Construction of Mesenchymal Stem Cell-Derived Artificial Human Urinary Bladder: A Preliminary Study
Year 2024,
Volume: 9 Issue: 1, 66 - 72, 11.03.2024
Seçil Erden Tayhan
,
Aylin Şendemir
,
Erol Mir
,
İsmet Deliloğlu Gürhan
Abstract
Objective: The present study aimed to obtain the required cells and select a suitable scaffold material for constructing an artificial bladder using the tissue engineering approach.
Materials and methods: The convenience of obtaining human adipose tissue-derived stem cells (hADMSCs) was used in this study. It was attempted to differentiate these cells into smooth muscle cells (SMC), which are present along the wall of the bladder. Urothelial cells were enzymatically isolated from tissue biopsies. Synthetic (poly-lactide co-glycolic acid, PLGA) and natural (chitosan) polymers were used in scaffold fabrication using a tissue engineering approach.
Results: In the cellular experiments, urothelial cells couldn’t be cultured in polystyrene culture vessels in vitro and required a support material to maintain viability. Better results were obtained with the feeder layer. The hADMSCs exhibited the expected morphological changes in the serum-rich medium content in the SMC differentiation experiments. Chitosan, biocompatible and biodegradable, was mixed with PLGA as an alternative scaffold combination.
Conclusion: This study indicated that hADMSCs-derived smooth muscle cells and biopsy-isolated urothelial cells cultured on hybrid chitosan–PLGA scaffolds with appropriate physical properties could serve as a suitable model for tissue-engineered artificial bladder construction.
Ethical Statement
Ethical committee approval was received from Ege University, Clinical Research Ethics Committee, Izmir, Turkey (Approval number: 09-12/1; Date: January 11,2010) .
Supporting Institution
This study was granted by Celal Bayar University Scientific Research Projects Unit, project numbered TIP 2010-013. Additionally, Dr. Seçil ERDEN TAYHAN one of the researchers of this study, was financially supported by TUBITAK-BIDEB 2211- National Scholarship Program for PhD students.
Project Number
TIP 2010-013
References
- 1. Erden S. Mezenkimal kök hücre kaynaklı yapay insan mesanesi geliştirilmesine yönelik hücre kültürü ve doku iskelesi uygulamaları İzmir, Türkiye. 2013.
- 2. Atala A. Tissue engineering for the replacement of organ function in the genitourinary system. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2004;4 Suppl 6:58-73. doi:10.1111/j.1600-6135.2004.0346.x
- 3. Atala A. Engineering organs. Curr Opin Biotechnol. 2009;20(5):575-592. doi:10.1016/j.copbio.2009.10.003
- 4. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920-926. doi:10.1126/science.8493529
- 5. Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib M, Rashid TU. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater. 2020;5(1):164-183. doi:10.1016/j.bioactmat.2020.01.012
- 6. Wang X, Zhang F, Liao L. Current applications and future directions of bioengineering approaches for bladder augmentation and reconstruction. Front Surg. 2021;8. doi:10.3389/fsurg.2021.664404
- 7. Demcisakova Z, Luptakova L, Tirpakova Z, et al. Evaluation of angiogenesis in an acellular porous biomaterial based on polyhydroxybutyrate and chitosan using the chicken ex ovo chorioallantoic membrane model. Cancers (Basel). 2022;14(17). doi:10.3390/cancers14174194
- 8. Kadhim IAU, Sallal HA, Al-Khafaji ZS Al. A review in investigation of marine biopolymer (chitosan) for bioapplications. ES Mater Manuf. 2023;21:828. doi:10.30919/esmm5f828
- 9. Klabukov I, Tenchurin T, Shepelev A, et al. Biomechanical behaviors and degradation properties of multilayered polymer scaffolds: The phase space method for bile duct design and bioengineering. Biomedicines. 2023; 11(3):745. doi: org/10.3390/biomedicines11030745
- 10. Casarin M, Morlacco A, Dal Moro F. Tissue engineering and regenerative medicine in pediatric urology: urethral and urinary bladder reconstruction. Int J Mol Sci. 2022;23(12). doi:10.3390/ijms23126360
- 11. Horst M, Eberli D, Gobet R, Salemi S. Tissue engineering in pediatric bladder reconstruction—the road to success. Front Pediatr. 2019;7. doi:10.3389/fped.2019.00091
