Research Article
BibTex RIS Cite

Kayar baskı plakalı artımlı sac şekillendirme yöntemiyle şekillendirilen Erdemir 7136 sacının geri esneme davranışının araştırılması

Year 2021, Volume: 27 Issue: 1, 90 - 95, 08.02.2021

Abstract

Artımlı şekillendirme yöntemi ile kalıp imalatına ihtiyaç duyulmadan hızlı ve düşük maliyetli prototip parça üretimi yapılabilmektedir. Ancak bu yöntemdeki en önemli sorunlardan bir tanesi üretilen parçaların geometrik doğruluğudur. Geometriksel hatanın en büyük kaynağı ise geri esneme olayıdır. Bu çalışmada, kayar baskı plakalı artımlı sac şekillendirme metodu kullanılarak 1 mm kalınlığındaki Erdemir 7136 sacı şekillendirilmiştir. Klemp sıkma (sacı tutma) basıncı, artım miktarı, form takım çapı ve ilerleme hızı parametrelerinin geri esnemeye olan etkileri araştırılmıştır. Araştırma neticesinde geri esneme açısının takım çapı arttıkça büyüdüğü, ilerleme hızı ve artım miktarının artması ile düştüğü tespit edilmiştir. Çalışma kapsamında optimum parametre değerleri 5.8776 bar klemp sıkma basıncı, 1500 mm/dk. ilerleme hızı, 0.75 mm artım miktarı ve 5 mm takım çapı olarak belirlenmiştir.

