Araştırma Makalesi
BibTex RIS Kaynak Göster

Adaptation of STEM Career Intention Scale into Turkish and Investigation According to Some Variables

Yıl 2025, Cilt: 44 Sayı: 1, 145 - 196, 30.06.2025

Öz

The aim of this study is to conduct the adaptation study of the STEM Career Intention Scale (SCIS) into Turkish and examine the relationships between STEM career intention and students' gender, mother's and father's occupation, and the occupation they intend to choose in the future. In line with this purpose, within the scope of the adaptation studies of the scale, EFA was conducted with 274 high school students to ensure the validity of the scores obtained from the scale, and it was evaluated the scale consisted of a single factor similar to the original scale and that the single factor explained 73.052% of the structure. As a result of the CFA conducted with 405 high school students within the scope of the validity studies of the scale, it was revealed that the fit indices of the scale (χ2/df = 3.555; GFI= .954; AGFI= .879; CFI= .939; RMSEA= .08 and SRMR= .0454) showed a good fit in general. In addition, criterion validity and convergent validity analyses showed that the SCIS is a valid measurement tool. Cronbach's Alpha value obtained from the SCIS was calculated as .941. Therefore, the analyses revealed that the scores obtained from the scale are valid and reliable. When the relationships between STEM career intention and variables were examined, it was seen that STEM career intention differed according to gender, and this difference was in favour of male students. It was found that the STEM career intention scores of the students whose parents were involved in the STEM profession were higher. In addition, it was found that students with high STEM career intention had a high tendency to prefer STEM professions in the future, while the STEM fields that students thought to prefer differed according to gender.

