Abbas, Q., Imtiaz, M., Liu, R., 2017. Investigating the biochar effects on C-mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13C) approach. GCB Bioenergy, 9, 1085-1099.
  • Zdruli, P., Lal, R., Cherlet, M., Kapur, S., 2017. New world atlas of desertification and issues of carbon sequestration, organic carbon stocks, nutrient depletion and implications for food security. In: Erşahin, S., Kapur, S., Akça, E., Namlı, A., Erdoğan, H.E. (Eds). Carbon Management, Technologies, and Trends in Mediterranean Ecosystems. Springer International Publishing Switzerland, pp. 13-25.
  • Zhong, Z., Wu, S., Lu, X., Ren, Z., Wu, Q., Xu, M., Ren, C., Yang, G., Han, X., 2021. Organic carbon, nitrogen accumulation, and soil aggregate dynamics as affected by vegetation restoration patterns in the Loess Plateau of China. Catena, 196: 104867.
  • Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L.V., 2017. Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports, doi: 10.1038/s41598-017-15794-8.
There are 54 citations in total.

Details

Primary Language English
Subjects Soil Physics, Soil Chemistry and Soil Carbon Sequestration (Excl. Carbon Sequestration Science)
Journal Section Anadolu Tarım Bilimleri Dergisi
Authors

Abdelrahman Abdelkarem Mostafa Mohamed 0009-0005-1609-6566

Edip Erhan Küçük 0000-0002-1393-9231

Serkan İç 0000-0001-8072-863X

Mustafa Sağlam 0000-0002-7564-5079

Early Pub Date June 27, 2025
Publication Date June 30, 2025
Submission Date January 31, 2025
Acceptance Date April 18, 2025
Published in Issue Year 2025 Volume: 40 Issue: 2

Cite

APA Mohamed, A. A. M., Küçük, E. E., İç, S., Sağlam, M. (2025). The Effects of Long-Term Land Uses on Organic Carbon Associated With Aggregate Fractions in the Çarşamba Plain. Anadolu Tarım Bilimleri Dergisi, 40(2), 257-276. https://doi.org/10.7161/omuanajas.1629176