BibTex RIS Kaynak Göster

2010 Cilt: 29 Sayı: 1 - Tüm Makaleler

Yıl 2010, Cilt: 29 Sayı: 1, 1 - 149, 27.11.2014

Öz

2010 yılı Cilt: 29 Sayı: 1'e ait tüm makaleler tek dosya halinde

Kaynakça

  • Abrams, J. P. (2001). Mathematical modeling: teaching the open-ended application of mathematics. The teaching mathematical modeling and the of representation. (in eds. Cuoco, A. A. and Curcio, F. R.), Yearbook, NCTM.
  • Australia Ministry of Education. (1992). Mathematics in NZ curriculum, Wellington.
  • Berry, J., & Houston, K. (1995). Mathematical modeling. London: Edward Arnold.
  • Blum, W. et al. (2002) . ICMI Study 14: Applications and modelling in mathematics education-Discussion document. Educational Studies in Mathematics, 51, 149-171.
  • Borromeo-Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. Zentralblatt für Didaktik der Mathematik-ZDM, 38(2), 86-95.
  • Cheng, K. A. (2001). Teaching Mathematical Modelling in Singapore Schools. The Mathematics Educator, 6(1), 62-74.
  • Galbraith P., & Clatworthy, N. (1990). Beyond standard models-meeting the challenge of modeling. Educational Studies in Mathematics, 21, 137-163.
  • Lamon, S. J. (1997). Mathematical modelling and the way the mind works. In S. K. Houston, W. Blum, I. D., Huntley, & N. T. Neill (Eds.), Teaching and learning mathematical modelling (pp. 23-37). Chichester, UK: Albion Publishing.
  • Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning: An International Journal, 5(2/3), 157-190.
  • Lingefjard, T. (2002). Teaching and assessing mathematical modeling. Teaching Mathematics and Its Applications, 21(2), 75-83.
  • MaaB, K. (2006). Modelling in classrooms: What do we want the students to learn? (in eds. Haines, Ch. et. al.), Mathematical Modelling (ICTMA 12): Engineering and Economics. Chichester: Ellis Horwood.
  • Marzano, R., J., Pickering, D., & McTighe, J. (1993). Assessing student outcomes: performance assessment using the dimensions of learning model. Mid- Continent Regional Educational Lab., Aurora, CO.(BBB23081).
  • Maull, W., & Berry, J. (2001). An investigation of student working styles in a mathematical modelling activity. Teaching Mathematics and Its Applications, 20(2), 78-88.
  • MEB (2005). Ortaöğretim (9-12. Sınıflar) matematik dersi öğretim programı. Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı, Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
  • NCTM (2001), Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
  • Saaty, T. L., & Alexander, J.M. (1981). Thinking with models: mathematical models in the physical, biological, and social sciences. Pergamon Press, Oxford.
  • Trelinski, G. (1983). Spontaneous mathematization of situations outside mathematics, Educational Studies in Mathematics, 14, 275–284.
  • Webb, M. (1994). Beginning computer-based modeling in primary schools. Computers in Education, 22(1-2), 129–144.
  • Zbiek, R. M., & Conner, A. (2006). Beyond motivation: Exploring mathematical modeling as a context for deepening students’ understandings of curricular mathematics. Educational Studies in Mathematics, 63(1), 89-112.
  • İlk alındığı tarih: 09.07.2009
  • Kabul tarihi: 18.12.2009 8(1), 97–111.
  • Kayatürk, N. Geban, Ö., & Önal, A. (1995). Genel Lise Programında Yer Alan Kimya Konularıyla İlgili Derslerin Müfredatlarının İncelenmesi ve Ders Geçme Sisteminin İncelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 11, 9–13.
