Araştırma Makalesi
BibTex RIS Kaynak Göster

An Investigation on How Prospective Mathematics Teachers Design a Lesson Plan

Yıl 2018, Cilt: 37 Sayı: 1, 81 - 96, 25.06.2018

Öz

One of the components of
pedagogical content knowledge is the knowledge required for designing a
mathematics lesson. So as to obtain an effective teaching, it is necessary to
prepare  mathematics lesson plan. Lesson plans help teachers to document their
ideas on teaching and share and/or use them after being adjusted according to
students and teaching environment for upcoming years. The aim of this study is
to investigate how prospective secondary mathematics teachers design lesson
plans by using their pedagogical content knowledge. We have conducted this
qualitative study with 60 prospective secondary mathematics teachers studying a
five-year teacher education program at the Secondary Science and Mathematics
Education department of a state university in Turkey. We have analyzed the
lesson plans of  prospective secondary
mathematics teachers. We have also interviewed the eight of prospective teachers.
The findings suggest that the prospective teachers preferred to use
student-centered and technology-based teaching activities while designing their
lesson plans. Prospective teachers also took into consideration the students’
understandings and prior knowledge in the process of designing lesson plans. We
have found out that the reason why the prospective teachers experienced
difficulties is because their mathematical content knowledge regarding the
conceptions included in the curriculum is not appropriate.

Kaynakça

  • An, S., Kulm, G. & Wu, Z. (2004). The pedagogical content knowledge of middle school, mathematics teachers in China and the U.S., Journal of Mathematics Teacher Education, 7, 145–172.
  • Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching. American Educator, Fall, 14–17, 20–22, 43–46.
  • Barkatsas, A. T., & Malone, J. (2005). A typology of mathematics teachers’ beliefs about teaching and learning mathematics and instructional practices. Mathematics Education Research Journal, 17(2), 69–90.
  • Bowen, A. G. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9 (2), 27–40.
  • Gall, M., & Acheson, K. (2011). Clinical supervision and teacher development. New York, NY: John Wiley.
  • Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking Pedagogical Content Knowledge: Conceptualizing and Measuring Teachers’ Topic-Specific Knowledge of Students. Journal for Research in Mathematics Education, 39 (4), 372–400.
  • Lannin, J. K., Webb, M., Chval, K., Arbaugh, F., Hicks, S., Taylor, C., & Bruton, R. (2013). The development of beginning mathematics teacher pedagogical content knowledge. Journal of Mathematics Teacher Education, 16(6), 403–426.
  • [leszek Rogaliński]. (2012, June 12). conics / realistic presentation on the cone model [Video File]. Retrieved from https://www.youtube.com/watch?v=psvT5Xzh5cA
  • Ministry of National Education (MONE). (2013). Ortaöğretim (9-12) Matematik dersi öğretim programı. [Educational programme for Mathematics subject (grade 9–12) at secondary schools] Ankara: Ministry of National Education.
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  • Patton, M. Q. (2002). Qualitative research and evaluation methods. Newbury Park: Sage Publication.
  • Prescott, A., Bausch, I., & Bruder, R. (2013). TELPS: A method for analyzing mathematics pre-service teachers’ pedagogical content knowledge. Teaching and Teacher Education, vol.35, 43–50.
  • [ProfChrisBishop]. (2009, June 9) Exponential Growth. [Video File]. Retrieved from https://www.youtube.com/watch?v=DjlEJNfsOKc
  • Rusznyak, L., & Walton, E. (2011). Lesson planning guidelines for student teachers: A scaffold for the development of pedagogical content knowledge. Education as Change, 15(2), 271–285.
  • Shulman, L.S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4–14.
  • Shulman, L.S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1–22.
  • Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., Peck, R., & Rowley, G. (2008). Teacher education and development study in mathematics (TEDS-M). East Lansing, MI: Teacher Education and Development International Study Center, College of Education, Michigan State University.

