Araştırma Makalesi
BibTex RIS Kaynak Göster

Ağ yönlendiricileri için çoklu eşik kullanan geçişsiz öncelikli zamanlayıcı

Yıl 2018, Cilt: 24 Sayı: 2, 246 - 254, 30.04.2018

Öz

Bilgisayar
ağları için mevcut ve geliştirilmekte olan çok çeşitli uygulamaların farklı
hizmet kalitesi gereksinimleri vardır. Uygulamaların ihtiyaçlarını karşılamanın
en önemli yollarından birisi ağ yönlendiricileri tarafından kullanlan paket
zamanlama algoritmalarıdır. Uygulamalara yönlendirici kaynaklarını ayırarak, paket
zamanlayıcıları uygulamaların hizmet kalitesi ihtiyaçlarını artırmaya çalışır.
Bu nedenle, gecikmeler azaltılabilir ya da uygulamaların güvenilirliği paket
kayıplarını azaltmak suretiyle arttırılabilir. Öncelikli zamanlayıcılar, yüksek
öncelikli uygulamaların gecikme ve kayıplarını azaltabilirler. Öte yandan,
düşük öncelikli uygulamalar için açlık problemi getirirler. Düşük öncelikli
uygulama paketleri aşırı gecikmeler ve kayıplarla karşılaşabilirler. Bu
makalede çoklu eşik kullanan geçişsiz öncelikli zamanlayıcı (PRMT)
önerilmektedir. PRMT zamanlayıcı farklı öncelikli uygulamalar için önceden
tanımlanmış eşik seviyeleri kullanan tek bir kuyruk ihtiyacı duyar. PRMT
zamanlayıcı yüksek öncelikli uygulamaların üzerinde önemli bir etkiye yol
açmadan,  düşük öncelikli uygulamalardaki
açlık sorunu ortadan kaldırır.

Kaynakça

  • Zorzi M, Gluhak A, Lange S, Bassi A. “From today's intranet of things to a future internet of things: a wireless-and mobility-related view”. IEEE Wireless Communications, 17(6), 44-51, 2010
  • Gubbi J, Buyya R, Marusic S, Palaniswami M. “Internet of Things (IoT): A vision, architectural elements, and future directions”. Future Generation Computer Systems, 29(7), 1645-1660, 2013.
  • Gartner Inc. “Gartner Says 6.4 Billion Connected Things Will be in Use in 2016, up 30 Percent From 2015”. http://www.gartner.com/newsroom/id/3165317 (19.10.2016).
  • Tanenbaum AS, Wetherall DJ. Computer Networks. 5th ed. Boston, USA, Pearson, 2011.
  • Kurose JF, Ross KW. Computer Networking a Top-Down Approach. 6th ed. Essex, England, Pearson, 2013.
  • Zhang H. “Service disciplines for guaranteed performance service in packet-switching networks”. Proceedings of the IEEE, 83(10), 1374-1396, 1995.
  • Necker MC. “A comparison of scheduling mechanisms for service class differentiation in HSDPA networks”. AEU-International Journal of Electronics and Communications, 60(2), 136-141, 2006.
  • Bhatti SN, Crowcroft J. “QoS-sensitive flows: Issues in IP packet handling”. IEEE Internet Computing, 4(4), 48-57, 2000.
  • Kleinrock L. Queuing Systems, Volume 2: Computer Applications. New York, USA, Wiley Interscience, 1975.
  • Zhao W, Stankovic JA. “Performance analysis of FCFS and improved FCFS scheduling algorithms for dynamic real-time computer systems”. Real Time Systems Symposium, Santa Monica, CA, USA, 5-7 December 1989.
  • Saleh M, Dong L. “Comparing FCFS & EDF scheduling algorithms for real-time packet switching networks”. 2010 International Conference on Networking, Sensing and Control (ICNSC), Chicago, IL, USA, 10-12 April 2010.
  • Jain V, Agarwal S, Goswami K. “Dynamic multilevel priority packet scheduling design for WSN”. 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT), Rajasthan, India, 12-13 July 2014.
  • Justus JJ, Sekar AC. “Energy efficient priority packet scheduling with delay and loss constraints for wireless sensor networks”. International Conference on Inventive Computation Technologies, Tamilnadu, India, 26-27 August 2016.
  • Dag T, Uzungenc S. “Dynamic multi threshold priority packet scheduling algorithms”. 2016 International Conference on Measurement Instrumentation and Electronics (ICMIE), MATEC Web of Conferences, Munich, Germany, 6-8 June 2016.
  • Yantong W, Sheng Z. “An enhanced dynamic priority packet scheduling algorithm in wireless sensor networks”. 18th International Conference on Computer Modelling and Simulation (UKSim), Cambridge, UK, 6-8 April 2016.
  • Bansode S, Sambare S. “Performance evaluation of dynamic multilevel priority (DMP) packet scheduling for wireless sensor networks”. 2015 International Conference on Pervasive Computing, Pune, India, 8-10 January 2015.
  • Karim L, Nasse N, Taleb T, Alqallaf A. “An efficient priority packet scheduling algorithm for wireless sensor network”. 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10-15 June 2012.
  • Kargahi M, Movaghar A. “Non-preemptive earliest-deadline-first scheduling policy: a performance study”. 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Atlanta, GA, USA, 26-29 September 2005.
  • Liu D, Lee YH. “An efficient scheduling discipline for packet switching networks using earliest deadline first round robin”. 12th International Conference on Computer Communications and Networks (ICCCN), Dallas, TX, USA, 20-22 October 2003.
  • Hamed M, Shukry S, El-Mahallawy MS, El-Ramly S. “Modified earliest deadline first scheduling with channel quality indicator for downlink real-time traffic in LTE networks”. 3rd International Conference on e-Techologies and Networks for Development (ICeND), Beirut, Lebanon, 29 April-1 May 2014.
  • Demers A, Keshav S, Shenker S. “Analysis and Simulation of a Fair Queueing Algorithm”. ACM SIGCOMM Symposium, Austin, TX, USA, 19-22 September 1989.
  • Parekh AK, Gallager RG. “A generalized processor sharing approach to flow control in ıntegrated services networks: the single-node Case”. IEEE/ACM Transactions on Networking, 1(3), 344-357, 1993.
  • Banks J, Carson II JS, Nelson B, Nicol DM. Discrete-Event System Simulation. 5th ed. New Jersey, USA, Pearson, 2010.