Kaynakça

  • Abdi, A. I., Mahdi, A. O., Omar, A. M., Asiimwe, C., & Osman, M. A. (2024). Influence of career awareness on STEM career interests among foundation-year students in Mogadishu, Somalia. Frontiers in Education, 9, 1484761. https://doi.org/10.3389/feduc.2024.1484761 Abdi AI, Mahdi AO, Omar AM, Asiimwe C and Osman MA (2024) Influence of career awareness on STEM career interests among foundation-year students in Mogadishu, Somalia.Front. Educ. 9:1484761
  • Ahmed, W., & Mudrey, R. R. (2019). The role of motivational factors in predicting STEM career aspirations. International Journal of School & Educational Psychology, 7(4), 1-14. https://doi.org/10.1080/21683603.2017.1401499
  • Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
  • Ajzen, I. (2002). Constructing a TPB questionnaire: Conceptual and methodological considerations. University of Massechusetts Amherst, Office of Information Technologies.
  • Alam, M. S., Sajid, S., Kok, J. K., Rahman, M., & Amin, A. (2021). Factors that influence high school female Students' intentions to pursue science, technology, engineering and mathematics (STEM) education in Malaysia. Pertanika Journal of Social Sciences and Humanities, 29(2), 839-867. https://doi.org/10.47836/pjssh.29.2.06
  • Alonso, A., Laenen, A., Molenberghs, G., Geys, H., & Vangeneugden, T. (2010). A unified approach to multi-item reliability. Biometrics, 66(4), 1061-1068. http://www.jstor.org/stable/40962502
  • Appel, D., Tillinghast, R. C., & Mansouri, M. (2021, March). Identifying positive catalysts in the STEM career pipeline. In 2021 IEEE Integrated STEM Education Conference (ISEC) (pp. 132-139). IEEE. https://doi.org/10.1109/ISEC52395.2021.9763994
  • Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology, 3, 77–85.
  • Beasley, T. M., & Schumacker, R. E. (1995). Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. The Journal of Experimental Education, 64(1), 79–93. https://doi.org/10.1080/00220973.1995.9943797
  • Beier, M. E., Kim, M. H., Saterbak, A., Leautaud, V., Bishnoi, S., & Gilberto, J. M. (2019). The effect of authentic project‐based learning on attitudes and career aspirations in STEM. Journal of Research in Science Teaching, 56(1), 3-23. https://doi.org/10.1002/tea.21465
  • Belsley, D.A. (1991). Conditioning diagnostics: Collinearity and weak data in regression. John Wiley & Sons, Inc.
  • Benek, İ., & Akçay, B. (2018). Hayal Dünyamda STEM! Öğrencilerin STEM Alanında Yaptıkları Çizimlerin İncelenmesi. Journal of STEAM Education, 1(2), 79-107.
  • Bottia, M. C., Stearns, E., Mickelson, R. A., Moller, S., & Parler, A. D. (2015). The relationships among high school STEM learning experiences and students’ intent to declare and declaration of a STEM major in college. Teachers College Record, 117(3), 1-46. https://doi.org/10.1177/016146811511700308
  • Byrne, B.M. (2001). Structural equation modeling with AMOS, EQS, and LISREL: Comparative approaches to testing for the factorial validity of a measuring instrument. International Journal of Testing, 1(1), 55-86. https://doi.org/10.1207/S153275741JT0101-4
  • Cano, J. A., Tabares, A., & Alvarez, C. (2017). University students’ career choice intentions: Guesss Colombia study. Revista Espacios, 38, 20–29.
  • Carlone, H. B., & Johnson, A. (2007). Understanding the science experiences of successful women of color: Science identity as an analytic lens. Journal of Research in Science Teaching, 44(8), 1187–1218. https://doi.org/10.1002/tea.20237
  • Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276. https://doi.org/10.1207/s15327906mbr0102_10
  • Cohen, J. (1988). Statistical power analysis fort he behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum. Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis (2nd Edition). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
  • De Gioannis, E. (2022). Implicit gender-science stereotypes and college-major intentions of italian adolescents. Social Psychology of Education, 25(5), 1093-1112. https://doi.org/10.1007/s11218-022-09709-3 Diamantopoulos, A., Sarstedt, M., Fuchs, C. et al. (2012). Guidelines for choosing between multi-item and single-item scales for construct measurement: A predictive validity perspective. Journal of the Academy of Marketing Science. 40, 434–449. https://doi.org/10.1007/s11747-011-0300-3
  • Dou, R., Hazari, Z., Dabney, K., Sonnert, G., & Sadler, P. (2019). Early informal STEM experiences and STEM identity: The importance of talking science. Science Education, 103(3), 623-637. https://doi.org/10.1002/sce.21499
  • Dugger, W. E. (2010, December). Evolution of STEM in the United States. In the 6th Biennial International Conference on Technology Education Research at Gold Coast, Queensland, Australia.
  • Eren, E., & Dökme, İ. (2024). STEM rol kimlikleri ölçeğinin Türkçe’ye uyarlanması: Geçerlik ve güvenirlik çalışması. Trakya Eğitim Dergisi, 14(1), 356-367. https://doi.org/10.24315/tred.1366457
  • Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312
  • Fraenkel, J. R., Wallen, N. E. & Hyun, H. H. (2011). How to design and evaluate research in education (8th ed.). New York: McGraw-Hill.
  • Francis, J., Johnston, M., Eccles, M., Walker, A., Grimshaw, J. M., Foy, R., Kaner, E. F. S., Smith, L., & Bonetti, D. (2004). Constructing questionnaires based on the theory of planned behaviour: A manual for Health Services Researchers. Quality of life and management of living resources; Centre for Health Services Research. http://openaccess.city.ac.uk/id/eprint/1735
