Research Article
BibTex RIS Cite

İleri biyolojik atıksu arıtma tesislerinde işletme parametrelerinin doğrudan sera gazı emisyon miktarı üzerindeki etkilerinin belirlenmesi

Year 2018, Volume: 24 Issue: 6, 1117 - 1124, 18.12.2018

Abstract

Küresel ısınmaya karşı alınan önlemlerin
başında, farklı ekonomik sektörler için sera gazı emisyonu kontrolü
gelmektedir. Türkiye’nin de taraf olduğu Birleşmiş Milletler İklim Değişikliği
Çerçeve Sözleşmesi’ne göre taraflar ekonomik sektörlerden salınan sera gazı
miktarlarını yıllık olarak raporlamakla yükümlüdürler. Atık sektörü, insan
kaynaklı sera gazı emisyonunun %3’ünü, atıksu arıtımı ise atık sektöründen
kaynaklanan sera gazı emisyonunun %20’sini oluşturmaktadır. Bu çalışmada,
eşdeğer nüfusu 2344000 olan, biyolojik besi maddesi giderimi yapılan ve çamurun
anaerobik olarak çürütüldüğü bir evsel atıksu arıtma tesisinde sera gazı
emisyonunu etkileyen faktörler, GPS-X 6.5 model yazılımı kullanılarak
incelenmiştir. Bu amaçla, çamur yaşı ve çözünmüş oksijen parametreleri ele
alınmıştır. Çamur yaşı için 2, 5, 9, 13 ve 18 gün değerleri test edilmiş ve
sırasıyla 0, 618508, 565961, 565681 ve 554684 t CO2 eşd/yıl doğrudan
emisyon miktarı tahmin edilmiştir. Beş günün üzerinde, artan çamur yaşıyla
emisyon miktarının azaldığı görülmüştür. Çözünmüş oksijen konsantrasyonu
parametresi için 0.5, 1.0, 1.5, 2.0, 2.5 ve 3.0 mg/L değerleri incelenmiştir ve
sırasıyla 1455632, 999243, 719380, 583603, 503275 ve 449997 t CO2
eşd/yıl doğrudan emisyon miktarı tahmin edilmiştir. Havalandırma tankında artan
çözünmüş oksijen konsantrasyonu ile doğrudan sera gazı emisyonun azaldığı
görülmüştür. Duyarlılık analizi ile sera gazı emisyonuna çözünmüş oksijen
parametresinin, çamur yaşı parametresinden daha fazla etkisi olduğu
görülmüştür.

