Research Article
BibTex RIS Cite

The Effect of Cobalamin (Vitamin B12) Application on Some Growth, Biochemical Parameters and Pv-MATE14 Gene Expression Level in Bush Bean (Phaseolus vulgaris L.) Plants Exposed to Heavy Metal (CuSO4) Stress

Year 2025, Volume: 40 Issue: 3, 615 - 637, 31.10.2025

Abstract

Copper (Cu) toxicity poses a significant threat to plant health, particularly as Cu levels in agricultural soils rise due to the use of Cu-based agrochemicals. The role of Vitamin B12 in mitigating this heavy metal stress in common bean has not been fully elucidated. Therefore, this study investigated the effects of copper(II) sulfate (CuSO4), Vitamin B12, and their combination treatments on growth parameters, key biochemical indices, and Pv-MATE14 gene expression in bush bean (Phaseolus vulgaris L.) seedlings. CuSO4 was applied at 50 and 125 ppm, and Vitamin B12 at 50 ppm. Solutions were applied to the soil in 60 mL aliquots every two days for a total of 14 days. At the end of the treatment period, we measured plant height, root and stem lengths, fresh weights, relative water content (RWC), proline, MDA contents, and Pv-MATE14 expression. Results showed that CuSO4 treatments significantly decreased all growth parameters and RWC, while drastically increasing proline and MDA content. CuSO4 also significantly upregulated Pv-MATE14 expression, severely inhibiting growth and development. Conversely, Vitamin B12 application increased growth parameters and RWC, decreased proline and MDA content, and significantly downregulated Pv-MATE14 expression. These findings demonstrate that Vitamin B12 effectively mitigates the adverse effects of CuSO4 stress by promoting growth, alleviating cellular damage, and normalizing the expression of the Pv-MATE14 metal transporter gene in common bean.

