Research Article
BibTex RIS Cite

The Copper (I) Chelator Neocuproine Inhibits Mouse Bladder Function, but not the Copper (II) Chelator Cuprizone

Year 2021, Volume: 43 Issue: 5, 439 - 447, 13.09.2021
https://doi.org/10.20515/otd.894353

Abstract

The aim of this study was to investigate the effect of neocuproine (NC), a selective Cu(I) chelator, on the spontaneous contractions (SC) and basal tension (BT) in isolated mouse bladder tissues. The spontaneous contractions and basal tension in the isolated bladder strips were recorded to evaluate the amplitude and frequency parameters. NC (100 μM) caused a significant inhibition on spontaneous contractions (SC) in the isolated mouse bladder. We also evaluated the effects of cuprizone, a selective Cu(II)-chelator, and various selective or non-selective purinoceptor antagonists on the SC and also on the basal tension (BT). Of them, a non-selective purinergic antagonist suramin, a P2X receptor antagonist PPADS, a P2X3 antagonist NF 110, a P2 receptor activator ATP or a P2Y1 antagonist MRS 2179 significantly reversed NC-induced inhibition on the SC whereas cuprizone was found ineffective. The results showed that both P2X and P2Y receptors are playing role in the inhibitory effect of NC on the mouse bladder function. Ca2+ addition to the organ bath medium also dose-dependently reversed the NC-induced inhibition suggesting the role of myogenic mechanism. These findings suggest that intracellular calcium reduction, purinergic pathway and Cu(I) but not Cu(II) may have an important role in the inhibitory activity of NC on mouse bladder function

Thanks

We would like to thank The Scientific and Technological Research Council of Turkey (TUBITAK) to support this study as a scholar of 1002 - Short Term R&D Funding Program (112S016).