  • Furr, M. (2011). Scale construction and psychometrics for social and personality psychology. Sage. García-Pérez, M. A., & Núñez-Antón, V. (2003). Cellwise residual analysis in two-way contingency tables. Educational and Psychological Measurement, 63(5), 825–839. https://doi.org/10.1177/0013164403251280
  • García-Pérez, O., Inda-Caro, M., Fernández-García, C. M., & Torío-López, S. (2020). The influence of perceived family supports and barriers on personal variables in a Spanish sample of secondary school science-technology students. International Journal of Science Education, 42(1), 70-88. https://doi.org/10.1080/09500693.2019.1701216
  • Gitsaki, C., & Robby, M. A. (2015). Evaluating the use of mobile technology in math education: A case study. In Mobile learning and STEM (pp. 29-42). Routledge.
  • Golino, H. F., & Epskamp, S. (2017). Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLOS ONE, 12(6), 1–26. https://doi.org/10.1371/journal.pone.0174035
  • Grimalt‐Álvaro, C., Couso, D., Boixadera‐Planas, E., & Godec, S. (2022). “I see myself as a STEM person”: Exploring high school students' self‐identification with STEM. Journal of Research in Science Teaching, 59(5), 720-745. https://doi.org/10.1002/tea.21742
  • Guzey, S. S., Harwell, M., & Moore, T. (2014). Development of an instrument to assess attitudes toward science, technology, engineering, and mathematics (STEM). School Science and Mathematics, 114(6), 271-279. https://doi.org/10.1111/ssm.12077
  • Hacıömeroğlu, G., & Bulut, A. S. (2016). Integrative STEM Teaching Intention Questionnaire: A validity and reliability study of the Turkish form. Journal of Theory & Practice in Education, 12(3), 654-669.
  • Hair, J. F., Black, W.C., Babin, B. J., & Anderson, R. E. (2014). Exploratory factor analysis. Multivariate data analysis. Prentice Hall.
  • Hambleton, R. K. & Patsula, L. (1999). Increasing the validity of adapted tests: Myths to be avoided and guidelines for improving test adaptation practices. Journal of Applied Testing Technology. 1(1), 1-30.
  • Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. https://doi.org/10.1007/BF02289447
  • Hsieh, T. L. (2025). Empowering STEM college students: Exploring influential factors to cultivate career adaptability. Journal for STEM Education Research, 1-18. https://doi.org/10.1007/s41979-025-00144-5
  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151. https://doi.org/10.1177/001316446002000116
  • Kanematsu, H., M. Barry, D., Kanematsu, H., & Barry, D. M. (2016). The importance of STEM for modern education. STEM and ICT Education in Intelligent Environments, 25-30. https://doi.org/25-30. 10.1007/978-3-319-19234-5_4
  • Kauffmann, P., Hall, C., Batts, D., Bosse, M., & Moses, L. (2009, June). Factors influencing high school students’ career considerations in stem fields. In 2009 Annual Conference & Exposition (pp. 14-624).
  • Kim, Hae-Young. (2017). Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restorative Dentistry & Endodontics, 42(2), 152-155. https://doi.org/10.5395/rde.2017.42.2.152
  • Kline, R.B. (2011). Principles and practice of structural equation modeling. New York: The Guilford Press. Lazarides, R. ve Lauermann, F. (2019). Gendered paths into STEM-related and language-related careers: Girls’ and boys’ motivational beliefs and career plans in math and language arts. Frontiers in Psychology, 10(2), 1–17. https://doi.org/10.3389/fpsyg.2019.01243
  • Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of vocational behavior, 45(1), 79-122. https://doi.org/10.1006/jvbe.1994.1027
  • Li, M. (2024). Distal facilitator or proximal support? Exploring the mechanism of how family science capital contributes to Chinese students’ science career intentions aged 16-18. Research in Science & Technological Education, 42(4), 1191-1208. https://doi.org/10.1080/02635143.2023.2212247
  • Li, T., Kirk, C., & Oseguera, L. (2025). STEM career as a pathway: Stability and dynamics of students’ STEM occupational intention after high school. The Journal of Higher Education, 1-26. https://doi.org/10.1080/00221546.2024.2406734
  • Liu, J., Zhang, Y., Luo, H., Zhang, X., & Li, W. (2024). Enhancing High School Students’ STEM Major Intention Through Digital Competence: A Large-Scale Cross-Sectional Survey. Sustainability, 16(24), 11110. https://doi.org/10.3390/su162411110
  • Lustig, D., & Xu, Y. (2018). Family‐of‐origin influence on career thoughts. The Career Development Quarterly, 66(2), 149-161. https://doi.org/10.1002/cdq.12129
  • Lv, B., Wang, J., Zheng, Y., Peng, X., & Ping, X. (2022). Gender differences in high school students' STEM career expectations: An analysis based on multi‐group structural equation model. Journal of Research in Science Teaching, 59(10), 1739-1764. https://doi.org/10.1002/tea.21772
  • Marsh, H. W., Hau, K.-T., & Wen, Z. (2004). In search of Golden Rules: Comment on hypothesistesting approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler's (1999) findings. Structural Equation Modeling, 11(3), 320–341. https://doi.org/10.1207/s15328007sem1103_2
  • Martin-Hansen, L. (2018). Examining ways to meaningfully support students in STEM. International Journal of STEM Education, 5(53), 1-6. https://doi.org/10.1186/s40594-018-0150-3
  • Martinez-Martin, P. (2010). Composite rating scales. Journal of the Neurological Sciences, 289(1-2), 7-11. https://doi.org/10.1016/j.jns.2009.08.013