- 12. Zhao Z, Liu D, Chen Y, et al. Ureter tissue engineering with vessel extracellular matrix and differentiated urine-derived stem cells. Acta Biomater. 2019;88:266-279. doi:10.1016/j.actbio.2019.01.072
- 13. Culenova M, Ziaran S, Danisovic L. Cells involved in urethral tissue engineering: Systematic review. Cell Transplant. 2019;28(9-10):1106-1115. doi:10.1177/0963689719854363
- 14. Tayhan SE, Keleş GT, Topçu İ, Mir E, Gürhan SİD. Isolation and in vitro cultivation of human urine-derived cells: an alternative stem cell source. Turkish J Urol. 2017;43(3):345-349. doi:10.5152/tud.2017.93797
- 15. Tayhan SE, Taşdemir Ş, Gürhan SİD, Mir E. Comparison of the osteogenic differentiation capacity of adipose tissue derived mesenchymal stem cells from humans and rats. Turkish J Biol. 2016;40(5):1090-1095. doi:10.3906/biy-1507-128
- 16. Pokrywczynska M, Czapiewska M, Jundzill A, et al. Optimization of porcine urothelial cell cultures: Best practices, recommendations, and threats. Cell Biol Int. 2016;40(7):812-820. doi:10.1002/cbin.10614
- 17. Kloskowski T, Uzarska M, Gurtowska N, et al. How to isolate urothelial cells? Comparison of four different methods and literature review. Hum Cell. 2014;27(2):85-93. doi:10.1007/s13577-013-0070-y
- 18. Salem SA, Rashidbenam Z, Jasman MH, et al. Incorporation of smooth muscle cells derived from human adipose stem cells on poly (lactic-co-glycolic acid) scaffold for the reconstruction of subtotally resected urinary bladder in athymic rats. Tissue Eng Regen Med. 2020;17(4):553-563. doi:10.1007/s13770-020-00271-7
- 19. Zhou Z, Yan H, Liu Y, et al. Adipose-derived stem-cell-implanted poly(ϵ-caprolactone)/chitosan scaffold improves bladder regeneration in a rat model. Regen Med. 2018;13(3):331-342. doi:10.2217/rme-2017-0120
- 20. Ramesh R, Jayakumar K, Krishnan LK. Synergistic effect of inducible factors on the differentiation of human adipose-derived stem cells to vascular cells. Arch Clin Biomed Res. 2020;4:632-656. doi:10.26502/acbr.50170131
- 21. Hu Z, Chen Y, Gao M, et al. Novel strategy for primary epithelial cell isolation: Combination of hyaluronidase and collagenase I. Cell Prolif. 2023;56(1):e13320. doi:10.1111/cpr.13320
- 22. Freshney RI, Freshney MG. Culture of epithelial cells. New York: Wiley-Liss; 2002
- 23. Llames S, García-Pérez E, Meana Á, Larcher F, del Río M. Feeder layer cell actions and applications. Tissue Eng Part B Rev. 2015;21(4):345-353. doi:10.1089/ten.teb.2014.054724.
- 24. Adamowicz J, Pokrywczynska M, Van Breda SV, Kloskowski T, Drewa T. Concise review: Tissue engineering of urinary bladder; we still have a long way to go? Stem Cells Transl Med. 2017;6(11):2033-2043. doi:10.1002/sctm.17-0101
- 25. Gasanz C, Raventós C, Morote J. Current status of tissue engineering applied to bladder reconstruction in humans. Actas Urol Esp (Engl Ed) 2018;42(7):435-441. doi:10.1016/j.acuroe.2018.06.001
- 26. Ortac M, Ekerhult TO, Zhao W, Atala A. Tissue engineering graft for urethral reconstruction: Is it ready for clinical application? Turkish J Urol. 2023;49(1):11-18. doi:10.5152/tud.2023.22226
- 27. Sionkowska A, Kaczmarek B, Lewandowska K, et al. 3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid. Int J Biol Macromol. 2016;89:442-448. doi: 10.1016/j.ijbiomac.2016.04.085
- 28. Liu W, Shi K, Zhu X, et al. Adipose tissue-derived stem cells in plastic and reconstructive surgery: A bibliometric study. Aesthetic Plast Surg. 2021;45(2):679-689. doi:10.1007/s00266-020-01615-3
- 29. Park YG, Baek AM, Do BR, Choi JH, Do Kim S. Myogenic differentiation of human adipose-derived stem cells. J Korean Acad Rehab Med. 2011;35(1):8-13.
- 30. Rajcani J, Kajo K, Adamkov M, et al. Immunohistochemical characterization of urothelial carcinoma. Bratisl Lek Listy. 2013;114(8):431-438. doi:10.4149/bll_2013_091
Mezenkimal Kök Hücre Kaynaklı Yapay İnsan Mesanesi Geliştirilmesi: Bir Ön Çalışma
Year 2024,
Volume: 9 Issue: 1, 66 - 72, 11.03.2024
Seçil Erden Tayhan
,
Aylin Şendemir
,
Erol Mir
,
İsmet Deliloğlu Gürhan
Abstract
Amaç: Bu çalışmada, doku mühendisliği yaklaşımıyla yapay mesane yapımı için gerekli olan hücrelerin elde edilmesi ve uygun iskele malzemesinin seçilmesi amaçlanmıştır.