References

  • 1 Hoyle CHV, Chapple C, Burnstock G. Isolated human bladder: evidence for an adenine dinucleotide acting on P2x-purinoceptors and for purinergic transmission. Eur J Pharmacol 1989;174:115–8.
  • 2 Burnstock G. Purinergic signalling in the urinary tract in health and disease. Purinergic Signal 2014;10:103–55.
  • 3 Burnstock G. Introduction: ATP and Its Metabolites as Potent Extracellular Agents. Curr Top Membr 2003;54:1–27.
  • 4 Fredholm BB, Abbracchio MP, Burnstock G, et al. VI. Nomenclature and classification of purinoceptors. Pharmacol Rev 1994;46:143–56.
  • 5 Abbracchio MP, Burnstock G. Purinoceptors: Are there families of P2X and P2Y purinoceptors? Pharmacol Ther 1994;64:445–75.
  • 6 Burnstock G. Therapeutic potential of purinergic signalling for diseases of the urinary tract. BJU Int 2011;107:192–204.
  • 7 Sui G, Fry CH, Montgomery B, et al. Purinergic and muscarinic modulation of ATP release from the urothelium and its paracrine actions. Am J Physiol-Renal Physiol 2014;306:F286–98.
  • 8 Chopra B, Gever J, Barrick SR, et al. Expression and function of rat urothelial P2Y receptors. Am J Physiol-Renal Physiol 2008;294:F821–9.
  • 9 Shabir S, Cross W, Kirkwood LA, et al. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium. Am J Physiol-Renal Physiol 2013;305:F396–406.
  • 10 Everaerts W, Vriens J, Owsianik G, et al. Functional characterization of transient receptor potential channels in mouse urothelial cells. Am J Physiol-Renal Physiol 2010;298:692–701.
  • 11 Arnal N, De Alaniz MJT, Marra CA. Carnosine and neocuproine as neutralizing agents for copper overload-induced damages in cultured human cells. Chem-Biol Inter 2011;192:257–63.
  • 12 Ding X, Xie H, Kang YJ. The significance of copper chelators in clinical and experimental application. J Nutr Biochem 2011;22:301–10.
  • 13 De Man JG, Moreels TG, De Winter BY, et al. Neocuproine potentiates the activity of the nitrergic neurotransmitter but inhibits that of S-nitrosothiols. Eur J Pharmacol 1999;381:151–9.
  • 14 Göçmen C, Göktürk HS, Ertuǧ PU, et al. Effect of neocuproine, a selective Cu(I) chelator, on nitrergic relaxations in the mouse corpus cavernosum. Eur J Pharmacol 2000;406:293–300.
  • 15 Göçmen C, Kumcu EK, Büyüknacar HS, et al. Neocuproine, a Copper (I) Chelator, Potentiates Purinergic Component of Vas Deferens Contractions Elicited by Electrical Field Stimulation. Pharmacol 2005;75:69–75.
  • 16 Kumcu EK, Büyüknacar HSG, Göçmen C, et al. Differential effect of neocuproine, a copper(I) chelator, on contractile activity in isolated ovariectomized non-pregnant rat, pregnant rat and pregnant human uterus. Eur J Pharmacol 2009;605:158–63.
  • 17 Göçmen C, Giesselman B, De Groat WC. Effect of neocuproine, a copper(I) chelator, on rat bladder function. J Pharmacol Exp Ther 2005;312:1138–43.
  • 18 Dicks AP, Williams DLH. Generation of nitric oxide from S-nitrosothiols using protein-bound Cu2+ sources. Chem Biol 1996;3:655–9.
  • 19 Benkó R, Lázár Z, Pórszász R, et al. Effect of experimental diabetes on cholinergic, purinergic and peptidergic motor responses of the isolated rat bladder to electrical field stimulation or capsaicin. Eur J Pharmacol 2003;478:73–80.
  • 20 Khakh BS, Burnstock G, Charles K, et al. International Union of Pharmacology. XXIV. Current Status of the Nomenclature and Properties of P2X Receptors and Their Subunits. Pharmacol Rev 2001;53:107–18.
  • 21 Vlaskovska M, Kasakov L, Rong W, et al. P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J Neurosci 2001;21:5670–7.
  • 22 Thériault O, Poulin H, Thomas GR, et al. Pyridoxal-5’-phosphate (MC-1), a vitamin B6 derivative, inhibits expressed P2X receptors. Can J Physiol Pharmacol 2014;92:189–96.
  • 23 Ford AP, Smith SA, Dillon MP. Pharmadynamic (PD) & pharmacokinetic (PK) properties of AF-219: first in class, selective, clinical P2X3 antagonist in development for chronic pain and related conditions. FASEB 2013.
  • 24 Burnstock G. Purinergic signalling: Therapeutic developments. Front Pharmacol 2017;8:661.
  • 25 Burnstock G. Short-and long-term (Trophic) purinergic signalling. Philos Trans R Soc Lond B Biol Sci 2016;371:20150422.
  • 26 McMurray G, Dass N, Brading AF. Purinoceptor subtypes mediating contraction and relaxation of marmoset urinary bladder smooth muscle. Br J Pharmacol 1998;123:1579–86.
  • 27 Kitajima S, Ozaki H, Karaki H. The effects of ATP and α,β-methylene-ATP on cytosolic Ca2+ level and force in rat isolated aorta. Br J Pharmacol 1993;110:263–8.

Bakır (I) Şelatörü Neocuproine Fare Mesane Fonksiyonunu İnhibe Eder, Ancak Bakır (II) Şelatörü Cuprizone İnhibe Etmez

Year 2021, Volume: 43 Issue: 5, 439 - 447, 13.09.2021
https://doi.org/10.20515/otd.894353