  • Mendez, S. L., & Watson, K. (2023, June). Why STEM? The External Factors Influencing International STEM Postdoctoral Scholars’ Career Decision. In 2023 ASEE Annual Conference & Exposition.
  • Minnotte, K.L., & Pedersen, D. E. (2021). Turnover intentions in the STEM fields: The role of departmental factors. Innovative Higher Education, 46, 77–93. https://doi.org/10.1007/s10755-020-09524-8
  • Moore, R., & Burrus, J. (2019). Predicting STEM major and career intentions with the theory of planned behavior. The Career Development Quarterly, 67(2), 139-155. https://doi.org/10.1002/cdq.12177
  • Moses, P., Cheah, P. K., Tey, T. C. Y., & Chiew, J. X. (2020, November). Development of the theory of planned behaviour questionnaire: Students’ career choices in STEM. In International Conference on Computers in Education.
  • National Research Council [NRC]. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. Washington: National Academies Press.
  • Nite, S. B., Margaret, M., Capraro, R. M., Morgan, J., & Peterson, C. A. (2014, October). Science, technology, engineering and mathematics (STEM) education: A longitudinal examination of secondary school intervention. In 2014 IEEE frontiers in education conference (FIE) proceedings (pp. 1-7). IEEE.
  • Paul, K. M., Maltese, A. V., & Svetina Valdivia, D. (2020). Development and validation of the role identity surveys in engineering (RIS-E) and STEM (RIS-STEM) for elementary students. IJ STEM Ed, 7, 45 https://doi.org/10.1186/s40594-020-00243-2
  • Plasman, J. S., Gottfried, M., & Williams, D. (2021). Following in their footsteps: The relationship between parent STEM occupation and student STEM coursetaking in high school. Journal for STEM Education Research, 4(1), 27-46. https://doi.org/10.1007/s41979-020-00040-0
  • Ruscio, J., & Roche, B. (2012). Determining the number of factors to retain in an exploratory factor analysis using comparison data of known factorial structure. Psychological Assessment, 24(2), 282–292. https://doi.org/10.1037/a0025697
  • Sağıroğlu, G. (2023). Lise öğrencilerinin STEM kariyer tercihlerinin cinsiyete göre araştırılması: Bir meta analiz çalışması (Yüksek Lisans Tezi). Bolu Abant İzzet Baysal Üniversitesi, Bolu.
  • Salleh, S. M. (2013). Factors influencing students’ intentions to study science in upper secondary. International Journal of Cross-Disciplinary Subjects in Education, 4(2), 1158-1165. https://doi.org/10.20533/ijcdse.2042.6364.2013.0163
  • Sarstedt, M., Wilczynski, P., Diamantopoulos, A., & Raithel, S. (2015). A Comparative Evaluation of Different Single-Item Selection Procedures for Construct Measurement. In Marketing Dynamism & Sustainability: Things Change, Things Stay the Same… Proceedings of the 2012 Academy of Marketing Science (AMS) Annual Conference (pp. 427-427). Springer International Publishing.
  • Sorrells, A. M., Cole, H. A., Pazey, B., & Carter, J. F. (2014). Working with learners with learning disabilities in STEM: Implications for a successful model. STEM education: Strategies for teaching learners with special needs, 53-65.
  • Stevens, J. (2002). Applied multivariate statistics for the social sciences. Mahwah, NJ: Lawrence Erlbaurn Associates.Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson.
  • Tey, T. C. Y., Moses, P., & Cheah, P. K. (2024). The influence of gender on STEM career choice A partial least squares analysis. Research & Practice in Technology Enhanced Learning, 19(25), 1-22. https://doi.org/10.58459/rptel.2024.19025 Türkiye İstatistik Kurumu [TÜİK] (2022). Toplumsal Cinsiyet İstatistikleri. https://www.tuik.gov.tr/media/announcements/toplumsal_cinsiyet_istatistikleri.pdf
  • Van Aalderen‐Smeets, S. I., Walma van der Molen, J. H. & Xenidou‐Dervou, I. (2019). Implicit STEM ability beliefs predict secondary school students' STEM self‐efficacy beliefs and their intention to opt for a STEM field career. Journal of Research in Science Teaching, 56(4), 465-485. https://doi.org/10.1002/tea.21506
  • Wang, H. H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research (J-PEER), 1(2), 2. https://doi.org/10.5703/1288284314636
  • Wang, M. T., & Degol, J. (2013). Motivational pathways to STEM career choices: Using expectancy– value perspective to understand individual and gender differences in STEM fields. Developmental Review, 33, 304–340. https://doi.org/10.1016/j.dr.2013.08.001
  • Wiebe, E., Unfried, A., & Faber, M. (2018). The relationship of STEM attitudes and career interest. Eurasia Journal of Mathematics, Science and Technology Education, 14(10). https://doi.org/10.29333/ejmste/92286
  • Winkler, J. D., Kanouse, D. E., & Ware, J. E., Jr. (1982). Controlling for acquiescence response set in scale development. Journal of Applied Psychology, 67(5), 555–561. https://doi.org/10.1037/0021-9010.67.5.555
  • Yanagida, T., Gradinger, P., Strohmeier, D., Solomontos-Kountouri, O., Trip, S., & Bora, C. (2016). Cross-national prevalence of traditional bullying, traditional victimization, cyberbullying and cyber-victimization: Comparing single-item and multiple-item approaches of measurement. International Journal of Developmental Science, 10(1-2), 21-32. https://doi.org/10.3233/DEV-150173
  • Yıldırım, B., & Türk, C. (2018). STEM uygulamalarının kız öğrencilerin STEM tutum ve mühendislik algılarına etkisi. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 30, 842-884. https://doi.org/10.14520/adyusbd.368452