Non-preemptive priority scheduler with multiple thresholds for network routers

Yıl 2018, Cilt: 24 Sayı: 2, 246 - 254, 30.04.2018

Öz

The
vast variety of applications available and being developed for computer
networks have different quality of service requirements. One of the most
significant ways to satisfy the needs of the applications is the packet
scheduling algorithms employed by the network routers. By allocating router
resources to the applications, packet schedulers try to improve the quality of
service needs of the applications. Thus, the delays can be reduced or the
reliability of the applications can be increased by reducing packet losses.
Priority schedulers are able reduce the delay and losses for high priority
applications. On the other hand, for low priority applications they introduce
the starvation problem. Low priority application packets can face excessive
delays and losses. In this paper, a non-preemptive priority scheduler with
multiple thresholds (PRMT) is proposed. The PRMT scheduler needs only a single
queue with predefined threshold levels for different priority applications. The
PRMT scheduler eliminates the starvation problem of low priority applications
without a significant impact on the high priority applications.

Kaynakça

  • Zorzi M, Gluhak A, Lange S, Bassi A. “From today's intranet of things to a future internet of things: a wireless-and mobility-related view”. IEEE Wireless Communications, 17(6), 44-51, 2010
  • Gubbi J, Buyya R, Marusic S, Palaniswami M. “Internet of Things (IoT): A vision, architectural elements, and future directions”. Future Generation Computer Systems, 29(7), 1645-1660, 2013.
  • Gartner Inc. “Gartner Says 6.4 Billion Connected Things Will be in Use in 2016, up 30 Percent From 2015”. http://www.gartner.com/newsroom/id/3165317 (19.10.2016).
  • Tanenbaum AS, Wetherall DJ. Computer Networks. 5th ed. Boston, USA, Pearson, 2011.
  • Kurose JF, Ross KW. Computer Networking a Top-Down Approach. 6th ed. Essex, England, Pearson, 2013.
  • Zhang H. “Service disciplines for guaranteed performance service in packet-switching networks”. Proceedings of the IEEE, 83(10), 1374-1396, 1995.
  • Necker MC. “A comparison of scheduling mechanisms for service class differentiation in HSDPA networks”. AEU-International Journal of Electronics and Communications, 60(2), 136-141, 2006.
  • Bhatti SN, Crowcroft J. “QoS-sensitive flows: Issues in IP packet handling”. IEEE Internet Computing, 4(4), 48-57, 2000.
  • Kleinrock L. Queuing Systems, Volume 2: Computer Applications. New York, USA, Wiley Interscience, 1975.
  • Zhao W, Stankovic JA. “Performance analysis of FCFS and improved FCFS scheduling algorithms for dynamic real-time computer systems”. Real Time Systems Symposium, Santa Monica, CA, USA, 5-7 December 1989.
  • Saleh M, Dong L. “Comparing FCFS & EDF scheduling algorithms for real-time packet switching networks”. 2010 International Conference on Networking, Sensing and Control (ICNSC), Chicago, IL, USA, 10-12 April 2010.
  • Jain V, Agarwal S, Goswami K. “Dynamic multilevel priority packet scheduling design for WSN”. 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT), Rajasthan, India, 12-13 July 2014.
  • Justus JJ, Sekar AC. “Energy efficient priority packet scheduling with delay and loss constraints for wireless sensor networks”. International Conference on Inventive Computation Technologies, Tamilnadu, India, 26-27 August 2016.
  • Dag T, Uzungenc S. “Dynamic multi threshold priority packet scheduling algorithms”. 2016 International Conference on Measurement Instrumentation and Electronics (ICMIE), MATEC Web of Conferences, Munich, Germany, 6-8 June 2016.