Materyal ve Metot: Bu çalışmada kolaylıkla elde edilebilen insan yağ doku kökenli kök hücreler (hADMSCs) kullanılmıştır. Bu hücrelerin mesane duvarı boyunca yerleşmiş olan düz kas hücrelerine (SMC) farklılaştırılmasına çalışılmıştır. Ürotelyal hücreler ise doku biyopsi örneklerinden enzimatik aktivite ile izole edilmişlerdir. Doku iskelesi yapımında, doku mühendisliği yaklaşımı kullanılarak, sentetik (Poli-laktid-ko-glikolik asit, PLGA ve doğal (kitosan) polimerler kullanılmıştır.
Bulgular: Hücresel deneylerde, ürotelyal hücreler polistiren kültür kaplarında in vitro olarak kültüre edilememiş ve canlılıklarını sürdürmek için bir destek malzemesine ihtiyaç duydukları belirlenmiştir. Bu aşamada, besleyici hücre tabakası ile iyi sonuçlar elde edilmiştir. Ayrıca hADMSC'ler, SMC farklılaşma deneylerinde yüksek serum içeriğine sahip ortamda beklenen morfolojik değişiklikleri sergilemiştir. Biyouyumlu ve biyolojik olarak parçalanabilen kitosan alternatif iskele kombinasyonu olarak PLGA ile karıştırılmıştır.
Sonuç: Bu çalışma, uygun fiziksel özelliklere sahip hibrit kitosan-PLGA yapı iskeleleri üzerinde çoğaltılmış hADMSC türevli düz kas hücreleri ve mesane biyopsisinden izole edilmiş ürotelyal hücrelerin, doku mühendisliği ile yapay mesane üretimi için iyi bir model olabileceğini göstermiştir.
Project Number
TIP 2010-013
References
- 1. Erden S. Mezenkimal kök hücre kaynaklı yapay insan mesanesi geliştirilmesine yönelik hücre kültürü ve doku iskelesi uygulamaları İzmir, Türkiye. 2013.
- 2. Atala A. Tissue engineering for the replacement of organ function in the genitourinary system. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2004;4 Suppl 6:58-73. doi:10.1111/j.1600-6135.2004.0346.x
- 3. Atala A. Engineering organs. Curr Opin Biotechnol. 2009;20(5):575-592. doi:10.1016/j.copbio.2009.10.003
- 4. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920-926. doi:10.1126/science.8493529
- 5. Islam MM, Shahruzzaman M, Biswas S, Nurus Sakib M, Rashid TU. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater. 2020;5(1):164-183. doi:10.1016/j.bioactmat.2020.01.012
- 6. Wang X, Zhang F, Liao L. Current applications and future directions of bioengineering approaches for bladder augmentation and reconstruction. Front Surg. 2021;8. doi:10.3389/fsurg.2021.664404
- 7. Demcisakova Z, Luptakova L, Tirpakova Z, et al. Evaluation of angiogenesis in an acellular porous biomaterial based on polyhydroxybutyrate and chitosan using the chicken ex ovo chorioallantoic membrane model. Cancers (Basel). 2022;14(17). doi:10.3390/cancers14174194
- 8. Kadhim IAU, Sallal HA, Al-Khafaji ZS Al. A review in investigation of marine biopolymer (chitosan) for bioapplications. ES Mater Manuf. 2023;21:828. doi:10.30919/esmm5f828
- 9. Klabukov I, Tenchurin T, Shepelev A, et al. Biomechanical behaviors and degradation properties of multilayered polymer scaffolds: The phase space method for bile duct design and bioengineering. Biomedicines. 2023; 11(3):745. doi: org/10.3390/biomedicines11030745
- 10. Casarin M, Morlacco A, Dal Moro F. Tissue engineering and regenerative medicine in pediatric urology: urethral and urinary bladder reconstruction. Int J Mol Sci. 2022;23(12). doi:10.3390/ijms23126360
- 11. Horst M, Eberli D, Gobet R, Salemi S. Tissue engineering in pediatric bladder reconstruction—the road to success. Front Pediatr. 2019;7. doi:10.3389/fped.2019.00091
- 12. Zhao Z, Liu D, Chen Y, et al. Ureter tissue engineering with vessel extracellular matrix and differentiated urine-derived stem cells. Acta Biomater. 2019;88:266-279. doi:10.1016/j.actbio.2019.01.072