Abstract

Bu çalışmanın amacı, seçici bir Cu(I) şelatörü olan neocuproine’in (NC) izole fare mesane dokularındaki spontan kasılmalar (SK) ve bazal gerginlik (BT) üzerindeki etkisini araştırmaktır. İzole mesane striplerinde spontan kasılmalar ve bazal tonus, amplitude ve frekans parametreleri değerlendirilmiştir. Ayrıca selektif bir Cu(II)-şelatör olan cuprizone’un ve çeşitli selektif ve nonselektif purinoseptör antagonistlerinin spontan kasılmalar ve bazal tonus (BT) üzerindeki etkileri de değerlendirildi. NC (100 μM), izole edilmiş fare mesanesinde spontan kasılmalar üzerinde önemli bir inhibisyona neden olmuştur. Bunlardan nonselektif bir purinerjik antagonist olan suramin, bir P2X reseptör antagonisti PPADS, bir P2X3 antagonisti NF 110, bir P2 reseptör aktivatörü ATP veya bir P2Y1 antagonisti MRS 2179, spontan kasılmalar üzerinde NC'in neden olduğu inhibisyonu önemli ölçüde tersine çevirirken cuprizone etkisiz bulundu. Sonuçlar, NC'nin fare mesane işlevi üzerindeki inhibitör etkisinde hem P2X hem de P2Y reseptörlerinin rol oynadığını göstermektedir. Organ banyosu ortamına Ca2+ ilavesi de doza bağlı olarak NC ile indüklenen inhibisyonu tersine çevirerek miyojenik mekanizmanın rolü olabileceğini düşündürdü. Bu bulgular, hücre içi kalsiyum azalmasının, purinerjik yolun ve Cu(I) 'in, fare mesane fonksiyonu üzerindeki NC'nin inhibe edici aktivitesinde önemli bir role sahip olabildiğini, Cu(II)' nin etkisiz olduğunu göstermektedir