STEM Kariyer Niyeti Ölçeği’nin Türkçeye Uyarlanması ve Bazı Değişkenlere Göre İncelenmesi

Yıl 2025, Cilt: 44 Sayı: 1, 145 - 196, 30.06.2025

Öz

Bu araştırmanın amacı STEM Kariyer Niyeti Ölçeği’nin (SKNÖ) Türkçeye uyarlama çalışmasını yürütmek ve STEM kariyer niyeti ile öğrencilerin cinsiyeti, anne ve baba mesleği ve gelecekte seçmeyi düşündükleri meslek değişkenleri arasındaki ilişkileri incelemektir. Bu amaç doğrultusunda ölçeğin uyarlama çalışmaları kapsamında, ölçekten elde edilen puanların geçerliğinin sağlanması amacıyla 274 lise öğrencisiyle AFA yapılarak, ölçeğin orijinal ölçek ile benzer olarak tek faktörden oluştuğu ve tek faktörün yapının %73,052’sini açıkladığı görülmüştür. Ölçeğin geçerlik çalışmaları kapsamında 405 lise öğrencisi ile yapılan DFA sonucunda da, ölçeğin uyum indekslerinin (χ2/df = 3,555; GFI= .954; AGFI= .879; CFI= .939; RMSEA= .08 ve SRMR= .0454) genel anlamda iyi uyum gösterdiği ortaya koyulmuştur. Ayrıca yapılan ölçüte dayalı geçerlik ve yakınsak geçerlik analizleri doğrultusunda SKNÖ’nün geçerli bir ölçme aracı olduğu görülmüştür. SKNÖ’den elde edilen Cronbach Alpha değeri .941 olarak hesaplanmıştır. Dolayısıyla yapılan analizler sonucunda ölçekten elde edilen puanların geçerli ve güvenilir olduğu ortaya koyulmuştur. STEM kariyer niyeti ile değişkenler arasındaki ilişkiler incelendiğinde ise, STEM kariyer niyetinin cinsiyete göre farklılaştığı ve bu farkın erkek öğrenciler lehine olduğu görülmüştür. Anne ve babası STEM mesleğinde yer alan öğrencilerin, STEM kariyer niyeti puanlarının daha yüksek olduğu bulunmuştur. Ayrıca STEM kariyer niyeti yüksek olan öğrencilerin gelecekte STEM mesleklerini tercih etme eğilimlerinin yüksek olduğu bulunurken; öğrencilerin tercih etmeyi düşündükleri STEM alanlarının cinsiyete göre farklılaştığı görülmüştür.