References

  • AbdElgawad, H., Zinta, G., Hamed, B. A., Selim, S., Beemster, G., Hozzein, W.N., Abuelsoud, W., 2020. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity. Environmental Pollution, 258:113705. https://doi.org/10.1016/j.envpol.2019.113705.
  • Akçay, M., 2025. Kurşun (II) Asetat ve Salisilik Asidin Medicago sativa L. Bitkisinde Gelişim, Biyokimyasal Parametreler ve miRNA156 Gen Anlatımı Üzerine Etkileri. Turkish Journal of Agricultural and Natural Sciences, 12(1), 74-86. https://doi.org/10.30910/turkjans.1537927.
  • Al-Ameri, N.J., Al-Khafaji, A.M., Al-Dulaimi, N.H., 2022. Optimization of growth and yield of cabbage plant by foliar application of vitamin B12 and GSH. Biochemical & Cellular Archives, 22(2): 3881–3883. https://doi.org/10.51470/bca.2022.22.2.3881.
  • Alaoui-Sossé, B., Genet, P., Vinit-Dunand, F., Toussaint, M.L., Epron, D., Badot, P.M., 2004. Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Science, 166(5):1213-1218. https://doi.org/10.1016/j.plantsci.2003.12.032.
  • Al-Hakimi, A.M.A., Hamada, A.M., 2001. Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate. Biologia Plantarum, 44, 253-261. https://doi.org/10.1023/A:1010255526903.
  • Atif, M., Perveen, S., Parveen, A., Saeed, F., 2024. Conjoint effect of indole-3-acetic acid and vitamin B1 on nutrient acquisition and seed oil physicochemical properties of Zea mays L. under arsenic intervention. Journal of Plant Growth Regulation, 1-24. https://doi.org/10.1007/s00344-024-11449-x.
  • Badiaa, O., Yssaad, H.A.R., Topcuoglu, B., 2020. Effect of heavy metals (copper and zinc) on proline, polyphenols and flavonoids content of tomato (Lycopersicon esculentum Mill.). Plant Archives, 20(1): 2125-2137.
  • Barrs, H.D., Weatherley, P.E., 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3): 413-428.
  • Bates, L.S., Waldren, R.P.A., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060.
  • Broughton, W.J., Hernández, G., Blair, M., Beebe, S., Gepts, P., Vanderleyden, J., 2003. Beans (Phaseolus spp.) model food legumes. Plant and Soil, 252, 55-128. https://doi.org/10.1023/A:1024146710611.
  • Burguieres, E., McCue, P., Kwon, Y.I., Shetty, K., 2007. Effect of vitamin C and folic acid on seed vigour response and phenolic-linked antioxidant activity. Bioresource Technology, 98(7): 1393-1404. https://doi.org/10.1016/j.biortech.2006.05.046.
  • Castro, R.S., Caetano, L., Ferreira, G., Padilha, P.M., Saeki, M.J., Zara, L.F., Castro, G.R., 2011. Banana peel applied to the solid phase extraction of copper and lead from river water: preconcentration of metal ions with a fruit waste. Industrial & Engineering Chemistry Research, 50(6): 3446-3451. https://doi.org/10.1021/ie101499e.
  • Chen, C.T., Chen, T.H., Lo, K.F., Chiu, C.Y., 2004. Effects of proline on copper transport in rice seedlings under excess copper stress. Plant science, 166(1): 103-111. https://doi.org/10.1016/j.plantsci.2003.08.015.
  • Chi, Y.X., Yang, L., Zhao, C.J., Muhammad, I., Zhou, X. B., & De Zhu, H., 2021. Effects of soaking seeds in exogenous vitamins on active oxygen metabolism and seedling growth under low-temperature stress. Saudi Journal of Biological Sciences, 28(6): 3254-3261. https://doi.org/10.1016/j.sjbs.2021.02.065.
  • Colmenero-Flores, J.M., Campos, F., Garciarrubio, A., Covarrubias, A.A., 1997. Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein. Plant Molecular Biology, 35, 393-405. https://doi.org/10.1023/A:1005802505731.
  • Das, N., Bhattacharya, S., Bhattacharyya, S., Maiti, M.K., 2018. Expression of rice MATE family transporter OsMATE2 modulates arsenic accumulation in tobacco and rice. Plant Molecular Biology, 98, 101-120. https://doi.org/10.1007/s11103-018-0766-1.
  • de Silva, N.D.G., Cholewa, E., Ryser, P., 2012. Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.). Journal of experimental botany, 63(16): 5957-5966. https://doi.org/10.1093/jxb/ers241.
  • Dı́az, J., Bernal, A., Pomar, F., Merino, F., 2001. Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Science, 161 (1): 179-188. https://doi.org/10.1016/S0168-9452(01)00410-1.
  • Du, Y.L., Zhang, Q., Li, W.J., Li, S.Q., Zhang, W.J., Wang, Q., Zhao, Q., 2022. Genome-and transcriptome-wide identification and analysis of B3 superfamily members and their association with salt stress response in the common bean (Phaseolus vulgaris L). Scientia Horticulturae, 305, 111408. https://doi.org/10.1016/j.scienta.2022.111408.
  • Elleuch, A., Chaâbene, Z., Grubb, D.C., Drira, N., Mejdoub, H., Khemakhem, B., 2013. Morphological and biochemical behavior of fenugreek (Trigonella foenum-graecum) under copper stress. Ecotoxicology and Environmental Safety, 98, 46-53. https://doi.org/10.1016/j.ecoenv.2013.09.028.
  • El-Shazoly, R.M., Metwally, A.A., Hamada, A.M., 2019. Salicylic acid or thiamin increases tolerance to boron toxicity stress in wheat. Journal of plant Nutrition, 42(7): 702-722. https://doi.org/10.1080/01904167.2018.1549670.
  • Feigl, G., Kumar, D., Lehotai, N., Tugyi, N., Molnár, Á., Ördög, A., Kolbert, Z., 2013. Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicology and Environmental Safety, 94, 179-189. https://doi.org/10.1016/j.ecoenv.2013.04.029.
  • Field, A. 2024. Discovering statistics using IBM SPSS statistics. Sage publications limited.
  • Gill, R. A., Kanwar, M.K., Rodrigues dos Reis, A., Ali, B., 2022. Heavy metal toxicity in plants: recent insights on physiological and molecular aspects. Frontiers in Plant Science, 12, 830682. https://doi.org/10.3389/fpls.2021.830682
  • Graham, P.H., 1978. Some problems and potentials of field beans (Phaseolus vulgaris L.) in Latin America. Field Crops Research, 1, 295-317. https://doi.org/10.1016/0378-4290(78)90033-3.
  • Hanson, A.D., Beaudoin, G.A., McCarty, D.R., Gregory III, J.F., 2016. Does abiotic stress cause functional B vitamin deficiency in plants?. Plant Physiology, 172(4): 2082-2097. https://doi.org/10.1104/pp.16.01371.
  • Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1): 189-198. https://doi.org/10.1016/0003-9861(68)90654-1.