  • Kılıç, G. B. (2001). Oluşturmacı Fen Öğretimi. Kuram ve Uygulamada Eğitim Bilimleri Dergisi, 1(1), 9–22.
  • Köseoğlu, F., & Kavak, N. (2001). Fen Öğretiminde Yapılandırıcı Yaklaşım. Gazi Eğitim Fakültesi Dergisi, 21(1), 139–148.
  • Limon, M. (2001). On the Cognitive Conflict as an Instructional Strategy for Conceptual Changes: a Critical Appraisal. Learning and Instruction, 36(4- 5), 357-380.
  • MEB. TTKB. (2007). Ortaöğretim 9. Sınıf Kimya Dersi Öğretim Programı. Ankara: MEB
  • MEB. TTKB.(2005). İlköğretim Fen Ve Teknoloji Dersi Öğretim Programı. Ankara: MEB
  • Morgil, F. İ., & Yılmaz, A. (1999). Lise X. Sınıf, Kimya II Ders Kitaplarının Öğretmen ve Öğrenci Görüşleri Açısından Değerlendirilmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 1(1), 26-41.
  • Osborne, R.J., & Wittrock, M.C. (1983). Learning Science: A Generative Process. Science Education, 67(4), 489-508.
  • Saylan, N. (2001). Ortaöğretim Öğretmenlerinin Program Tasarısı İle İlgili Görüşleri ve Tasarı Süreçlerindeki Davranışlarının Belirlenmesi. Balıkesir Üniversitesi Sosyal Bilimler Dergisi, 4(6), 1-13.
  • Sılay, İ., Çallıca, H., & Kavcar, N. (1998). Türkiye’deki Liselerde Fizik Eğitimine İlişkin Bir Anketin Değerlendirilmesi, III. Ulusal Fen Bilimleri Eğitimi Sempozyumunda Sunulmuş Bildiri, KTÜ, Trabzon, 126–128.
  • Tan, Ş. (Ed). (2007). Öğretim İlke ve Yöntemleri. Ankara: Pegem A Yayıncılık, 2. Baskı.
  • Üce, M., Özkaya, A.R., & Şahin, M. (2001). Kimya Eğitimi. IV. Fen Bilimleri Eğitimi Kongresi 2000, Bildiler Kitabı, 437–439. Milli Eğitim Basımevi, Ankara.
  • Ünal, S.; Costu, B., & Karatas, F. Ö. (2004). Türkiye’de Fen Bilimleri Eğitimi Alanındaki Program Geliştirme Çalışmalarına Genel Bir Bakış. Gazi Eğitim Fakültesi Dergisi, 24(2), 183–202.
  • Yıldırım, A., H., & Şimşek (2008). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seçkin Yayınevi.
  • Yılmaz, A., & Morgil, İ. (1992). Türkiye’de Fen Öğretiminin Genel Bir Değerlendirilmesi, Sonuçları ve Önerileri. H.Ü. Eğitim Fakültesi Dergisi, 7, 269–278.
  • Yüksel, S. (2003). Türkiye’de Program Geliştirme Çalışmaları ve Sorunları. Millî Eğitim Dergisi, 159. Madrid, Spain.
  • Kikas, E. (2004). Teachers’ Conceptions and Misconceptions Concerning Three Natural Phenomena. Journal of Research in Science Teaching, 41(5), 432- 448.
  • Küçüközer, H., Korkusuz, E., Küçüközer, A., & Yürümezoğlu, K. (2009). The Effect of 3D Computer Modeling and Observation-Based Instruction on the Conceptual Change Regarding Basic Concepts of Astronomy in Elementary School Students. Astronomy Education Review, 8(1), url:  http://scitation.aip.org/dbt/dbt.jsp?KEY=AERSCZ&Volume=8&Issue=1
  • Küçüközer, H. (2008). The Effects of 3D Computer Modelling on Conceptual Change About Seasons and Phases of the Moon. Physics Education, 43(6), 632-636.
  • Küçüközer, H. (2007). Prospective Science Teachers’ Conceptions about Astronomical Subjects, Science Education International, 18(1), 113-130.
  • Parker, J., & Heywood, D. (1998). The Earth and Beyond: Developing Primary Teachers’ Understanding of Basic Astronomical Events. International Journal of Science Education, 20(5), 503-520.
  • Sadler, M. P. (1992). The Initial Knowledge State of High School Astronomy Students. A Dissertation Presented to the Faculty of the Graduate School of Education of Harvard University in Partial Fulfillment of the Requirements for the Degree of Doctor of Education.
