On Dual Spacelike Mannheim Partner Curves in ID31
Year 2011,
Volume: 1 Issue: 1, 1 - 14, 01.06.2011
Özcan Bektaş
Süleyman Şenyurt
References
- Azak, A. Z. 2009, Üç Boyutlu Lorentz Uzayı L de Timelike Mannheim Eğri Çifti Üzerine, Sakarya University Faculty of Arts and Science The Journal of Arts and Science, Vol. 11(2), 35-45.
- Blum, R. 1966, A Remarkable Class of Mannheim-Curves, Canad. Math. Bull., Vol. 9(2), 223- 228.
- Do Carmo, M.P 1976, Differential Geometry of Curves and Surfaces, Pearson Education., New York: Academic Press.
- Guan, Z., Ling, J.,Ping X., and Rongxi T. 1997, Study and Application of Physics-Based Deformable Curves and surfaces, Computers and Graphics 21: 305-313.
- Gungor, M. A. and Tosun M. 2010, A study on dual Mannheim partner curves.” Int. Math. Forum 5, no. 45-48 2319–2330.
- Kazaz, M. and Önder, M., Mannheim Offsets of Timelike Ruled Surfaces in Minkowski 3- space IR , eprint/arXiv:0906.2077v3. 3 1 R .
- , eprint/arXiv:0906.2077v3. 3 1 R . 1
- Kuhnel, W. 1999, Differential Geometry: Curves-Surfaces-Manifolds, Braunschweig, Wiesbaden.
- Liu, H. and Wang F. 2007, Mannheim Partner Curves in 3-space, Procedings of the Eleventh International Workshop on Diff. Geom.11,25-31.
- Liu, H. and Wang F. 2008, Mannheim Partner Curves in 3-space, J. Geom., Vol. 88(1-2), 120- 126.
- O’Neill, B. 1997, Elemantary Differential Geometry, 2nd ed., Academic Press, New York.
- Orbay, K., Kasap, E. and Aydemir, İ. 2009, Mannheim Offsets of Ruled Surfaces, Mathematical Problems in Engineering, Article Number:160917.
- Orbay, K., Kasap, E. 2009, On Mannheim Partner Curves in E , International Journal of
- , International Journal of
- Physical Sciences, Vol.4 (5), 261-264.
- Özkaldi, S., İlarslan, K. and Yayli,Y 2009,On Mannheim Partner Curves In Dual Space, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, vol XVII, fasc. 2.
On Dual Spacelike Mannheim Partner Curves in ID31
Year 2011,
Volume: 1 Issue: 1, 1 - 14, 01.06.2011
Özcan Bektaş
Süleyman Şenyurt
Abstract
Bu çalışmanın amacı: ilk olarak dual Lorentz uzayında dual spacelike Mannheim eğri çiftini tanımlamak, ikinci olarak dual spacelike Mannheim eğri çiftinin birbirlerine göre eğrilik ve burulmaları arasındaki bağıntıları vermek ve son olarak da ID dual Lorentz uzayında verilen bir eğri çiftinin dual spacelike eğri olması için gerek ve yeter şartları elde etmektir
References
- Azak, A. Z. 2009, Üç Boyutlu Lorentz Uzayı L de Timelike Mannheim Eğri Çifti Üzerine, Sakarya University Faculty of Arts and Science The Journal of Arts and Science, Vol. 11(2), 35-45.
- Blum, R. 1966, A Remarkable Class of Mannheim-Curves, Canad. Math. Bull., Vol. 9(2), 223- 228.
- Do Carmo, M.P 1976, Differential Geometry of Curves and Surfaces, Pearson Education., New York: Academic Press.
- Guan, Z., Ling, J.,Ping X., and Rongxi T. 1997, Study and Application of Physics-Based Deformable Curves and surfaces, Computers and Graphics 21: 305-313.
- Gungor, M. A. and Tosun M. 2010, A study on dual Mannheim partner curves.” Int. Math. Forum 5, no. 45-48 2319–2330.
- Kazaz, M. and Önder, M., Mannheim Offsets of Timelike Ruled Surfaces in Minkowski 3- space IR , eprint/arXiv:0906.2077v3. 3 1 R .
- , eprint/arXiv:0906.2077v3. 3 1 R . 1
- Kuhnel, W. 1999, Differential Geometry: Curves-Surfaces-Manifolds, Braunschweig, Wiesbaden.
- Liu, H. and Wang F. 2007, Mannheim Partner Curves in 3-space, Procedings of the Eleventh International Workshop on Diff. Geom.11,25-31.
- Liu, H. and Wang F. 2008, Mannheim Partner Curves in 3-space, J. Geom., Vol. 88(1-2), 120- 126.
- O’Neill, B. 1997, Elemantary Differential Geometry, 2nd ed., Academic Press, New York.
- Orbay, K., Kasap, E. and Aydemir, İ. 2009, Mannheim Offsets of Ruled Surfaces, Mathematical Problems in Engineering, Article Number:160917.
- Orbay, K., Kasap, E. 2009, On Mannheim Partner Curves in E , International Journal of
- , International Journal of
- Physical Sciences, Vol.4 (5), 261-264.
- Özkaldi, S., İlarslan, K. and Yayli,Y 2009,On Mannheim Partner Curves In Dual Space, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, vol XVII, fasc. 2.