  • Heidari, Y., Moaveni, P., 2009. Study of drought stress on ABA accumulation and Proline among in different genotypes forage corn. Research Journal of Biological Sciences, 4(10): 1121-1124.
  • Huang, Y., He, G., Tian, W., Li, D., Meng, L., Wu, D., He, T., 2021. Genome-wide identification of MATE gene family in potato (Solanum tuberosum L.) and expression analysis in heavy metal stress. Frontiers in Genetics, 12, 650500. https://doi.org/10.3389/fgene.2021.650500.
  • Kardile, P.B., Dahatonde, K.N., Rakshe, M.V., Burondkar, M.M., 2018. Effect of moisture stress on leaf Relative Water Content (RWC) of Four Cowpea (Vigna unguiculata L. walp.) genotypes at different stages of growth. Int. J. Curr. Microbiol. App. Sci, 7(4): 2645-2649. https://doi.org/10.20546/ijcmas.2018.704.301.
  • Kausar, A., Zahra, N., Zahra, H., Hafeez, M. B., Zafer, S., Shahzadi, A., Prasad, P. V., 2023. Alleviation of drought stress through foliar application of thiamine in two varieties of pea (Pisum sativum L.). Plant Signaling & Behavior, 18(1): 2186045. https://doi.org/10.1080/15592324.2023.2186045.
  • Kaźmierczak, M., Błońska, E., Lasota, J., 2024. Exploring the Role of Shrubs in Modulating Heavy Metal Accumulation in Forest Soils in Single-Species Pine Stands. Water, Air, & Soil Pollution, 235(7): 464. https://doi.org/10.1007/s11270-024-07268-1.
  • Keshavarz, H., Sanavy, S.A.M.M., 2015. Biochemical and morphological response of common bean (Phaseolus vulgaris L.) to salinity stress and vitamin B12. Int J Farm Alli Sci, 4(7): 585-93.
  • Kholodova, V., Volkov, K., Abdeyeva, A., Kuznetsov, V., 2011. Water status in Mesembryanthemum crystallinum under heavy metal stress. Environ Exp Bot. 71, 382– 389. https://doi.org/10.1016/j.envexpbot.2011.02.007.
  • Kononova, M.M., 2013. Soil organic matter: its nature, its role in soil formation and in soil fertility. Elsevier. Kováčik, J., Grúz, J., Bačkor, M., Tomko, J., Strnad, M., Repčák, M., 2008. Phenolic compounds composition and physiological attributes of Matricaria chamomilla grown in copper excess. Environmental and Experimental Botany, 62(2): 145-152. https://doi.org/10.1016/j.envexpbot.2007.07.012.
  • Körpe, D.A., Aras, S., 2011. Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 71(1-2): 29-34. https://doi.org/10.1016/j.mrgentox.2010.10.003.
  • Lilly, V.G., Leonian, L.H., 1939. Vitamin B1 in soil. Science, 89(2309): 292-292. https://doi.org 10.1126/science.89.2309.292.
  • Liu, J., Li, Y., Wang, W., Gai, J., Li, Y., 2016. Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean. BMC genomics, 17, 1-15. https://doi.org/10.1186/s12864-016-2559-8.
  • Liu, S., Yang, B., Liang, Y., Xiao, Y., Fang, J., 2020. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environmental Science and Pollution Research, 27: 16069-16085. https://doi.org/10.1007/s11356-020-08282-6.
  • Livak, K. J., Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. methods, 25(4): 402-408. https://doi.org/10.1006/meth.2001.1262.
  • Lochhead, A.G., Thexton, R.H., 1951. Vitamin B12 as a growth factor for soil bacteria. Nature, 167(4260): 1034-1034. https://doi.org/10.1038/1671034a0.
  • Lombardi, L., Sebastiani, L., 2005. Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Science, 168(3): 797-802. https://doi.org/10.1016/j.plantsci.2004.10.012.
  • Lu, P., Magwanga, R.O., Kirungu, J.N., Hu, Y., Dong, Q., Cai, X., Liu, F., 2019. Overexpression of cotton a DTX/MATE gene enhances drought, salt, and cold stress tolerance in transgenic Arabidopsis. Frontiers in Plant Science, 10, 299. https://doi.org/10.3389/fpls.2019.00299.
  • Manivasagaperumal, R., Vijayarengan, P., Balamurugan, S., Thiyagarajan, G., 2011. Effect of copper on growth, dry matter yield and nutrient content of Vigna radiata (L.) Wilczek. Journal of Phytology, 3(3): 53-62.
  • Manjunatha, R., 2018. Effect of Vitamin B12 (Cyanocobalamin) Priming on Alleviating Salinity Stress in Chickpea (Cicer Arietinum L.). PhD Thesis, University of Agricultural Sciences, p.96, Bangalore.
  • Mendes, T.F.S., Ferreira, T.C., Bomfim, N.C.P., Aguilar, J.V., de Camargos, L.S., 2024. Nitrogen metabolism and P-Cu interaction in Cajanus cajan (L.) Millsp contributes to the removal of excess copper in viticulture soil. International Journal of Environmental Studies, 81(4): 1884-1902. https://doi.org/10.1080/00207233.2024.2333667.
  • Moriyama, Y., Hiasa, M., Matsumoto, T., Omote, H., 2008. Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica, 38 (7-8): 1107-1118. https://doi.org/10.1080/00498250701883753.
  • Mozafar, A., 1994. Enrichment of some B-vitamins in plants with application of organic fertilizers. Plant and Soil, 167, 305-311. https://doi.org/10.1007/BF00007957.
  • Mustafa, G., Komatsu, S., 2016. Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1864(8): 932-944. https://doi.org/10.1016/j.bbapap.2016.02.020.
  • Norton, G.J., Lou-Hing, D.E., Meharg, A.A., Price, A.H., 2008. Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. Journal of Experimental Botany, 59(8): 2267-2276. https://doi.org/10.1093/jxb/ern097.
  • Omote, H., Hiasa, M., Matsumoto, T., Otsuka, M., Moriyama, Y., 2006. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends in Pharmacological Sciences, 27(11): 587-593. https://doi.org/10.1016/j.tips.2006.09.001.
  • Onat, T., Emerk, K., Sözmen, E.Y., 2002. İnsan Biyokimyası, Palme Yayıncılık. Ankara, 711s.
  • Özcan, D., 2003. Doku Kültüründe Yetiştirilen Arpa (Hordeum vulgare L.) Fidelerinin Gelişimi ve Peroksidaz Enzimi Üzerine Bakırın (Cu) Etkilerinin İncelenmesi. Yüksek Lisans Tezi. İstanbul Üniversitesi Fen Bilimleri Enstitüsü, 35s, İstanbul.
  • Pitzschke, A., Fraundorfer, A., Guggemos, M., Fuchs, N., 2015. Antioxidative responses during germination in quinoa grown in vitamin B‐rich medium. Food Science & Nutrition, 3(3):242-251. https://doi.org/10.1002/fsn3.211.
  • Prasad, M.N.V., Hagemeyer, J., Devi, S.R., Prasad, M.N.V., 1999. Membrane lipid alterations in heavy metal exposed plants. Heavy metal stress in plants: from molecules to ecosystems, 99-116. https://doi.org/10.1007/978-3-662-07745-0_5.