Kaynakça

  • Abdi, A. I., Mahdi, A. O., Omar, A. M., Asiimwe, C., & Osman, M. A. (2024). Influence of career awareness on STEM career interests among foundation-year students in Mogadishu, Somalia. Frontiers in Education, 9, 1484761. https://doi.org/10.3389/feduc.2024.1484761 Abdi AI, Mahdi AO, Omar AM, Asiimwe C and Osman MA (2024) Influence of career awareness on STEM career interests among foundation-year students in Mogadishu, Somalia.Front. Educ. 9:1484761
  • Ahmed, W., & Mudrey, R. R. (2019). The role of motivational factors in predicting STEM career aspirations. International Journal of School & Educational Psychology, 7(4), 1-14. https://doi.org/10.1080/21683603.2017.1401499
  • Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
  • Ajzen, I. (2002). Constructing a TPB questionnaire: Conceptual and methodological considerations. University of Massechusetts Amherst, Office of Information Technologies.
  • Alam, M. S., Sajid, S., Kok, J. K., Rahman, M., & Amin, A. (2021). Factors that influence high school female Students' intentions to pursue science, technology, engineering and mathematics (STEM) education in Malaysia. Pertanika Journal of Social Sciences and Humanities, 29(2), 839-867. https://doi.org/10.47836/pjssh.29.2.06
  • Alonso, A., Laenen, A., Molenberghs, G., Geys, H., & Vangeneugden, T. (2010). A unified approach to multi-item reliability. Biometrics, 66(4), 1061-1068. http://www.jstor.org/stable/40962502
  • Appel, D., Tillinghast, R. C., & Mansouri, M. (2021, March). Identifying positive catalysts in the STEM career pipeline. In 2021 IEEE Integrated STEM Education Conference (ISEC) (pp. 132-139). IEEE. https://doi.org/10.1109/ISEC52395.2021.9763994
  • Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology, 3, 77–85.
  • Beasley, T. M., & Schumacker, R. E. (1995). Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. The Journal of Experimental Education, 64(1), 79–93. https://doi.org/10.1080/00220973.1995.9943797
  • Beier, M. E., Kim, M. H., Saterbak, A., Leautaud, V., Bishnoi, S., & Gilberto, J. M. (2019). The effect of authentic project‐based learning on attitudes and career aspirations in STEM. Journal of Research in Science Teaching, 56(1), 3-23. https://doi.org/10.1002/tea.21465
  • Belsley, D.A. (1991). Conditioning diagnostics: Collinearity and weak data in regression. John Wiley & Sons, Inc.
  • Benek, İ., & Akçay, B. (2018). Hayal Dünyamda STEM! Öğrencilerin STEM Alanında Yaptıkları Çizimlerin İncelenmesi. Journal of STEAM Education, 1(2), 79-107.
  • Bottia, M. C., Stearns, E., Mickelson, R. A., Moller, S., & Parler, A. D. (2015). The relationships among high school STEM learning experiences and students’ intent to declare and declaration of a STEM major in college. Teachers College Record, 117(3), 1-46. https://doi.org/10.1177/016146811511700308
  • Byrne, B.M. (2001). Structural equation modeling with AMOS, EQS, and LISREL: Comparative approaches to testing for the factorial validity of a measuring instrument. International Journal of Testing, 1(1), 55-86. https://doi.org/10.1207/S153275741JT0101-4
  • Cano, J. A., Tabares, A., & Alvarez, C. (2017). University students’ career choice intentions: Guesss Colombia study. Revista Espacios, 38, 20–29.
  • Carlone, H. B., & Johnson, A. (2007). Understanding the science experiences of successful women of color: Science identity as an analytic lens. Journal of Research in Science Teaching, 44(8), 1187–1218. https://doi.org/10.1002/tea.20237
  • Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276. https://doi.org/10.1207/s15327906mbr0102_10
  • Cohen, J. (1988). Statistical power analysis fort he behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum. Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis (2nd Edition). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
  • De Gioannis, E. (2022). Implicit gender-science stereotypes and college-major intentions of italian adolescents. Social Psychology of Education, 25(5), 1093-1112. https://doi.org/10.1007/s11218-022-09709-3 Diamantopoulos, A., Sarstedt, M., Fuchs, C. et al. (2012). Guidelines for choosing between multi-item and single-item scales for construct measurement: A predictive validity perspective. Journal of the Academy of Marketing Science. 40, 434–449. https://doi.org/10.1007/s11747-011-0300-3
  • Dou, R., Hazari, Z., Dabney, K., Sonnert, G., & Sadler, P. (2019). Early informal STEM experiences and STEM identity: The importance of talking science. Science Education, 103(3), 623-637. https://doi.org/10.1002/sce.21499
  • Dugger, W. E. (2010, December). Evolution of STEM in the United States. In the 6th Biennial International Conference on Technology Education Research at Gold Coast, Queensland, Australia.
  • Eren, E., & Dökme, İ. (2024). STEM rol kimlikleri ölçeğinin Türkçe’ye uyarlanması: Geçerlik ve güvenirlik çalışması. Trakya Eğitim Dergisi, 14(1), 356-367. https://doi.org/10.24315/tred.1366457
  • Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312
  • Fraenkel, J. R., Wallen, N. E. & Hyun, H. H. (2011). How to design and evaluate research in education (8th ed.). New York: McGraw-Hill.
  • Francis, J., Johnston, M., Eccles, M., Walker, A., Grimshaw, J. M., Foy, R., Kaner, E. F. S., Smith, L., & Bonetti, D. (2004). Constructing questionnaires based on the theory of planned behaviour: A manual for Health Services Researchers. Quality of life and management of living resources; Centre for Health Services Research. http://openaccess.city.ac.uk/id/eprint/1735