Matematik Öğretmen Adaylarının Ders Planı Tasarlama Süreçleri

Yıl 2018, Cilt: 37 Sayı: 1, 81 - 96, 25.06.2018

Öz

Ders planı hazırlama bilgisi, pedagojik alan bilgisinin
bileşenlerinden biridir. Etkili matematik öğretimi için ders planı hazırlamak
gereklidir. Ders planları, öğretmenlerin öğretme eylemi ile ilgili fikirlerini
ifade edebilmelerine ve/ veya gelecek yıllardaki öğrencilerine ve öğrenme
ortamlarına göre yeniden şekillendirmelerine yardımcı olmaktadır. Bu
araştırmanın amacı lise matematik öğretmen adaylarının pedagojik alan bilgileri
doğrultusunda ders planlarını nasıl hazırladıklarını araştırmaktır. Nitel
araştırmanın katılımcıları Türkiye’de bir devlet üniversitesinin 5 yıllık
ortaöğretim matematik öğretmenliği ana bilim dalına devam eden 60 matematik
öğretmen adayıdır. Bu çalışmada lise matematik öğretmen adaylarının özel
öğretim yöntemleri dersi bağlamında hazırladıkları ders planları incelenmiştir.
Özel öğretim yöntemleri dersi üç aşamadan oluşmaktadır. Dersin ilk aşamasında,
lise matematik öğretim programı, öğretmen adaylarına tanıtılmıştır. Dersin
ikinci aşamasında ise, öğretmen adaylarına bir ders planının bileşenleri ve bu bileşenlerin
neleri içermesi gerektiği üzerinde durulmuştur. Son olarak lise matematik
öğretmen adayları ikişerli gruplar halinde kendilerine verilen kazanım
doğrultusunda ders planı tasarlamışlardır. Lise matematik öğretmen adaylarının
özel öğretim dersi bağlamında hazırladıkları ders planları incelenirken doküman
analizi yapılmıştır. Ayrıca sekiz lise matematik öğretmen adayı ile görüşme
yapılmıştır.  Elde edilen bulgular
ışığında matematik öğretmen adaylarının öğrenci merkezli ve teknoloji tabanlı
etkinlikleri ders planlarında kullanmayı tercih ettikleri tespit edilmiştir.
Ayrıca öğretmen adaylarının ders planı tasarlarken matematiksel kavramlarla
ilgili zorluk yaşamalarının sebebinin ise matematiksel alan bilgilerinden
kaynaklandığını belirlenmiştir. 

Kaynakça

  • An, S., Kulm, G. & Wu, Z. (2004). The pedagogical content knowledge of middle school, mathematics teachers in China and the U.S., Journal of Mathematics Teacher Education, 7, 145–172.
  • Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching. American Educator, Fall, 14–17, 20–22, 43–46.
  • Barkatsas, A. T., & Malone, J. (2005). A typology of mathematics teachers’ beliefs about teaching and learning mathematics and instructional practices. Mathematics Education Research Journal, 17(2), 69–90.
  • Bowen, A. G. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9 (2), 27–40.
  • Gall, M., & Acheson, K. (2011). Clinical supervision and teacher development. New York, NY: John Wiley.
  • Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking Pedagogical Content Knowledge: Conceptualizing and Measuring Teachers’ Topic-Specific Knowledge of Students. Journal for Research in Mathematics Education, 39 (4), 372–400.
  • Lannin, J. K., Webb, M., Chval, K., Arbaugh, F., Hicks, S., Taylor, C., & Bruton, R. (2013). The development of beginning mathematics teacher pedagogical content knowledge. Journal of Mathematics Teacher Education, 16(6), 403–426.
  • [leszek Rogaliński]. (2012, June 12). conics / realistic presentation on the cone model [Video File]. Retrieved from https://www.youtube.com/watch?v=psvT5Xzh5cA
  • Ministry of National Education (MONE). (2013). Ortaöğretim (9-12) Matematik dersi öğretim programı. [Educational programme for Mathematics subject (grade 9–12) at secondary schools] Ankara: Ministry of National Education.
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  • Patton, M. Q. (2002). Qualitative research and evaluation methods. Newbury Park: Sage Publication.
  • Prescott, A., Bausch, I., & Bruder, R. (2013). TELPS: A method for analyzing mathematics pre-service teachers’ pedagogical content knowledge. Teaching and Teacher Education, vol.35, 43–50.
  • [ProfChrisBishop]. (2009, June 9) Exponential Growth. [Video File]. Retrieved from https://www.youtube.com/watch?v=DjlEJNfsOKc
  • Rusznyak, L., & Walton, E. (2011). Lesson planning guidelines for student teachers: A scaffold for the development of pedagogical content knowledge. Education as Change, 15(2), 271–285.
  • Shulman, L.S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4–14.
  • Shulman, L.S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1–22.
  • Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., Peck, R., & Rowley, G. (2008). Teacher education and development study in mathematics (TEDS-M). East Lansing, MI: Teacher Education and Development International Study Center, College of Education, Michigan State University.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Tüm Alanlar
Yazarlar

Elçin Emre-akdoğan 0000-0002-6521-9287

Gönül Yazgan-sağ 0000-0002-7237-5683

Yayımlanma Tarihi 25 Haziran 2018
Kabul Tarihi 2 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 37 Sayı: 1

Kaynak Göster

APA Emre-akdoğan, E., & Yazgan-sağ, G. (2018). An Investigation on How Prospective Mathematics Teachers Design a Lesson Plan. Ondokuz Mayis University Journal of Education Faculty, 37(1), 81-96.