  • Rascio, N., Navari-Izzo, F., 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180(2): 169-181. https://doi.org/10.1016/j.plantsci.2010.08.016.
  • Rehim, A., Amjad Bashir, M., Raza, Q.U.A., Gallagher, K., Berlyn, G.P., 2021. Yield enhancement of biostimulants, Vitamin B12, and CoQ10 compared to inorganic fertilizer in radish. Agronomy, 11(4): 697. https://doi.org/10.3390/agronomy11040697.
  • Rengel, Z., Cakmak, I., White, P.J., 2022. Marschner's mineral nutrition of plants. Academic Press.
  • Rucińska-Sobkowiak, R., 2016. Water relations in plants subjected to heavy metal stresses. Acta Physiologiae Plantarum, 38(11): 1-13. https://doi.org/10.1007/s11738-016-2277-5.
  • Sangronis, E., Rodríguez, M., Cava, R., Torres, A., 2006. Protein quality of germinated Phaseolus vulgaris. European Food Research and Technology, 222: 144-148. https://doi.org/10.1007/s00217-005-0137-4.
  • Santos, A.L.D., Chaves-Silva, S., Yang, L., Maia, L.G.S., Chalfun-Júnior, A., Sinharoy, S., Benedito, V.A., 2017. Global analysis of the MATE gene family of metabolite transporters in tomato. BMC Plant Biology, 17, 1-13. https://doi.org/10.1186/s12870-017-1115-2.
  • Schneider, K.A., Rosales‐Serna, R., Ibarra‐Perez, F., Cazares‐Enriquez, B., Acosta‐Gallegos, J.A., Ramirez‐Vallejo, P., Kelly, J.D., 1997. Improving common bean performance under drought stress. Crop Science, 37(1): 43-50. https://doi.org/10.2135/cropsci1997.0011183X003700010007x.
  • Sevgi, K., 2023. Kurşun ve bakır uygulamasının Cucurbita moschata Duch.’nın bazı ekofizyolojik parametreleri ve antioksidan savunma sistemi üzerine etkileri Yüksek Lisans Tezi. Bilecik Şeyh Edebali Üniversitesi Lisansüstü Eğitim Enstitüsü, 95s, Bilecik.
  • Sharma, S.S., Kaul, S., Metwally, A., Goyal, K.C., Finkemeier, I., Dietz, K.J., 2004. Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Science, 166(5): 1287-1295. https://doi.org/10.1016/j.plantsci.2004.01.006.
  • Sığmaz, Burcu., 2022. Arpada (Hordem vulgare L.) Toksik seviyedeki bazı elementler ile salisilik asit uygulamalarının fizyo-biyokimyasal ve moleküler etkileri. Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, 189s, Erzurum.
  • Smith, E. L., 1960. Vitamin B12. Soil Science, 90(1): 77. Soltani, Y., Saffari, V.R., Maghsoudi Moud, A.A., 2014. Response of growth, flowering and some biochemical constituents of Calendula officinalis L. to foliar application of salicylic acid, ascorbic acid and thiamine. Journal of Ethno-Pharmaceutical Products, 1(1): 37-44. https://dorl.net/dor/20.1001.1.23833017.2014.1.1.6.5.
  • Sonmez, S., Kaplan, M., Sonmez, N.K., Kaya, H., Uz, I., 2006. High level of copper application to soil and leaves reduce the growth and yield of tomato plants. Scientia Agricola, 63(3): 213-218. https://doi.org/10.1590/S0103-90162006000300001.
  • Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Matteazzi, A., Andreotti, C., 2019. Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy, 9(9): 483. https://doi.org/10.3390/agronomy9090483.
  • Soudek, P., Katrušáková, A., Sedláček, L., Petrová, Š., Kočí, V., Maršík, P., Vaněk, T., 2010. Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.). Archives of Environmental Contamination and Toxicology, 59, 194-203. https://doi.org/10.1007/s00244-010-9480-y.
  • Stingu, A., Volf, I., Popa, V.I., 2009. Study of copper and cadmium accumulation by bean. Environmental Engineering and Management Journal, 8(5): 1247-1252.
  • Thounaojam, T. C., Panda, P., Mazumdar, P., Kumar, D., Sharma, G. D., Sahoo, L., Sanjib, P., 2012. Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiology and Biochemistry, 53, 33-39. https://doi.org/10.1016/j.plaphy.2012.01.006.
  • Tiwari, M., Sharma, D., Singh, M., Tripathi, R.D., Trivedi, P.K., 2014. Expression of OsMATE1 and OsMATE2 alters development, stress responses and pathogen susceptibility in Arabidopsis. Scientific Reports, 4(1): 3964. https://doi.org/10.1038/srep03964.
  • Trakal, L., Martínez-Fernández, D., Vítková, M., Komárek, M., 2015. Phytoextraction of metals: modeling root metal uptake and associated processes. Phytoremediation: Management of Environmental Contaminants,1: 69-83. https://doi.org/10.1007/978-3-319-10395-2_6.
  • Valliyodan, B., Nguyen, H.T., 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 9(2): 189-195. https://doi.org/10.1016/j.pbi.2006.01.019.
  • Wang, L., Bei, X., Gao, J., Li, Y., Yan, Y., Hu, Y., 2016. The similar and different evolutionary trends of MATE family occurred between rice and Arabidopsis thaliana. BMC Plant Biology, 16, 1-19. https://doi.org/10.1186/s12870-016-0895-0.
  • Wu, J., Wang, L., Fu, J., Chen, J., Wei, S., Zhang, S., Wang, S., 2020. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline. Nature Genetics, 52(1): 118-125. https://doi.org/10.1038/s41588-019-0546-0.
  • Yiamthaisong, N., Jampeetong, A., & Tiansawat, P., 2024. Surface sterilization and moist storage conditions for recalcitrant seeds of three Asian tree species. Forest Science and Technology, 20(4), 410-417. https://doi.org/10.1080/21580103.2024.2409916.
  • Youssif, S. B., Youssif, S., 2017. Response of potatoes to foliar spray with cobalamin, folic acid and ascorbic acid under North Sinai conditions. Middle East J. Agric. Res, 6(3), 662-672.
  • Zengin, F., Munzuroğlu, Ö. 2005. Effects of lead (Pb++) and copper (Cu++) on the growth of root, shoot and leaf of bean (Phaseolus vulgaris L.) seedlings. Gazi University Journal of Science, 17(3): 1-10.
  • Zhang, T., Wang, Y., Ma, X., Ouyang, Z., Deng, L., Shen, S., Sun, K., 2022. Melatonin alleviates copper toxicity via improving ROS metabolism and antioxidant defense response in tomato seedlings. Antioxidants, 11(4): 758. https://doi.org/10.3390/antiox11040758.
  • Zhao, Q., Guo, S., Yu, Y., Li, W., Zhong, J., Du, Y., Du, J., 2024. Genome-wide characterization of MATE family members in common bean (Phaseolus vulgaris Linn.) and their expression profiles in response to abiotic stress. Scientia Horticulture, 333, 113254. https://doi.org/10.1016/j.scienta.2024.113254.