References

  • IPCC. “Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the IPCC”. Geneva, Switzerland, Synthesis Report, 2014.
  • Liobikiene G, Butkus M. “The European union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy”. Renewable Energy, 106, 298-309, 2017.
  • IPCC. “2006 IPCC Guidelines for National Greenhouse Gas Emissions Inventories”. Institute for Global Environmental Strategies, Japan, 2006.
  • Gülhan, H. Evsel Atıksu Arıtma Tesislerinden Kaynaklanan Sera Gazı Salımının Tahmini. Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2017.
  • Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H. “Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change”. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
  • GWRC. “N2O and CH4 Emission From Wastewater Collection And Treatment Systems: Technical Report”. London, United Kingdom, Global Water Research Coalition Technical Report, 2011.
  • Erşahin ME, Dereli RK, Özgün H, Akmırza-Aynur Z, Öztürk İ. “Atıksu arıtma tesislerinde enerji verimliliğinin incelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 380-387, 2017.
  • Daelman M, van Voorthuizen E, van Dongen U, Volcke E, van Loosdrecht M. “Methane emission during municipal wastewater Treatment”. Water Research, 46(11), 3657-3670, 2012.
  • Wrage N, Velthof G, van Beusichem M, Oenema O. “Role of nitrifier denitrification in the production of nitrous oxide”. Soil Biology & Biochemistry, 33(12-13), 1723-1732, 2001.
  • Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H. “Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions”. Water Research, 46(4), 1027-1037, 2012.
  • Law Y, Ye L, Pan Y, Yuan Z. “Nitrous oxide emissions from wastewater treatment processes”. Philosophical Transactions of The Royal Society, 367(1593), 1265-1277, 2012.
  • Yoshida H, Mønster J, Scheutz C. “Plant-integrated measurement of greenhouse gas emissions from municipal wastewater treatment plant”. Water Research, 61, 108-118, 2014.
  • Shahabadi BM, Yerushalmi L, Haghighat F. “Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants”. Water Research, 43(10), 2679-2687, 2009.
  • Cakir FY, Stenstrom MK. “Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology”. Water Research, 39(17), 4197-4203, 2005.
  • Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM. “Nitrous oxide emission during wastewater treatment". Water Research, 43(17), 4093-4103, 2009.
  • Rodriguez-Caballero A, Aymerich I, Poch M, Pijuan M. “Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system". Science of the Total Environment, 493, 384–391, 2014.
  • Flores-Alsina X, Corominas L, Snip L, Vanrolleghem PA. “Including greenhouse gas emissions during benchmarking of wastewater treatment plant control strategies”. Water Research, 45(16), 4700-4710, 2011.
  • Hydromantis. “GPS-X Technical Reference-V.6.5.”. Hydromantis Environmental Software Solutions, Inc., Canada, 2016.
  • Hydromantis. “Webinar: Introduction to GPS-X Greenhouse Gas (GHG) and Carbon Footprint (CF) module”. Educational video from Hydromantis Youtube Channel, https://www.youtube.com/watch?v=6OZ2_kb840k&list=PLhan9pNnjFlyt4HUgjn5xVmUMihWea1E8&t=1711s&index=37, (07.08.2017).
  • WRI & WBCSD. “The GHG Protocol for Project Accounting”. World Resources Institıte (WRI) and World Business Council for Sustainable Development (WBCSD) Protocol, Washington, USA, 2005.
  • Schulthess RV, Kuehni M, Gujer W. “Release of nitric and nitrous oxides from denitrifying activated sludge”. Water Research, 29(1), 215-226, 1995.
  • Colliver BB, Stephenson T. “Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers”. Biotechnology Advances, 18(3), 219-232, 2000.
  • Ahn JH, Kim S, Park H, Rahm B, Pagilla K, Chandran K. “N2O Emissions from activated sludge processes, 2008-2009: results of a national monitoring survey in the United States”. Environmental Science and Technology, 44(12), 4505-4511, 2010.
  • Talleca G, Garnier J, Billen G, Gousailles M. “Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of oxygenation level”. Water Research, 40(15), 2972-2980, 2006.
  • T.C. Çevre ve Orman Bakanlığı. “Kentsel Atıksu Arıtımı Yönetmeliği”. Ankara, Türkiye, Resmi Gazete Sayısı: 26047, 2006.
  • Goreau T, Kaplan W, Wofsy S, McElroy M, Valois F, Watson S. “Production of NO2- and N2O by nitrifying bacteria at reduced concentrations of oxygen”. Applied and Environmental Microbiology, 40(3), 526-532, 1980.

Effects of operating parameters on direct greenhouse gas emission in advanced biological wastewater treatment plants

Year 2018, Volume: 24 Issue: 6, 1117 - 1124, 18.12.2018

Abstract

The
major measure taken on global warming is to control greenhouse gas emission for
different economic sectors. Within the context of the United Nations Framework
Convention on Climate Change (UNFCCC), to which Turkey is party, parties are
obliged to report annual greenhouse gas emissions from each economic sector.
Greenhouse gas emissions from the waste sector account for approximately 3% of
global human-induced greenhouse gas emissions, while wastewater treatment
accounts for 20% of the greenhouse gas emissions from waste sector
. In
this study, factors effecting direct
greenhouse
gas emission in a wastewater treatment plant with an equivalent population of
2344000 were investigated by using GPS-X 6.5 software. Biological nutrient
removal was conducted and sludge was digested under anaerobic conditions in the
wastewater treatment plant. Both sludge age and dissolved oxygen parameters
were investigated. 2, 5, 9, 13, and 18 days of sludge age were tested, and
direct emissions of 0, 618508, 565961, 565681 and 554684 t CO2
eq/year were calculated, respectively. Direct emission amount decreased with
increasing sludge age over five days. Dissolved oxygen emissions of 0.5, 1.0,
1.5, 2.0, 2.5, and 3.0 mg/L were tested, and direct emissions of 1455632,
999243, 719380, 583603, 503275 and 449997 t CO2 eq/year were
calculated, respectively. Direct emission amount decreased with increasing
dissolved oxygen concentration in the aeration tank. Considering sensitivity
analysis, dissolved oxygen parameter is more effective on greenhouse gas
emissions in comparison to the sludge age parameter.