References

  • [1] Choi H, Lee C. “A mathematical model to predict thickness distribution and formability of incremental forming combined with stretch forming”. Robotics and Computer-Integrated Manufacturing, 55(Part B), 164-172, 2019.
  • [2] Bagudanch I, Garcia-Romeu ML, Centeno G, Elías-Zúñiga A, Ciurana J. “Forming force and temperature effects on single point incremental forming of polyvinylchloride”. Journal of Materials Processing Technology, 219, 221-229, 2015.
  • [3] Song X, Zhang J, Zhai W, Taureza M, Castagne S, Danno A. “Numerical and experimental study of micro single point incremental forming process”. Procedia Engineering, 207, 825-830, 2017.
  • [4] Gupta P, Jeswiet J. “Manufacture of an aerospace component by single point incremental forming”. Procedia Manufacturing, 29, 112-119, 2019.
  • [5] Shamsari M, Mirnia MJ, Elyasi M, Baseri H. “Formability improvement in single point incremental forming of truncated cone using a two-stage hybrid deformation strategy”. The International Journal of Advanced Manufacturing Technology, 94(5-8), 2357-2368, 2018.
  • [6] Dakhli M, Boulila A, Tourki Z. “Effect of generatrix profile on single-point incremental forming parameters”. The International Journal of Advanced Manufacturing Technology, 93(5-8), 2505-2516 2017.
  • [7] Gatea S, Ou H, McCartney G. “Review on the influence of process parameters in incremental sheet forming”. The International Journal of Advanced Manufacturing Technology, 87(1-4), 479-499, 2016.
  • [8] Li X, Han K, Li Z, Li D, Li Z. “One novel method to improve surface quality in incremental sheet forming”. Procedia Engineering, 207, 842-847, 2017.
  • [9] Yue ZM, Chu XR, Gao J. “Numerical simulation of incremental sheet forming with considering yield surface distortion”. The International Journal of Advanced Manufacturing Technology, 92(5-8), 1761-1768, 2017.
  • [10] Dang T, Tebaay LM, Gies S, Tekkaya AE. “Multiple forming tools in incremental forming - influence of the forming strategies on sheet contour”. AIP Conference Proceedings, 1769, 1-5, 2016.
  • [11] Sbayti M, Bahloul R, BelHadjSalah H, Zemzemi F. “Optimization techniques applied to single point incremental forming process for biomedical application”. The International Journal of Advanced Manufacturing Technology, 95(5-8), 1789-1804, 2018.
  • [12] Seçgin Ö, Özsert İ. “Formability analysis of DC01 sheet in the incremental sheet forming method”. Journal of the Chinese Society of Mechanical Engineers,, 40(5), 507-515, 2019.
  • [13] Micari F, Ambrogio G, Filice L. “Shape and dimensional accuracy in single point ıncremental forming: state of the art and future trends”. Journal of Materials Processing Technology, 191(1-3), 390-395, 2007.
  • [14] Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J. “Asymmetric single point incremental forming of sheet metal”. CIRP Annals-Manufacturing Technology, 54(2), 88-114, 2005.
  • [15] Shawn CH, Cao J, Xia ZC. “An accelerated springback compensation method”. International Journal of Mechanical Sciences, 49(3), 267-279, 2007.
  • [16] Lasunon O, Knight WA. “Comparative investigation of single-point and double-point incremental sheet metal forming processes”. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(12), 1725-1732, 2007.
  • [17] Li J, Geng P, Shen J. “Numerical simulation and experimental investigation of multistage incremental sheet forming”. The International Journal of Advanced Manufacturing Technology, 68(9-12), 2637-2644, 2013.
  • [18] Zhang Z, Zhang H, Shi Y, Moser N, Ren H, Ehmann KF, Cao J. “Springback reduction by annealing for ıncremental sheet forming”. Procedia Engineering, 5, 696-706, 2016.
  • [19] Leonhardt A, Kurz G, Victoria-Hernández J, Kräusel V, Landgrebe D, Letzig D. “Experimental study on incremental sheet forming of magnesium alloy AZ31 with hot air heating”. Procedia Manufacturing, 15, 1192-1199, 2018.
  • [20] Ambrogio G, Costantino I, De Napoli L, Filice L, Fratini L, Muzzupappa M. “Influence of some relevant process parameters on the dimensional accuracy in incremental forming: A numerical and experimental investigation”. Journal of Materials Processing Technology, 153-154(1-3), 501-507, 2004.
  • [21] Naranjo JA, Miguel V, Martínez A, Coello J, Manjabacas MC. “Evaluation of the formability and dimensional accuracy improvement of Ti6AL4V in warm SPIF processes”. Metals, 9(3), 1-17 2019.
  • [22] Wei H, Zhou L, Heidarshenas B, Ashraf IK, Han C. “Investigation on the influence of springback on precision of symmetric-cone-like parts in sheet metal incremental forming process”. International Journal of Lightweight Materials and Manufacture, 2(2), 140-145, 2019.
  • [23] Şen N, Taşdemir V, Seçgin Ö. “Investigation of formability of HC380LA material via the TPIF-RL incremental forming method”. Ironmaking and Steelmaking, https://doi.org/10.1080/03019233.2019.1711351 2020.
  • [24] Bakhshi-Jooybari M, Rahmani B, Daeezadeh V, Gorji A. “The study of spring-back of CK67 steel sheet in V-die and U-die bending processes”. Materials and Design, 30(7), 2410-2419, 2009.
  • [25] Han F, Mo JH, Cui XH, Wang ZL. “Studies on the springback mechanism of ıncremental sheet forming based on FEM simulation”. Advanced Materials Research, 102-104, 242-246, 2010.
  • [26] Basmacı G. “Optimization and influence of cutting parameters on surface roughness during turning of ASTM B574 (Hastelloy C-22) using a hybrid of Taguchi and RSM methods”. Sakarya University Journal of Science, 22(2), 761-771, 2018.
  • [27] Samet U. “Improving of a response surface methodology for the simultaneous prediction of emission and performance in a diesel engine working with waste tire pyrolysis oil”. Duzce University Journal of Science and Technology, 7(3), 1261-1278, 2019.
  • [28] Liu Z, Liu S, Li Y, Meehan PA. “Modeling and optimization of surface roughness in incremental sheet forming using a multi-objective function”. Materials and Manufacturing Processes, 29(7), 808-818, 2014.
  • [29] Han F, Mo JH, Qi HW, Long RF, Cui XH, Li ZW. “Springback prediction for incremental sheet forming based on FEM-PSONN technology”. Transactions of Nonferrous Metals Society of China, 23(4), 1061-1071, 2013.
Year 2021, Volume: 27 Issue: 1, 90 - 95, 08.02.2021