Ağır Metal (CuSO4) Stresine Bırakılan Çalı Fasülyesi (Phaseolus vulgaris L.) Bitkisinde Kobalamin (Vitamin B12) Uygulamasının Bazı Büyüme, Biyokimyasal Parametreler ve Pv-MATE14 Gen Ekspresyon Seviyesi Üzerine Etkisi

Year 2025, Volume: 40 Issue: 3, 615 - 637, 31.10.2025

Abstract

Bakır (Cu) toksisitesi, özellikle Cu bazlı zirai kimyasalların kullanımıyla toprak Cu seviyeleri arttıkça, bitki sağlığı için önemli bir tehdit oluşturmaktadır. Vitamin B12'nin fasulye bitkilerinde Cu ağır metal stresini hafifletmedeki rolü tam olarak aydınlatılmamıştır. Bu nedenle, bu çalışmada, çalı fasulye (Phaseolus vulgaris L.) tohumları materyal olarak kullanılmış ve bakır(II) sülfat (CuSO4), Vitamin B12 ve kombinasyon uygulamalarının bazı büyüme parametreleri, biyokimyasal analizler ve Pv-MATE14 gen ifadesi üzerindeki etkileri araştırılmıştır. Uygulanan konsantrasyonlar CuSO4 (50 ve 125 ppm), Vitamin B12 (50 ppm) ve bunların kombinasyonları olup, konsantrasyonlar 14 gün boyunca ikişer gün aralıklarla 60 mL çözelti halinde bitkilerin toprağına uygulanmıştır. Bu sürenin sonunda, bitkiler hasat edilmiş ve uygulamaların bitki boyu, kök ve gövde uzunlukları (cm), kök, gövde ve yaprak yaş ağırlıkları (g), nispi su içeriği (%), prolin ve MDA içerikleri ve Pv-MATE14 gen ifadesi düzeyi üzerindeki etkileri incelenmiştir. Çalışmanın sonuçlarına göre, CuSO4 uygulamaları, tüm büyüme parametrelerini ve RWC'yi önemli ölçüde azaltmış, prolin ve MDA içeriğini şiddetli bir şekilde artırmış ve Pv-MATE14 gen ifadesini belirgin olarak yukarı regüle ederek bitki büyüme ve gelişimini olumsuz etkilemiştir. Öte yandan, Vitamin B12 uygulaması, büyüme parametrelerini ve RWC'yi artırmış, prolin ve MDA içeriğini azaltmış ve Pv-MATE14 ifadesini önemli ölçüde aşağı regüle ederek bitki büyüme ve gelişiminde olumlu bir etki göstermiştir. Bu bulgular, Vitamin B12'nin CuSO4 stresinin olumsuz etkilerini etkin bir şekilde hafiflettiğini ve fasulyede büyümeyi desteklerken hücresel hasarı azalttığını ve Pv-MATE14 metal taşıyıcı geninin ifadesini normalleştirdiğini göstermektedir.