  • Yantong W, Sheng Z. “An enhanced dynamic priority packet scheduling algorithm in wireless sensor networks”. 18th International Conference on Computer Modelling and Simulation (UKSim), Cambridge, UK, 6-8 April 2016.
  • Bansode S, Sambare S. “Performance evaluation of dynamic multilevel priority (DMP) packet scheduling for wireless sensor networks”. 2015 International Conference on Pervasive Computing, Pune, India, 8-10 January 2015.
  • Karim L, Nasse N, Taleb T, Alqallaf A. “An efficient priority packet scheduling algorithm for wireless sensor network”. 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10-15 June 2012.
  • Kargahi M, Movaghar A. “Non-preemptive earliest-deadline-first scheduling policy: a performance study”. 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Atlanta, GA, USA, 26-29 September 2005.
  • Liu D, Lee YH. “An efficient scheduling discipline for packet switching networks using earliest deadline first round robin”. 12th International Conference on Computer Communications and Networks (ICCCN), Dallas, TX, USA, 20-22 October 2003.
  • Hamed M, Shukry S, El-Mahallawy MS, El-Ramly S. “Modified earliest deadline first scheduling with channel quality indicator for downlink real-time traffic in LTE networks”. 3rd International Conference on e-Techologies and Networks for Development (ICeND), Beirut, Lebanon, 29 April-1 May 2014.
  • Demers A, Keshav S, Shenker S. “Analysis and Simulation of a Fair Queueing Algorithm”. ACM SIGCOMM Symposium, Austin, TX, USA, 19-22 September 1989.
  • Parekh AK, Gallager RG. “A generalized processor sharing approach to flow control in ıntegrated services networks: the single-node Case”. IEEE/ACM Transactions on Networking, 1(3), 344-357, 1993.
  • Banks J, Carson II JS, Nelson B, Nicol DM. Discrete-Event System Simulation. 5th ed. New Jersey, USA, Pearson, 2010.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makale
Yazarlar

Tamer Dağ 0000-0001-7020-3741

Yayımlanma Tarihi 30 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 24 Sayı: 2

Kaynak Göster

APA Dağ, T. (2018). Non-preemptive priority scheduler with multiple thresholds for network routers. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(2), 246-254.
AMA Dağ T. Non-preemptive priority scheduler with multiple thresholds for network routers. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Nisan 2018;24(2):246-254.
Chicago Dağ, Tamer. “Non-Preemptive Priority Scheduler With Multiple Thresholds for Network Routers”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24, sy. 2 (Nisan 2018): 246-54.
EndNote Dağ T (01 Nisan 2018) Non-preemptive priority scheduler with multiple thresholds for network routers. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 2 246–254.
IEEE T. Dağ, “Non-preemptive priority scheduler with multiple thresholds for network routers”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 24, sy. 2, ss. 246–254, 2018.
ISNAD Dağ, Tamer. “Non-Preemptive Priority Scheduler With Multiple Thresholds for Network Routers”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24/2 (Nisan 2018), 246-254.
JAMA Dağ T. Non-preemptive priority scheduler with multiple thresholds for network routers. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24:246–254.
MLA Dağ, Tamer. “Non-Preemptive Priority Scheduler With Multiple Thresholds for Network Routers”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 24, sy. 2, 2018, ss. 246-54.
Vancouver Dağ T. Non-preemptive priority scheduler with multiple thresholds for network routers. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24(2):246-54.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.