  • Trumper, R. (2000). University Students’ Concepttions of Basic Astronomy Concepts. Physics Education, 35(1), 9-15.
  • Trumper, R. (2001a). A Cross-College Age Study of Science and Nonscience Students’ Conceptions of Basic Astronomy Concepts in Preservice Training For High-School Teachers. Journal of Science Education and Technology, 10(2), 189-195.
  • Trumper, R. (2001b). A Cross-age Study of Senior High School Students’ Conceptions of Basic Astronomy Concepts. Research in Science &Technological Education, 19(1), 97-107.
  • Trumper, R. (2006a). Teaching Future Teachers Basic Astronomy Concepts-Sun- Earth-Moon Relative Movements- At A Time of Reform in Science Education. Research in Science &Technological Education, 24(1), 85-109.
  • Trumper, R. (2006b). Teaching Future Teachers Basic Astronomy Concepts – Seasonal Changes – at a Time of Reform in Science Education. Journal of Research in Science Teaching, 43(9), 879-906.
  • Trundle, K. C., Atwood, R. K., & Christopher, J. E. (2002). Preservice Elementary Teachers’ Conceptions of Moon Phases before and after Instruction. Journal of Research in Science Teaching, 39(7), 633-658.
  • Trundle, K. C., Atwood, R. K., & Christopher, J. E. (2006). Preservice Elementary Teachers’ Knowledge of Observable Moon Phases and Pattern of Change in Phases. Journal of Science Teacher Education, 17, 87-101.
  • Trundle, K. C., Atwood, R. K., & Christopher, J. E. (2007). A Longitudinal Study of Conceptual Change: Preservice Elementary Teachers’ Conceptions of Moon Phases. Journal of Research in Science Teaching, 44(2), 303-326.
  • Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997). A Multidimensional Framework for Interpreting Conceptual Change Events in the Classroom. Science Education, 81, 387- 404.
  • Ünsal, Y., Güneş, B., & Ergin, İ. (2001). Yükseköğretim Öğrencilerinin Temel Astronomi Konularındaki Bilgi Düzeylerinin Tespitine Yönelik Bir Araştırma. G.Ü. Gazi Eğitim Fakültesi Dergisi, 21(3), 47-60.
  • Vosniadou, S. (1994). Capturing and Modeling the Process of Conceptual Change. Learning and Instruction, 4, 45-69.
  • Zeilik, M. (1998). Misonceptions and Their Change in University-Level Astronomy Courses. The Physics Teacher, 36, 104-107.
  • İlk alındığı tarih: 16.09.2009
  • Kabul tarihi: 09.02.2010
  • Baxter, J. A., & Lederman, N. G. (1999). Assessment and content measurement of pedagogical content knowledge, In J. Gess-Newsome (Ed). Examining pedagogical content knowledge: The construct and its implications for science education (pp.147 –162). Hingham, MA, USA: Kluwer Academic Publishers.
  • Ball, D. L., & Wilson, S. M. (1990). Knowing the subject and learning to teach it: Examining assumptions about becoming a mathematics teacher. Paper presented at the annual meeting of the American Educational Research Association, Boston.
  • Cohen, L., Manion, L., & Morrison, K. (2002). Research methods in education. London: Routledge.
  • Eisenhardt, K.M. (1989). Building theories from case study research. The Academy of Management Review, 14(4), 532-550.
  • English, L., & Warren, E. (1998). Introducing the variable through pattern exploration. Mathematics Teacher, 91(2), 166-170.
  • Hargreaves, M., Threlfall, J., Frobisher, L., & Shorrocks-Taylor, D. (1999). Children's strategies with linear and quadratic sequences. In A. Orton (ed.), Pattern in the teaching and learning of mathematics (pp. 67-83). London: Cassell.