Supporting Institution

Herhangi bir fon yoktur

References

  • AbdElgawad, H., Zinta, G., Hamed, B. A., Selim, S., Beemster, G., Hozzein, W.N., Abuelsoud, W., 2020. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity. Environmental Pollution, 258:113705. https://doi.org/10.1016/j.envpol.2019.113705.
  • Akçay, M., 2025. Kurşun (II) Asetat ve Salisilik Asidin Medicago sativa L. Bitkisinde Gelişim, Biyokimyasal Parametreler ve miRNA156 Gen Anlatımı Üzerine Etkileri. Turkish Journal of Agricultural and Natural Sciences, 12(1), 74-86. https://doi.org/10.30910/turkjans.1537927.
  • Al-Ameri, N.J., Al-Khafaji, A.M., Al-Dulaimi, N.H., 2022. Optimization of growth and yield of cabbage plant by foliar application of vitamin B12 and GSH. Biochemical & Cellular Archives, 22(2): 3881–3883. https://doi.org/10.51470/bca.2022.22.2.3881.
  • Alaoui-Sossé, B., Genet, P., Vinit-Dunand, F., Toussaint, M.L., Epron, D., Badot, P.M., 2004. Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Science, 166(5):1213-1218. https://doi.org/10.1016/j.plantsci.2003.12.032.
  • Al-Hakimi, A.M.A., Hamada, A.M., 2001. Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate. Biologia Plantarum, 44, 253-261. https://doi.org/10.1023/A:1010255526903.
  • Atif, M., Perveen, S., Parveen, A., Saeed, F., 2024. Conjoint effect of indole-3-acetic acid and vitamin B1 on nutrient acquisition and seed oil physicochemical properties of Zea mays L. under arsenic intervention. Journal of Plant Growth Regulation, 1-24. https://doi.org/10.1007/s00344-024-11449-x.
  • Badiaa, O., Yssaad, H.A.R., Topcuoglu, B., 2020. Effect of heavy metals (copper and zinc) on proline, polyphenols and flavonoids content of tomato (Lycopersicon esculentum Mill.). Plant Archives, 20(1): 2125-2137.
  • Barrs, H.D., Weatherley, P.E., 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3): 413-428.
  • Bates, L.S., Waldren, R.P.A., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060.
  • Broughton, W.J., Hernández, G., Blair, M., Beebe, S., Gepts, P., Vanderleyden, J., 2003. Beans (Phaseolus spp.) model food legumes. Plant and Soil, 252, 55-128. https://doi.org/10.1023/A:1024146710611.
  • Burguieres, E., McCue, P., Kwon, Y.I., Shetty, K., 2007. Effect of vitamin C and folic acid on seed vigour response and phenolic-linked antioxidant activity. Bioresource Technology, 98(7): 1393-1404. https://doi.org/10.1016/j.biortech.2006.05.046.
  • Castro, R.S., Caetano, L., Ferreira, G., Padilha, P.M., Saeki, M.J., Zara, L.F., Castro, G.R., 2011. Banana peel applied to the solid phase extraction of copper and lead from river water: preconcentration of metal ions with a fruit waste. Industrial & Engineering Chemistry Research, 50(6): 3446-3451. https://doi.org/10.1021/ie101499e.
  • Chen, C.T., Chen, T.H., Lo, K.F., Chiu, C.Y., 2004. Effects of proline on copper transport in rice seedlings under excess copper stress. Plant science, 166(1): 103-111. https://doi.org/10.1016/j.plantsci.2003.08.015.
  • Chi, Y.X., Yang, L., Zhao, C.J., Muhammad, I., Zhou, X. B., & De Zhu, H., 2021. Effects of soaking seeds in exogenous vitamins on active oxygen metabolism and seedling growth under low-temperature stress. Saudi Journal of Biological Sciences, 28(6): 3254-3261. https://doi.org/10.1016/j.sjbs.2021.02.065.
  • Colmenero-Flores, J.M., Campos, F., Garciarrubio, A., Covarrubias, A.A., 1997. Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein. Plant Molecular Biology, 35, 393-405. https://doi.org/10.1023/A:1005802505731.
  • Das, N., Bhattacharya, S., Bhattacharyya, S., Maiti, M.K., 2018. Expression of rice MATE family transporter OsMATE2 modulates arsenic accumulation in tobacco and rice. Plant Molecular Biology, 98, 101-120. https://doi.org/10.1007/s11103-018-0766-1.
  • de Silva, N.D.G., Cholewa, E., Ryser, P., 2012. Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.). Journal of experimental botany, 63(16): 5957-5966. https://doi.org/10.1093/jxb/ers241.
  • Dı́az, J., Bernal, A., Pomar, F., Merino, F., 2001. Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Science, 161 (1): 179-188. https://doi.org/10.1016/S0168-9452(01)00410-1.
  • Du, Y.L., Zhang, Q., Li, W.J., Li, S.Q., Zhang, W.J., Wang, Q., Zhao, Q., 2022. Genome-and transcriptome-wide identification and analysis of B3 superfamily members and their association with salt stress response in the common bean (Phaseolus vulgaris L). Scientia Horticulturae, 305, 111408. https://doi.org/10.1016/j.scienta.2022.111408.
  • Elleuch, A., Chaâbene, Z., Grubb, D.C., Drira, N., Mejdoub, H., Khemakhem, B., 2013. Morphological and biochemical behavior of fenugreek (Trigonella foenum-graecum) under copper stress. Ecotoxicology and Environmental Safety, 98, 46-53. https://doi.org/10.1016/j.ecoenv.2013.09.028.
  • El-Shazoly, R.M., Metwally, A.A., Hamada, A.M., 2019. Salicylic acid or thiamin increases tolerance to boron toxicity stress in wheat. Journal of plant Nutrition, 42(7): 702-722. https://doi.org/10.1080/01904167.2018.1549670.
  • Feigl, G., Kumar, D., Lehotai, N., Tugyi, N., Molnár, Á., Ördög, A., Kolbert, Z., 2013. Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicology and Environmental Safety, 94, 179-189. https://doi.org/10.1016/j.ecoenv.2013.04.029.
  • Field, A. 2024. Discovering statistics using IBM SPSS statistics. Sage publications limited.
  • Gill, R. A., Kanwar, M.K., Rodrigues dos Reis, A., Ali, B., 2022. Heavy metal toxicity in plants: recent insights on physiological and molecular aspects. Frontiers in Plant Science, 12, 830682. https://doi.org/10.3389/fpls.2021.830682
  • Graham, P.H., 1978. Some problems and potentials of field beans (Phaseolus vulgaris L.) in Latin America. Field Crops Research, 1, 295-317. https://doi.org/10.1016/0378-4290(78)90033-3.
  • Hanson, A.D., Beaudoin, G.A., McCarty, D.R., Gregory III, J.F., 2016. Does abiotic stress cause functional B vitamin deficiency in plants?. Plant Physiology, 172(4): 2082-2097. https://doi.org/10.1104/pp.16.01371.
  • Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1): 189-198. https://doi.org/10.1016/0003-9861(68)90654-1.
  • Heidari, Y., Moaveni, P., 2009. Study of drought stress on ABA accumulation and Proline among in different genotypes forage corn. Research Journal of Biological Sciences, 4(10): 1121-1124.