- 13. Culenova M, Ziaran S, Danisovic L. Cells involved in urethral tissue engineering: Systematic review. Cell Transplant. 2019;28(9-10):1106-1115. doi:10.1177/0963689719854363
- 14. Tayhan SE, Keleş GT, Topçu İ, Mir E, Gürhan SİD. Isolation and in vitro cultivation of human urine-derived cells: an alternative stem cell source. Turkish J Urol. 2017;43(3):345-349. doi:10.5152/tud.2017.93797
- 15. Tayhan SE, Taşdemir Ş, Gürhan SİD, Mir E. Comparison of the osteogenic differentiation capacity of adipose tissue derived mesenchymal stem cells from humans and rats. Turkish J Biol. 2016;40(5):1090-1095. doi:10.3906/biy-1507-128
- 16. Pokrywczynska M, Czapiewska M, Jundzill A, et al. Optimization of porcine urothelial cell cultures: Best practices, recommendations, and threats. Cell Biol Int. 2016;40(7):812-820. doi:10.1002/cbin.10614
- 17. Kloskowski T, Uzarska M, Gurtowska N, et al. How to isolate urothelial cells? Comparison of four different methods and literature review. Hum Cell. 2014;27(2):85-93. doi:10.1007/s13577-013-0070-y
- 18. Salem SA, Rashidbenam Z, Jasman MH, et al. Incorporation of smooth muscle cells derived from human adipose stem cells on poly (lactic-co-glycolic acid) scaffold for the reconstruction of subtotally resected urinary bladder in athymic rats. Tissue Eng Regen Med. 2020;17(4):553-563. doi:10.1007/s13770-020-00271-7
- 19. Zhou Z, Yan H, Liu Y, et al. Adipose-derived stem-cell-implanted poly(ϵ-caprolactone)/chitosan scaffold improves bladder regeneration in a rat model. Regen Med. 2018;13(3):331-342. doi:10.2217/rme-2017-0120
- 20. Ramesh R, Jayakumar K, Krishnan LK. Synergistic effect of inducible factors on the differentiation of human adipose-derived stem cells to vascular cells. Arch Clin Biomed Res. 2020;4:632-656. doi:10.26502/acbr.50170131
- 21. Hu Z, Chen Y, Gao M, et al. Novel strategy for primary epithelial cell isolation: Combination of hyaluronidase and collagenase I. Cell Prolif. 2023;56(1):e13320. doi:10.1111/cpr.13320
- 22. Freshney RI, Freshney MG. Culture of epithelial cells. New York: Wiley-Liss; 2002
- 23. Llames S, García-Pérez E, Meana Á, Larcher F, del Río M. Feeder layer cell actions and applications. Tissue Eng Part B Rev. 2015;21(4):345-353. doi:10.1089/ten.teb.2014.054724.
- 24. Adamowicz J, Pokrywczynska M, Van Breda SV, Kloskowski T, Drewa T. Concise review: Tissue engineering of urinary bladder; we still have a long way to go? Stem Cells Transl Med. 2017;6(11):2033-2043. doi:10.1002/sctm.17-0101
- 25. Gasanz C, Raventós C, Morote J. Current status of tissue engineering applied to bladder reconstruction in humans. Actas Urol Esp (Engl Ed) 2018;42(7):435-441. doi:10.1016/j.acuroe.2018.06.001
- 26. Ortac M, Ekerhult TO, Zhao W, Atala A. Tissue engineering graft for urethral reconstruction: Is it ready for clinical application? Turkish J Urol. 2023;49(1):11-18. doi:10.5152/tud.2023.22226
- 27. Sionkowska A, Kaczmarek B, Lewandowska K, et al. 3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid. Int J Biol Macromol. 2016;89:442-448. doi: 10.1016/j.ijbiomac.2016.04.085
- 28. Liu W, Shi K, Zhu X, et al. Adipose tissue-derived stem cells in plastic and reconstructive surgery: A bibliometric study. Aesthetic Plast Surg. 2021;45(2):679-689. doi:10.1007/s00266-020-01615-3
- 29. Park YG, Baek AM, Do BR, Choi JH, Do Kim S. Myogenic differentiation of human adipose-derived stem cells. J Korean Acad Rehab Med. 2011;35(1):8-13.
- 30. Rajcani J, Kajo K, Adamkov M, et al. Immunohistochemical characterization of urothelial carcinoma. Bratisl Lek Listy. 2013;114(8):431-438. doi:10.4149/bll_2013_091