References

  • IPCC. “Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the IPCC”. Geneva, Switzerland, Synthesis Report, 2014.
  • Liobikiene G, Butkus M. “The European union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy”. Renewable Energy, 106, 298-309, 2017.
  • IPCC. “2006 IPCC Guidelines for National Greenhouse Gas Emissions Inventories”. Institute for Global Environmental Strategies, Japan, 2006.
  • Gülhan, H. Evsel Atıksu Arıtma Tesislerinden Kaynaklanan Sera Gazı Salımının Tahmini. Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2017.
  • Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H. “Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change”. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
  • GWRC. “N2O and CH4 Emission From Wastewater Collection And Treatment Systems: Technical Report”. London, United Kingdom, Global Water Research Coalition Technical Report, 2011.
  • Erşahin ME, Dereli RK, Özgün H, Akmırza-Aynur Z, Öztürk İ. “Atıksu arıtma tesislerinde enerji verimliliğinin incelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 380-387, 2017.
  • Daelman M, van Voorthuizen E, van Dongen U, Volcke E, van Loosdrecht M. “Methane emission during municipal wastewater Treatment”. Water Research, 46(11), 3657-3670, 2012.
  • Wrage N, Velthof G, van Beusichem M, Oenema O. “Role of nitrifier denitrification in the production of nitrous oxide”. Soil Biology & Biochemistry, 33(12-13), 1723-1732, 2001.
  • Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H. “Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions”. Water Research, 46(4), 1027-1037, 2012.
  • Law Y, Ye L, Pan Y, Yuan Z. “Nitrous oxide emissions from wastewater treatment processes”. Philosophical Transactions of The Royal Society, 367(1593), 1265-1277, 2012.
  • Yoshida H, Mønster J, Scheutz C. “Plant-integrated measurement of greenhouse gas emissions from municipal wastewater treatment plant”. Water Research, 61, 108-118, 2014.
  • Shahabadi BM, Yerushalmi L, Haghighat F. “Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants”. Water Research, 43(10), 2679-2687, 2009.
  • Cakir FY, Stenstrom MK. “Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology”. Water Research, 39(17), 4197-4203, 2005.
  • Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM. “Nitrous oxide emission during wastewater treatment". Water Research, 43(17), 4093-4103, 2009.
  • Rodriguez-Caballero A, Aymerich I, Poch M, Pijuan M. “Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system". Science of the Total Environment, 493, 384–391, 2014.
  • Flores-Alsina X, Corominas L, Snip L, Vanrolleghem PA. “Including greenhouse gas emissions during benchmarking of wastewater treatment plant control strategies”. Water Research, 45(16), 4700-4710, 2011.
  • Hydromantis. “GPS-X Technical Reference-V.6.5.”. Hydromantis Environmental Software Solutions, Inc., Canada, 2016.
  • Hydromantis. “Webinar: Introduction to GPS-X Greenhouse Gas (GHG) and Carbon Footprint (CF) module”. Educational video from Hydromantis Youtube Channel, https://www.youtube.com/watch?v=6OZ2_kb840k&list=PLhan9pNnjFlyt4HUgjn5xVmUMihWea1E8&t=1711s&index=37, (07.08.2017).
  • WRI & WBCSD. “The GHG Protocol for Project Accounting”. World Resources Institıte (WRI) and World Business Council for Sustainable Development (WBCSD) Protocol, Washington, USA, 2005.
  • Schulthess RV, Kuehni M, Gujer W. “Release of nitric and nitrous oxides from denitrifying activated sludge”. Water Research, 29(1), 215-226, 1995.
  • Colliver BB, Stephenson T. “Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers”. Biotechnology Advances, 18(3), 219-232, 2000.
  • Ahn JH, Kim S, Park H, Rahm B, Pagilla K, Chandran K. “N2O Emissions from activated sludge processes, 2008-2009: results of a national monitoring survey in the United States”. Environmental Science and Technology, 44(12), 4505-4511, 2010.
  • Talleca G, Garnier J, Billen G, Gousailles M. “Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of oxygenation level”. Water Research, 40(15), 2972-2980, 2006.
  • T.C. Çevre ve Orman Bakanlığı. “Kentsel Atıksu Arıtımı Yönetmeliği”. Ankara, Türkiye, Resmi Gazete Sayısı: 26047, 2006.
  • Goreau T, Kaplan W, Wofsy S, McElroy M, Valois F, Watson S. “Production of NO2- and N2O by nitrifying bacteria at reduced concentrations of oxygen”. Applied and Environmental Microbiology, 40(3), 526-532, 1980.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Hazal Gülhan 0000-0001-8155-9970