  • Huang, Y., He, G., Tian, W., Li, D., Meng, L., Wu, D., He, T., 2021. Genome-wide identification of MATE gene family in potato (Solanum tuberosum L.) and expression analysis in heavy metal stress. Frontiers in Genetics, 12, 650500. https://doi.org/10.3389/fgene.2021.650500.
  • Kardile, P.B., Dahatonde, K.N., Rakshe, M.V., Burondkar, M.M., 2018. Effect of moisture stress on leaf Relative Water Content (RWC) of Four Cowpea (Vigna unguiculata L. walp.) genotypes at different stages of growth. Int. J. Curr. Microbiol. App. Sci, 7(4): 2645-2649. https://doi.org/10.20546/ijcmas.2018.704.301.
  • Kausar, A., Zahra, N., Zahra, H., Hafeez, M. B., Zafer, S., Shahzadi, A., Prasad, P. V., 2023. Alleviation of drought stress through foliar application of thiamine in two varieties of pea (Pisum sativum L.). Plant Signaling & Behavior, 18(1): 2186045. https://doi.org/10.1080/15592324.2023.2186045.
  • Kaźmierczak, M., Błońska, E., Lasota, J., 2024. Exploring the Role of Shrubs in Modulating Heavy Metal Accumulation in Forest Soils in Single-Species Pine Stands. Water, Air, & Soil Pollution, 235(7): 464. https://doi.org/10.1007/s11270-024-07268-1.
  • Keshavarz, H., Sanavy, S.A.M.M., 2015. Biochemical and morphological response of common bean (Phaseolus vulgaris L.) to salinity stress and vitamin B12. Int J Farm Alli Sci, 4(7): 585-93.
  • Kholodova, V., Volkov, K., Abdeyeva, A., Kuznetsov, V., 2011. Water status in Mesembryanthemum crystallinum under heavy metal stress. Environ Exp Bot. 71, 382– 389. https://doi.org/10.1016/j.envexpbot.2011.02.007.
  • Kononova, M.M., 2013. Soil organic matter: its nature, its role in soil formation and in soil fertility. Elsevier. Kováčik, J., Grúz, J., Bačkor, M., Tomko, J., Strnad, M., Repčák, M., 2008. Phenolic compounds composition and physiological attributes of Matricaria chamomilla grown in copper excess. Environmental and Experimental Botany, 62(2): 145-152. https://doi.org/10.1016/j.envexpbot.2007.07.012.
  • Körpe, D.A., Aras, S., 2011. Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 71(1-2): 29-34. https://doi.org/10.1016/j.mrgentox.2010.10.003.
  • Lilly, V.G., Leonian, L.H., 1939. Vitamin B1 in soil. Science, 89(2309): 292-292. https://doi.org 10.1126/science.89.2309.292.
  • Liu, J., Li, Y., Wang, W., Gai, J., Li, Y., 2016. Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean. BMC genomics, 17, 1-15. https://doi.org/10.1186/s12864-016-2559-8.
  • Liu, S., Yang, B., Liang, Y., Xiao, Y., Fang, J., 2020. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environmental Science and Pollution Research, 27: 16069-16085. https://doi.org/10.1007/s11356-020-08282-6.
  • Livak, K. J., Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. methods, 25(4): 402-408. https://doi.org/10.1006/meth.2001.1262.
  • Lochhead, A.G., Thexton, R.H., 1951. Vitamin B12 as a growth factor for soil bacteria. Nature, 167(4260): 1034-1034. https://doi.org/10.1038/1671034a0.
  • Lombardi, L., Sebastiani, L., 2005. Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Science, 168(3): 797-802. https://doi.org/10.1016/j.plantsci.2004.10.012.
  • Lu, P., Magwanga, R.O., Kirungu, J.N., Hu, Y., Dong, Q., Cai, X., Liu, F., 2019. Overexpression of cotton a DTX/MATE gene enhances drought, salt, and cold stress tolerance in transgenic Arabidopsis. Frontiers in Plant Science, 10, 299. https://doi.org/10.3389/fpls.2019.00299.
  • Manivasagaperumal, R., Vijayarengan, P., Balamurugan, S., Thiyagarajan, G., 2011. Effect of copper on growth, dry matter yield and nutrient content of Vigna radiata (L.) Wilczek. Journal of Phytology, 3(3): 53-62.
  • Manjunatha, R., 2018. Effect of Vitamin B12 (Cyanocobalamin) Priming on Alleviating Salinity Stress in Chickpea (Cicer Arietinum L.). PhD Thesis, University of Agricultural Sciences, p.96, Bangalore.
  • Mendes, T.F.S., Ferreira, T.C., Bomfim, N.C.P., Aguilar, J.V., de Camargos, L.S., 2024. Nitrogen metabolism and P-Cu interaction in Cajanus cajan (L.) Millsp contributes to the removal of excess copper in viticulture soil. International Journal of Environmental Studies, 81(4): 1884-1902. https://doi.org/10.1080/00207233.2024.2333667.
  • Moriyama, Y., Hiasa, M., Matsumoto, T., Omote, H., 2008. Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica, 38 (7-8): 1107-1118. https://doi.org/10.1080/00498250701883753.
  • Mozafar, A., 1994. Enrichment of some B-vitamins in plants with application of organic fertilizers. Plant and Soil, 167, 305-311. https://doi.org/10.1007/BF00007957.
  • Mustafa, G., Komatsu, S., 2016. Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1864(8): 932-944. https://doi.org/10.1016/j.bbapap.2016.02.020.
  • Norton, G.J., Lou-Hing, D.E., Meharg, A.A., Price, A.H., 2008. Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. Journal of Experimental Botany, 59(8): 2267-2276. https://doi.org/10.1093/jxb/ern097.
  • Omote, H., Hiasa, M., Matsumoto, T., Otsuka, M., Moriyama, Y., 2006. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends in Pharmacological Sciences, 27(11): 587-593. https://doi.org/10.1016/j.tips.2006.09.001.
  • Onat, T., Emerk, K., Sözmen, E.Y., 2002. İnsan Biyokimyası, Palme Yayıncılık. Ankara, 711s.
  • Özcan, D., 2003. Doku Kültüründe Yetiştirilen Arpa (Hordeum vulgare L.) Fidelerinin Gelişimi ve Peroksidaz Enzimi Üzerine Bakırın (Cu) Etkilerinin İncelenmesi. Yüksek Lisans Tezi. İstanbul Üniversitesi Fen Bilimleri Enstitüsü, 35s, İstanbul.
  • Pitzschke, A., Fraundorfer, A., Guggemos, M., Fuchs, N., 2015. Antioxidative responses during germination in quinoa grown in vitamin B‐rich medium. Food Science & Nutrition, 3(3):242-251. https://doi.org/10.1002/fsn3.211.
  • Prasad, M.N.V., Hagemeyer, J., Devi, S.R., Prasad, M.N.V., 1999. Membrane lipid alterations in heavy metal exposed plants. Heavy metal stress in plants: from molecules to ecosystems, 99-116. https://doi.org/10.1007/978-3-662-07745-0_5.
  • Rascio, N., Navari-Izzo, F., 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180(2): 169-181. https://doi.org/10.1016/j.plantsci.2010.08.016.
  • Rehim, A., Amjad Bashir, M., Raza, Q.U.A., Gallagher, K., Berlyn, G.P., 2021. Yield enhancement of biostimulants, Vitamin B12, and CoQ10 compared to inorganic fertilizer in radish. Agronomy, 11(4): 697. https://doi.org/10.3390/agronomy11040697.
  • Rengel, Z., Cakmak, I., White, P.J., 2022. Marschner's mineral nutrition of plants. Academic Press.