  • Furr, M. (2011). Scale construction and psychometrics for social and personality psychology. Sage. García-Pérez, M. A., & Núñez-Antón, V. (2003). Cellwise residual analysis in two-way contingency tables. Educational and Psychological Measurement, 63(5), 825–839. https://doi.org/10.1177/0013164403251280
  • García-Pérez, O., Inda-Caro, M., Fernández-García, C. M., & Torío-López, S. (2020). The influence of perceived family supports and barriers on personal variables in a Spanish sample of secondary school science-technology students. International Journal of Science Education, 42(1), 70-88. https://doi.org/10.1080/09500693.2019.1701216
  • Gitsaki, C., & Robby, M. A. (2015). Evaluating the use of mobile technology in math education: A case study. In Mobile learning and STEM (pp. 29-42). Routledge.
  • Golino, H. F., & Epskamp, S. (2017). Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLOS ONE, 12(6), 1–26. https://doi.org/10.1371/journal.pone.0174035
  • Grimalt‐Álvaro, C., Couso, D., Boixadera‐Planas, E., & Godec, S. (2022). “I see myself as a STEM person”: Exploring high school students' self‐identification with STEM. Journal of Research in Science Teaching, 59(5), 720-745. https://doi.org/10.1002/tea.21742
  • Guzey, S. S., Harwell, M., & Moore, T. (2014). Development of an instrument to assess attitudes toward science, technology, engineering, and mathematics (STEM). School Science and Mathematics, 114(6), 271-279. https://doi.org/10.1111/ssm.12077
  • Hacıömeroğlu, G., & Bulut, A. S. (2016). Integrative STEM Teaching Intention Questionnaire: A validity and reliability study of the Turkish form. Journal of Theory & Practice in Education, 12(3), 654-669.
  • Hair, J. F., Black, W.C., Babin, B. J., & Anderson, R. E. (2014). Exploratory factor analysis. Multivariate data analysis. Prentice Hall.
  • Hambleton, R. K. & Patsula, L. (1999). Increasing the validity of adapted tests: Myths to be avoided and guidelines for improving test adaptation practices. Journal of Applied Testing Technology. 1(1), 1-30.
  • Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. https://doi.org/10.1007/BF02289447
  • Hsieh, T. L. (2025). Empowering STEM college students: Exploring influential factors to cultivate career adaptability. Journal for STEM Education Research, 1-18. https://doi.org/10.1007/s41979-025-00144-5
  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151. https://doi.org/10.1177/001316446002000116
  • Kanematsu, H., M. Barry, D., Kanematsu, H., & Barry, D. M. (2016). The importance of STEM for modern education. STEM and ICT Education in Intelligent Environments, 25-30. https://doi.org/25-30. 10.1007/978-3-319-19234-5_4
  • Kauffmann, P., Hall, C., Batts, D., Bosse, M., & Moses, L. (2009, June). Factors influencing high school students’ career considerations in stem fields. In 2009 Annual Conference & Exposition (pp. 14-624).
  • Kim, Hae-Young. (2017). Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restorative Dentistry & Endodontics, 42(2), 152-155. https://doi.org/10.5395/rde.2017.42.2.152
  • Kline, R.B. (2011). Principles and practice of structural equation modeling. New York: The Guilford Press. Lazarides, R. ve Lauermann, F. (2019). Gendered paths into STEM-related and language-related careers: Girls’ and boys’ motivational beliefs and career plans in math and language arts. Frontiers in Psychology, 10(2), 1–17. https://doi.org/10.3389/fpsyg.2019.01243
  • Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of vocational behavior, 45(1), 79-122. https://doi.org/10.1006/jvbe.1994.1027
  • Li, M. (2024). Distal facilitator or proximal support? Exploring the mechanism of how family science capital contributes to Chinese students’ science career intentions aged 16-18. Research in Science & Technological Education, 42(4), 1191-1208. https://doi.org/10.1080/02635143.2023.2212247
  • Li, T., Kirk, C., & Oseguera, L. (2025). STEM career as a pathway: Stability and dynamics of students’ STEM occupational intention after high school. The Journal of Higher Education, 1-26. https://doi.org/10.1080/00221546.2024.2406734
  • Liu, J., Zhang, Y., Luo, H., Zhang, X., & Li, W. (2024). Enhancing High School Students’ STEM Major Intention Through Digital Competence: A Large-Scale Cross-Sectional Survey. Sustainability, 16(24), 11110. https://doi.org/10.3390/su162411110
  • Lustig, D., & Xu, Y. (2018). Family‐of‐origin influence on career thoughts. The Career Development Quarterly, 66(2), 149-161. https://doi.org/10.1002/cdq.12129
  • Lv, B., Wang, J., Zheng, Y., Peng, X., & Ping, X. (2022). Gender differences in high school students' STEM career expectations: An analysis based on multi‐group structural equation model. Journal of Research in Science Teaching, 59(10), 1739-1764. https://doi.org/10.1002/tea.21772
  • Marsh, H. W., Hau, K.-T., & Wen, Z. (2004). In search of Golden Rules: Comment on hypothesistesting approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler's (1999) findings. Structural Equation Modeling, 11(3), 320–341. https://doi.org/10.1207/s15328007sem1103_2
  • Martin-Hansen, L. (2018). Examining ways to meaningfully support students in STEM. International Journal of STEM Education, 5(53), 1-6. https://doi.org/10.1186/s40594-018-0150-3
  • Martinez-Martin, P. (2010). Composite rating scales. Journal of the Neurological Sciences, 289(1-2), 7-11. https://doi.org/10.1016/j.jns.2009.08.013
  • Mendez, S. L., & Watson, K. (2023, June). Why STEM? The External Factors Influencing International STEM Postdoctoral Scholars’ Career Decision. In 2023 ASEE Annual Conference & Exposition.
  • Minnotte, K.L., & Pedersen, D. E. (2021). Turnover intentions in the STEM fields: The role of departmental factors. Innovative Higher Education, 46, 77–93. https://doi.org/10.1007/s10755-020-09524-8