Abstract

References

  • [1] Choi H, Lee C. “A mathematical model to predict thickness distribution and formability of incremental forming combined with stretch forming”. Robotics and Computer-Integrated Manufacturing, 55(Part B), 164-172, 2019.
  • [2] Bagudanch I, Garcia-Romeu ML, Centeno G, Elías-Zúñiga A, Ciurana J. “Forming force and temperature effects on single point incremental forming of polyvinylchloride”. Journal of Materials Processing Technology, 219, 221-229, 2015.
  • [3] Song X, Zhang J, Zhai W, Taureza M, Castagne S, Danno A. “Numerical and experimental study of micro single point incremental forming process”. Procedia Engineering, 207, 825-830, 2017.
  • [4] Gupta P, Jeswiet J. “Manufacture of an aerospace component by single point incremental forming”. Procedia Manufacturing, 29, 112-119, 2019.
  • [5] Shamsari M, Mirnia MJ, Elyasi M, Baseri H. “Formability improvement in single point incremental forming of truncated cone using a two-stage hybrid deformation strategy”. The International Journal of Advanced Manufacturing Technology, 94(5-8), 2357-2368, 2018.
  • [6] Dakhli M, Boulila A, Tourki Z. “Effect of generatrix profile on single-point incremental forming parameters”. The International Journal of Advanced Manufacturing Technology, 93(5-8), 2505-2516 2017.
  • [7] Gatea S, Ou H, McCartney G. “Review on the influence of process parameters in incremental sheet forming”. The International Journal of Advanced Manufacturing Technology, 87(1-4), 479-499, 2016.
  • [8] Li X, Han K, Li Z, Li D, Li Z. “One novel method to improve surface quality in incremental sheet forming”. Procedia Engineering, 207, 842-847, 2017.
  • [9] Yue ZM, Chu XR, Gao J. “Numerical simulation of incremental sheet forming with considering yield surface distortion”. The International Journal of Advanced Manufacturing Technology, 92(5-8), 1761-1768, 2017.
  • [10] Dang T, Tebaay LM, Gies S, Tekkaya AE. “Multiple forming tools in incremental forming - influence of the forming strategies on sheet contour”. AIP Conference Proceedings, 1769, 1-5, 2016.
  • [11] Sbayti M, Bahloul R, BelHadjSalah H, Zemzemi F. “Optimization techniques applied to single point incremental forming process for biomedical application”. The International Journal of Advanced Manufacturing Technology, 95(5-8), 1789-1804, 2018.
  • [12] Seçgin Ö, Özsert İ. “Formability analysis of DC01 sheet in the incremental sheet forming method”. Journal of the Chinese Society of Mechanical Engineers,, 40(5), 507-515, 2019.
  • [13] Micari F, Ambrogio G, Filice L. “Shape and dimensional accuracy in single point ıncremental forming: state of the art and future trends”. Journal of Materials Processing Technology, 191(1-3), 390-395, 2007.
  • [14] Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J. “Asymmetric single point incremental forming of sheet metal”. CIRP Annals-Manufacturing Technology, 54(2), 88-114, 2005.
  • [15] Shawn CH, Cao J, Xia ZC. “An accelerated springback compensation method”. International Journal of Mechanical Sciences, 49(3), 267-279, 2007.
  • [16] Lasunon O, Knight WA. “Comparative investigation of single-point and double-point incremental sheet metal forming processes”. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(12), 1725-1732, 2007.
  • [17] Li J, Geng P, Shen J. “Numerical simulation and experimental investigation of multistage incremental sheet forming”. The International Journal of Advanced Manufacturing Technology, 68(9-12), 2637-2644, 2013.
  • [18] Zhang Z, Zhang H, Shi Y, Moser N, Ren H, Ehmann KF, Cao J. “Springback reduction by annealing for ıncremental sheet forming”. Procedia Engineering, 5, 696-706, 2016.
  • [19] Leonhardt A, Kurz G, Victoria-Hernández J, Kräusel V, Landgrebe D, Letzig D. “Experimental study on incremental sheet forming of magnesium alloy AZ31 with hot air heating”. Procedia Manufacturing, 15, 1192-1199, 2018.
  • [20] Ambrogio G, Costantino I, De Napoli L, Filice L, Fratini L, Muzzupappa M. “Influence of some relevant process parameters on the dimensional accuracy in incremental forming: A numerical and experimental investigation”. Journal of Materials Processing Technology, 153-154(1-3), 501-507, 2004.
  • [21] Naranjo JA, Miguel V, Martínez A, Coello J, Manjabacas MC. “Evaluation of the formability and dimensional accuracy improvement of Ti6AL4V in warm SPIF processes”. Metals, 9(3), 1-17 2019.
  • [22] Wei H, Zhou L, Heidarshenas B, Ashraf IK, Han C. “Investigation on the influence of springback on precision of symmetric-cone-like parts in sheet metal incremental forming process”. International Journal of Lightweight Materials and Manufacture, 2(2), 140-145, 2019.
  • [23] Şen N, Taşdemir V, Seçgin Ö. “Investigation of formability of HC380LA material via the TPIF-RL incremental forming method”. Ironmaking and Steelmaking, https://doi.org/10.1080/03019233.2019.1711351 2020.
  • [24] Bakhshi-Jooybari M, Rahmani B, Daeezadeh V, Gorji A. “The study of spring-back of CK67 steel sheet in V-die and U-die bending processes”. Materials and Design, 30(7), 2410-2419, 2009.
  • [25] Han F, Mo JH, Cui XH, Wang ZL. “Studies on the springback mechanism of ıncremental sheet forming based on FEM simulation”. Advanced Materials Research, 102-104, 242-246, 2010.
  • [26] Basmacı G. “Optimization and influence of cutting parameters on surface roughness during turning of ASTM B574 (Hastelloy C-22) using a hybrid of Taguchi and RSM methods”. Sakarya University Journal of Science, 22(2), 761-771, 2018.
  • [27] Samet U. “Improving of a response surface methodology for the simultaneous prediction of emission and performance in a diesel engine working with waste tire pyrolysis oil”. Duzce University Journal of Science and Technology, 7(3), 1261-1278, 2019.
  • [28] Liu Z, Liu S, Li Y, Meehan PA. “Modeling and optimization of surface roughness in incremental sheet forming using a multi-objective function”. Materials and Manufacturing Processes, 29(7), 808-818, 2014.
  • [29] Han F, Mo JH, Qi HW, Long RF, Cui XH, Li ZW. “Springback prediction for incremental sheet forming based on FEM-PSONN technology”. Transactions of Nonferrous Metals Society of China, 23(4), 1061-1071, 2013.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Vedat Taşdemir This is me