  • Lannin, J. (2002). Developing middle school students’ understanding of recursive and explicit reasoning. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, Louisiana. (ERIC Document Reproduction Service No. ED465529).
  • Lee, L. (1996). An initiation into algebraic culture through generalization activities. In N. Bednarz, C. Kieran & L. Lee (eds.), Approaches to algebra: Perspectives for research and teaching (pp. 87-106). Dordrecht: Kluwer Academic Publishers.
  • MacGregor, M., & Stacey, K. (1995). The effect of different approaches to algebra on students‘ perceptions of functional relationships. Mathematics Education Research Journal, 7(1), 69-85.
  • Magnusson, S., Borko, H., & Krajcik, J. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In Gess-Newsome, J., & Lederman, N.G. (eds.), Examining pedagogical content knowledge (pp. 95-132).Dordrecht: Kluwer Academic Publishers.
  • Mason, J., Graham, A., Pimm, D., & Gowar, N. (1985). Routes to/Roots of algebra. Milton Keynes: Open University.
  • Milli Eğitim Bakanlığı [MEB]. (2009a). İlköğretim matematik dersi 1-5. sınıflar öğretim programı, Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
  • Milli Eğitim Bakanlığı [MEB]. (2009b). İlköğretim matematik dersi 6-8. sınıflar öğretim programı, Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
  • Olkun, S. (2008). Matematiksel yaratıcılığı geliştirme. 7. Matematik Sempozyumu Panel Sunumu, İzmir.
  • Onslow, B., Beynon, C., & Geddis, A. (1992). Developing a teaching style: A dilemma for student teachers. The Alberta Journal of Educational Research, 4, 301-305.
  • Orton, A. (1999). Pattern and the approach to algebra. London: Cassell.
  • Orton, A., & Orton, J. (1999). Pattern and the approach to algebra. In A. Orton (ed.), Pattern in the teaching and learning of mathematics (pp. 104-120). London: Cassell.
  • Orton, J., Orton, A., & Roper, T. (1999). Pictorial and practical contexts and the perception of pattern. In A. Orton (ed.), Pattern in the teaching and learning of mathematics (pp. 121-136). London: Cassell.
  • Park, S., & Oliver, J.S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38, 261-284.
  • Patton, M. Q. (1987). How to use qualitative methods in evaluation. Beverly Hills, CA: Sage.
  • Presmeg, N. (1986). Visualization in high school mathematics. For the Learning of Mathematics, 6(3), 42-46.
  • Shulman, L.S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.
  • Stacey, K. (1989). Finding and using patterns in linear generalising problems. Educational Studies in Mathematics, 20, 147-164.
  • Uygur-Kabael, T., & Tanışlı, D. (2010). Cebirsel düşünme sürecinde örüntüden fonksiyona öğretim. İlköğretim Online, 9(1), 213-228.
  • Yıldırım, A., & Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin.
  • Yin, R.K. (1994). Case study research, design and methods (2nd edition). Newbury Park: Sage.
  • İlk alındığı tarih: 23.10.2009
  • Kabul tarihi: 15.02.2010
Toplam 85 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Fen ve Bilgisayar Alanları Eğitimi
Yazarlar

Tüm Yazarlar Bu kişi benim

Yayımlanma Tarihi 27 Kasım 2014
Yayımlandığı Sayı Yıl 2010 Cilt: 29 Sayı: 1

Kaynak Göster

APA Yazarlar, T. (2014). 2010 Cilt: 29 Sayı: 1 - Tüm Makaleler. Ondokuz Mayis University Journal of Education Faculty, 29(1), 1-149.