  • Moore, R., & Burrus, J. (2019). Predicting STEM major and career intentions with the theory of planned behavior. The Career Development Quarterly, 67(2), 139-155. https://doi.org/10.1002/cdq.12177
  • Moses, P., Cheah, P. K., Tey, T. C. Y., & Chiew, J. X. (2020, November). Development of the theory of planned behaviour questionnaire: Students’ career choices in STEM. In International Conference on Computers in Education.
  • National Research Council [NRC]. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. Washington: National Academies Press.
  • Nite, S. B., Margaret, M., Capraro, R. M., Morgan, J., & Peterson, C. A. (2014, October). Science, technology, engineering and mathematics (STEM) education: A longitudinal examination of secondary school intervention. In 2014 IEEE frontiers in education conference (FIE) proceedings (pp. 1-7). IEEE.
  • Paul, K. M., Maltese, A. V., & Svetina Valdivia, D. (2020). Development and validation of the role identity surveys in engineering (RIS-E) and STEM (RIS-STEM) for elementary students. IJ STEM Ed, 7, 45 https://doi.org/10.1186/s40594-020-00243-2
  • Plasman, J. S., Gottfried, M., & Williams, D. (2021). Following in their footsteps: The relationship between parent STEM occupation and student STEM coursetaking in high school. Journal for STEM Education Research, 4(1), 27-46. https://doi.org/10.1007/s41979-020-00040-0
  • Ruscio, J., & Roche, B. (2012). Determining the number of factors to retain in an exploratory factor analysis using comparison data of known factorial structure. Psychological Assessment, 24(2), 282–292. https://doi.org/10.1037/a0025697
  • Sağıroğlu, G. (2023). Lise öğrencilerinin STEM kariyer tercihlerinin cinsiyete göre araştırılması: Bir meta analiz çalışması (Yüksek Lisans Tezi). Bolu Abant İzzet Baysal Üniversitesi, Bolu.
  • Salleh, S. M. (2013). Factors influencing students’ intentions to study science in upper secondary. International Journal of Cross-Disciplinary Subjects in Education, 4(2), 1158-1165. https://doi.org/10.20533/ijcdse.2042.6364.2013.0163
  • Sarstedt, M., Wilczynski, P., Diamantopoulos, A., & Raithel, S. (2015). A Comparative Evaluation of Different Single-Item Selection Procedures for Construct Measurement. In Marketing Dynamism & Sustainability: Things Change, Things Stay the Same… Proceedings of the 2012 Academy of Marketing Science (AMS) Annual Conference (pp. 427-427). Springer International Publishing.
  • Sorrells, A. M., Cole, H. A., Pazey, B., & Carter, J. F. (2014). Working with learners with learning disabilities in STEM: Implications for a successful model. STEM education: Strategies for teaching learners with special needs, 53-65.
  • Stevens, J. (2002). Applied multivariate statistics for the social sciences. Mahwah, NJ: Lawrence Erlbaurn Associates.Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson.
  • Tey, T. C. Y., Moses, P., & Cheah, P. K. (2024). The influence of gender on STEM career choice A partial least squares analysis. Research & Practice in Technology Enhanced Learning, 19(25), 1-22. https://doi.org/10.58459/rptel.2024.19025 Türkiye İstatistik Kurumu [TÜİK] (2022). Toplumsal Cinsiyet İstatistikleri. https://www.tuik.gov.tr/media/announcements/toplumsal_cinsiyet_istatistikleri.pdf
  • Van Aalderen‐Smeets, S. I., Walma van der Molen, J. H. & Xenidou‐Dervou, I. (2019). Implicit STEM ability beliefs predict secondary school students' STEM self‐efficacy beliefs and their intention to opt for a STEM field career. Journal of Research in Science Teaching, 56(4), 465-485. https://doi.org/10.1002/tea.21506
  • Wang, H. H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research (J-PEER), 1(2), 2. https://doi.org/10.5703/1288284314636
  • Wang, M. T., & Degol, J. (2013). Motivational pathways to STEM career choices: Using expectancy– value perspective to understand individual and gender differences in STEM fields. Developmental Review, 33, 304–340. https://doi.org/10.1016/j.dr.2013.08.001
  • Wiebe, E., Unfried, A., & Faber, M. (2018). The relationship of STEM attitudes and career interest. Eurasia Journal of Mathematics, Science and Technology Education, 14(10). https://doi.org/10.29333/ejmste/92286
  • Winkler, J. D., Kanouse, D. E., & Ware, J. E., Jr. (1982). Controlling for acquiescence response set in scale development. Journal of Applied Psychology, 67(5), 555–561. https://doi.org/10.1037/0021-9010.67.5.555
  • Yanagida, T., Gradinger, P., Strohmeier, D., Solomontos-Kountouri, O., Trip, S., & Bora, C. (2016). Cross-national prevalence of traditional bullying, traditional victimization, cyberbullying and cyber-victimization: Comparing single-item and multiple-item approaches of measurement. International Journal of Developmental Science, 10(1-2), 21-32. https://doi.org/10.3233/DEV-150173
  • Yıldırım, B., & Türk, C. (2018). STEM uygulamalarının kız öğrencilerin STEM tutum ve mühendislik algılarına etkisi. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 30, 842-884. https://doi.org/10.14520/adyusbd.368452
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Türkçe ve Sosyal Bilimler Eğitimi (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Betül Gökce Kundakcı 0000-0001-9664-6612

Nurten Karacan Özdemir 0000-0002-2909-6857

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 6 Mart 2025
Kabul Tarihi 16 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 44 Sayı: 1

Kaynak Göster

APA Gökce Kundakcı, B., & Karacan Özdemir, N. (2025). STEM Kariyer Niyeti Ölçeği’nin Türkçeye Uyarlanması ve Bazı Değişkenlere Göre İncelenmesi. Ondokuz Mayis University Journal of Education Faculty, 44(1), 145-196. https://doi.org/10.7822/omuefd.1652735