References

  • 1 Hoyle CHV, Chapple C, Burnstock G. Isolated human bladder: evidence for an adenine dinucleotide acting on P2x-purinoceptors and for purinergic transmission. Eur J Pharmacol 1989;174:115–8.
  • 2 Burnstock G. Purinergic signalling in the urinary tract in health and disease. Purinergic Signal 2014;10:103–55.
  • 3 Burnstock G. Introduction: ATP and Its Metabolites as Potent Extracellular Agents. Curr Top Membr 2003;54:1–27.
  • 4 Fredholm BB, Abbracchio MP, Burnstock G, et al. VI. Nomenclature and classification of purinoceptors. Pharmacol Rev 1994;46:143–56.
  • 5 Abbracchio MP, Burnstock G. Purinoceptors: Are there families of P2X and P2Y purinoceptors? Pharmacol Ther 1994;64:445–75.
  • 6 Burnstock G. Therapeutic potential of purinergic signalling for diseases of the urinary tract. BJU Int 2011;107:192–204.
  • 7 Sui G, Fry CH, Montgomery B, et al. Purinergic and muscarinic modulation of ATP release from the urothelium and its paracrine actions. Am J Physiol-Renal Physiol 2014;306:F286–98.
  • 8 Chopra B, Gever J, Barrick SR, et al. Expression and function of rat urothelial P2Y receptors. Am J Physiol-Renal Physiol 2008;294:F821–9.
  • 9 Shabir S, Cross W, Kirkwood LA, et al. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium. Am J Physiol-Renal Physiol 2013;305:F396–406.
  • 10 Everaerts W, Vriens J, Owsianik G, et al. Functional characterization of transient receptor potential channels in mouse urothelial cells. Am J Physiol-Renal Physiol 2010;298:692–701.
  • 11 Arnal N, De Alaniz MJT, Marra CA. Carnosine and neocuproine as neutralizing agents for copper overload-induced damages in cultured human cells. Chem-Biol Inter 2011;192:257–63.
  • 12 Ding X, Xie H, Kang YJ. The significance of copper chelators in clinical and experimental application. J Nutr Biochem 2011;22:301–10.
  • 13 De Man JG, Moreels TG, De Winter BY, et al. Neocuproine potentiates the activity of the nitrergic neurotransmitter but inhibits that of S-nitrosothiols. Eur J Pharmacol 1999;381:151–9.
  • 14 Göçmen C, Göktürk HS, Ertuǧ PU, et al. Effect of neocuproine, a selective Cu(I) chelator, on nitrergic relaxations in the mouse corpus cavernosum. Eur J Pharmacol 2000;406:293–300.
  • 15 Göçmen C, Kumcu EK, Büyüknacar HS, et al. Neocuproine, a Copper (I) Chelator, Potentiates Purinergic Component of Vas Deferens Contractions Elicited by Electrical Field Stimulation. Pharmacol 2005;75:69–75.
  • 16 Kumcu EK, Büyüknacar HSG, Göçmen C, et al. Differential effect of neocuproine, a copper(I) chelator, on contractile activity in isolated ovariectomized non-pregnant rat, pregnant rat and pregnant human uterus. Eur J Pharmacol 2009;605:158–63.
  • 17 Göçmen C, Giesselman B, De Groat WC. Effect of neocuproine, a copper(I) chelator, on rat bladder function. J Pharmacol Exp Ther 2005;312:1138–43.
  • 18 Dicks AP, Williams DLH. Generation of nitric oxide from S-nitrosothiols using protein-bound Cu2+ sources. Chem Biol 1996;3:655–9.
  • 19 Benkó R, Lázár Z, Pórszász R, et al. Effect of experimental diabetes on cholinergic, purinergic and peptidergic motor responses of the isolated rat bladder to electrical field stimulation or capsaicin. Eur J Pharmacol 2003;478:73–80.
  • 20 Khakh BS, Burnstock G, Charles K, et al. International Union of Pharmacology. XXIV. Current Status of the Nomenclature and Properties of P2X Receptors and Their Subunits. Pharmacol Rev 2001;53:107–18.
  • 21 Vlaskovska M, Kasakov L, Rong W, et al. P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J Neurosci 2001;21:5670–7.
  • 22 Thériault O, Poulin H, Thomas GR, et al. Pyridoxal-5’-phosphate (MC-1), a vitamin B6 derivative, inhibits expressed P2X receptors. Can J Physiol Pharmacol 2014;92:189–96.
  • 23 Ford AP, Smith SA, Dillon MP. Pharmadynamic (PD) & pharmacokinetic (PK) properties of AF-219: first in class, selective, clinical P2X3 antagonist in development for chronic pain and related conditions. FASEB 2013.
  • 24 Burnstock G. Purinergic signalling: Therapeutic developments. Front Pharmacol 2017;8:661.
  • 25 Burnstock G. Short-and long-term (Trophic) purinergic signalling. Philos Trans R Soc Lond B Biol Sci 2016;371:20150422.
  • 26 McMurray G, Dass N, Brading AF. Purinoceptor subtypes mediating contraction and relaxation of marmoset urinary bladder smooth muscle. Br J Pharmacol 1998;123:1579–86.
  • 27 Kitajima S, Ozaki H, Karaki H. The effects of ATP and α,β-methylene-ATP on cytosolic Ca2+ level and force in rat isolated aorta. Br J Pharmacol 1993;110:263–8.
There are 27 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section ORİJİNAL MAKALE
Authors

Nadire Eser 0000-0003-1607-5114

H.sinem Büyüknacar 0000-0002-2893-0037

Eda Kumcu 0000-0003-0224-0158

Cemil Göçmen 0000-0002-0262-3784

Publication Date September 13, 2021
Published in Issue Year 2021 Volume: 43 Issue: 5

Cite

Vancouver Eser N, Büyüknacar H, Kumcu E, Göçmen C. The Copper (I) Chelator Neocuproine Inhibits Mouse Bladder Function, but not the Copper (II) Chelator Cuprizone. Osmangazi Tıp Dergisi. 2021;43(5):439-47.


13299        13308       13306       13305    13307  1330126978