  • Rucińska-Sobkowiak, R., 2016. Water relations in plants subjected to heavy metal stresses. Acta Physiologiae Plantarum, 38(11): 1-13. https://doi.org/10.1007/s11738-016-2277-5.
  • Sangronis, E., Rodríguez, M., Cava, R., Torres, A., 2006. Protein quality of germinated Phaseolus vulgaris. European Food Research and Technology, 222: 144-148. https://doi.org/10.1007/s00217-005-0137-4.
  • Santos, A.L.D., Chaves-Silva, S., Yang, L., Maia, L.G.S., Chalfun-Júnior, A., Sinharoy, S., Benedito, V.A., 2017. Global analysis of the MATE gene family of metabolite transporters in tomato. BMC Plant Biology, 17, 1-13. https://doi.org/10.1186/s12870-017-1115-2.
  • Schneider, K.A., Rosales‐Serna, R., Ibarra‐Perez, F., Cazares‐Enriquez, B., Acosta‐Gallegos, J.A., Ramirez‐Vallejo, P., Kelly, J.D., 1997. Improving common bean performance under drought stress. Crop Science, 37(1): 43-50. https://doi.org/10.2135/cropsci1997.0011183X003700010007x.
  • Sevgi, K., 2023. Kurşun ve bakır uygulamasının Cucurbita moschata Duch.’nın bazı ekofizyolojik parametreleri ve antioksidan savunma sistemi üzerine etkileri Yüksek Lisans Tezi. Bilecik Şeyh Edebali Üniversitesi Lisansüstü Eğitim Enstitüsü, 95s, Bilecik.
  • Sharma, S.S., Kaul, S., Metwally, A., Goyal, K.C., Finkemeier, I., Dietz, K.J., 2004. Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Science, 166(5): 1287-1295. https://doi.org/10.1016/j.plantsci.2004.01.006.
  • Sığmaz, Burcu., 2022. Arpada (Hordem vulgare L.) Toksik seviyedeki bazı elementler ile salisilik asit uygulamalarının fizyo-biyokimyasal ve moleküler etkileri. Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, 189s, Erzurum.
  • Smith, E. L., 1960. Vitamin B12. Soil Science, 90(1): 77. Soltani, Y., Saffari, V.R., Maghsoudi Moud, A.A., 2014. Response of growth, flowering and some biochemical constituents of Calendula officinalis L. to foliar application of salicylic acid, ascorbic acid and thiamine. Journal of Ethno-Pharmaceutical Products, 1(1): 37-44. https://dorl.net/dor/20.1001.1.23833017.2014.1.1.6.5.
  • Sonmez, S., Kaplan, M., Sonmez, N.K., Kaya, H., Uz, I., 2006. High level of copper application to soil and leaves reduce the growth and yield of tomato plants. Scientia Agricola, 63(3): 213-218. https://doi.org/10.1590/S0103-90162006000300001.
  • Soppelsa, S., Kelderer, M., Casera, C., Bassi, M., Robatscher, P., Matteazzi, A., Andreotti, C., 2019. Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy, 9(9): 483. https://doi.org/10.3390/agronomy9090483.
  • Soudek, P., Katrušáková, A., Sedláček, L., Petrová, Š., Kočí, V., Maršík, P., Vaněk, T., 2010. Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.). Archives of Environmental Contamination and Toxicology, 59, 194-203. https://doi.org/10.1007/s00244-010-9480-y.
  • Stingu, A., Volf, I., Popa, V.I., 2009. Study of copper and cadmium accumulation by bean. Environmental Engineering and Management Journal, 8(5): 1247-1252.
  • Thounaojam, T. C., Panda, P., Mazumdar, P., Kumar, D., Sharma, G. D., Sahoo, L., Sanjib, P., 2012. Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiology and Biochemistry, 53, 33-39. https://doi.org/10.1016/j.plaphy.2012.01.006.
  • Tiwari, M., Sharma, D., Singh, M., Tripathi, R.D., Trivedi, P.K., 2014. Expression of OsMATE1 and OsMATE2 alters development, stress responses and pathogen susceptibility in Arabidopsis. Scientific Reports, 4(1): 3964. https://doi.org/10.1038/srep03964.
  • Trakal, L., Martínez-Fernández, D., Vítková, M., Komárek, M., 2015. Phytoextraction of metals: modeling root metal uptake and associated processes. Phytoremediation: Management of Environmental Contaminants,1: 69-83. https://doi.org/10.1007/978-3-319-10395-2_6.
  • Valliyodan, B., Nguyen, H.T., 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 9(2): 189-195. https://doi.org/10.1016/j.pbi.2006.01.019.
  • Wang, L., Bei, X., Gao, J., Li, Y., Yan, Y., Hu, Y., 2016. The similar and different evolutionary trends of MATE family occurred between rice and Arabidopsis thaliana. BMC Plant Biology, 16, 1-19. https://doi.org/10.1186/s12870-016-0895-0.
  • Wu, J., Wang, L., Fu, J., Chen, J., Wei, S., Zhang, S., Wang, S., 2020. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline. Nature Genetics, 52(1): 118-125. https://doi.org/10.1038/s41588-019-0546-0.
  • Yiamthaisong, N., Jampeetong, A., & Tiansawat, P., 2024. Surface sterilization and moist storage conditions for recalcitrant seeds of three Asian tree species. Forest Science and Technology, 20(4), 410-417. https://doi.org/10.1080/21580103.2024.2409916.
  • Youssif, S. B., Youssif, S., 2017. Response of potatoes to foliar spray with cobalamin, folic acid and ascorbic acid under North Sinai conditions. Middle East J. Agric. Res, 6(3), 662-672.
  • Zengin, F., Munzuroğlu, Ö. 2005. Effects of lead (Pb++) and copper (Cu++) on the growth of root, shoot and leaf of bean (Phaseolus vulgaris L.) seedlings. Gazi University Journal of Science, 17(3): 1-10.
  • Zhang, T., Wang, Y., Ma, X., Ouyang, Z., Deng, L., Shen, S., Sun, K., 2022. Melatonin alleviates copper toxicity via improving ROS metabolism and antioxidant defense response in tomato seedlings. Antioxidants, 11(4): 758. https://doi.org/10.3390/antiox11040758.
  • Zhao, Q., Guo, S., Yu, Y., Li, W., Zhong, J., Du, Y., Du, J., 2024. Genome-wide characterization of MATE family members in common bean (Phaseolus vulgaris Linn.) and their expression profiles in response to abiotic stress. Scientia Horticulture, 333, 113254. https://doi.org/10.1016/j.scienta.2024.113254.
There are 81 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology in Agriculture, Crop and Pasture Biochemistry and Physiology
Journal Section Anadolu Tarım Bilimleri Dergisi
Authors

Mustafa Akçay 0000-0003-1747-2314

Early Pub Date October 31, 2025
Publication Date October 31, 2025
Submission Date January 12, 2025
Acceptance Date September 30, 2025
Published in Issue Year 2025 Volume: 40 Issue: 3

Cite

APA Akçay, M. (2025). The Effect of Cobalamin (Vitamin B12) Application on Some Growth, Biochemical Parameters and Pv-MATE14 Gene Expression Level in Bush Bean (Phaseolus vulgaris L.) Plants Exposed to Heavy Metal (CuSO4) Stress. Anadolu Tarım Bilimleri Dergisi, 40(3), 615-637. https://doi.org/10.7161/omuanajas.1618560