Nuri Şen This is me

Ömer Seçgin This is me

Publication Date February 8, 2021
Published in Issue Year 2021 Volume: 27 Issue: 1

Cite

APA Taşdemir, V., Şen, N., & Seçgin, Ö. (2021). Kayar baskı plakalı artımlı sac şekillendirme yöntemiyle şekillendirilen Erdemir 7136 sacının geri esneme davranışının araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 90-95.
AMA Taşdemir V, Şen N, Seçgin Ö. Kayar baskı plakalı artımlı sac şekillendirme yöntemiyle şekillendirilen Erdemir 7136 sacının geri esneme davranışının araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. February 2021;27(1):90-95.
Chicago Taşdemir, Vedat, Nuri Şen, and Ömer Seçgin. “Kayar Baskı Plakalı artımlı Sac şekillendirme yöntemiyle şekillendirilen Erdemir 7136 sacının Geri Esneme davranışının araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27, no. 1 (February 2021): 90-95.
EndNote Taşdemir V, Şen N, Seçgin Ö (February 1, 2021) Kayar baskı plakalı artımlı sac şekillendirme yöntemiyle şekillendirilen Erdemir 7136 sacının geri esneme davranışının araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 1 90–95.
IEEE V. Taşdemir, N. Şen, and Ö. Seçgin, “Kayar baskı plakalı artımlı sac şekillendirme yöntemiyle şekillendirilen Erdemir 7136 sacının geri esneme davranışının araştırılması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 27, no. 1, pp. 90–95, 2021.
ISNAD Taşdemir, Vedat et al. “Kayar Baskı Plakalı artımlı Sac şekillendirme yöntemiyle şekillendirilen Erdemir 7136 sacının Geri Esneme davranışının araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27/1 (February 2021), 90-95.
JAMA Taşdemir V, Şen N, Seçgin Ö. Kayar baskı plakalı artımlı sac şekillendirme yöntemiyle şekillendirilen Erdemir 7136 sacının geri esneme davranışının araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27:90–95.
MLA Taşdemir, Vedat et al. “Kayar Baskı Plakalı artımlı Sac şekillendirme yöntemiyle şekillendirilen Erdemir 7136 sacının Geri Esneme davranışının araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 27, no. 1, 2021, pp. 90-95.
Vancouver Taşdemir V, Şen N, Seçgin Ö. Kayar baskı plakalı artımlı sac şekillendirme yöntemiyle şekillendirilen Erdemir 7136 sacının geri esneme davranışının araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021;27(1):90-5.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.