Recep Kaan Dereli 0000-0001-7853-270X

Hale Özgün 0000-0001-8784-8351

Mustafa Evren Erşahin 0000-0003-1607-0524

İzzet Öztürk 0000-0002-8274-5326

Publication Date December 18, 2018
Published in Issue Year 2018 Volume: 24 Issue: 6

Cite

APA Gülhan, H., Dereli, R. K., Özgün, H., Erşahin, M. E., et al. (2018). İleri biyolojik atıksu arıtma tesislerinde işletme parametrelerinin doğrudan sera gazı emisyon miktarı üzerindeki etkilerinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(6), 1117-1124.
AMA Gülhan H, Dereli RK, Özgün H, Erşahin ME, Öztürk İ. İleri biyolojik atıksu arıtma tesislerinde işletme parametrelerinin doğrudan sera gazı emisyon miktarı üzerindeki etkilerinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. December 2018;24(6):1117-1124.
Chicago Gülhan, Hazal, Recep Kaan Dereli, Hale Özgün, Mustafa Evren Erşahin, and İzzet Öztürk. “İleri Biyolojik atıksu arıtma Tesislerinde işletme Parametrelerinin doğrudan Sera Gazı Emisyon Miktarı üzerindeki Etkilerinin Belirlenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24, no. 6 (December 2018): 1117-24.
EndNote Gülhan H, Dereli RK, Özgün H, Erşahin ME, Öztürk İ (December 1, 2018) İleri biyolojik atıksu arıtma tesislerinde işletme parametrelerinin doğrudan sera gazı emisyon miktarı üzerindeki etkilerinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 6 1117–1124.
IEEE H. Gülhan, R. K. Dereli, H. Özgün, M. E. Erşahin, and İ. Öztürk, “İleri biyolojik atıksu arıtma tesislerinde işletme parametrelerinin doğrudan sera gazı emisyon miktarı üzerindeki etkilerinin belirlenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 6, pp. 1117–1124, 2018.
ISNAD Gülhan, Hazal et al. “İleri Biyolojik atıksu arıtma Tesislerinde işletme Parametrelerinin doğrudan Sera Gazı Emisyon Miktarı üzerindeki Etkilerinin Belirlenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24/6 (December 2018), 1117-1124.
JAMA Gülhan H, Dereli RK, Özgün H, Erşahin ME, Öztürk İ. İleri biyolojik atıksu arıtma tesislerinde işletme parametrelerinin doğrudan sera gazı emisyon miktarı üzerindeki etkilerinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24:1117–1124.
MLA Gülhan, Hazal et al. “İleri Biyolojik atıksu arıtma Tesislerinde işletme Parametrelerinin doğrudan Sera Gazı Emisyon Miktarı üzerindeki Etkilerinin Belirlenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 6, 2018, pp. 1117-24.
Vancouver Gülhan H, Dereli RK, Özgün H, Erşahin ME, Öztürk İ. İleri biyolojik atıksu arıtma tesislerinde işletme parametrelerinin doğrudan sera gazı emisyon miktarı üzerindeki etkilerinin belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24(6):1117-24.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.