Research Article
BibTex RIS Cite

The effect of fluid viscous dampers on performance of a residential building

Year 2024, Volume: 30 Issue: 5, 650 - 659, 30.10.2024

Abstract

In this study, the change of seismic performance was investigated by
using linear and nonlinear fluid viscous dampers (FVD) in a mid-rise
conventional reinforced concrete (RC) building with torsional
irregularity. Analysis models were designed as three-dimensional (3D)
and 5-story. In the structural elements of the models, nonlinear behavior
was taken into account. A total of 66 bi-directional nonlinear time
history dynamic analyzes were performed using 11 spectrumcompatible real earthquake record sets. Linear and nonlinear seismic
behavior of fluid viscous dampers were compared with the fixed-base
model. These comparisons were made using roof drift ratios, interstory
drift ratio, torsion irregularity coefficient and absolute acceleration
parameters. The FVD dampers applied diagonally through the height of
the building significantly reduced seismic demands compared to the
fixed-base model. In addition, the torsional irregularity caused by
structural eccentricity was reduced to negligible level by using FVE DİĞ.
The best seismic performance was obtained using nonlinear fluid
viscous damper (NFVD).

References

  • [1] Afet ve Acil Durum Başkanlığı. “Türkiye Bina Deprem Yönetmeliği”. Ankara, Türkiye, 30364, 2018.
  • [2] Deringöl AH, Güneyisi EM. “Effect of lead rubber bearing on seismic response of regular and irregular frames in elevation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(6), 1076-1085, 2020.
  • [3] Çerçevik AE, Avşar Ö. “Doğrusal sismik izolasyon parametrelerinin karga arama algoritması ile optimizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 440-447, 2020.
  • [4] Özçelik R. “Burkulması engellenmiş çelik çaprazlar”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(3), 160-170, 2016.
  • [5] Özer E, İnel M. “Sismik izolatörlerin betonarme konut binasının performansı üzerindeki etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 303-311, 2021.
  • [6] Özer E. Geleneksel ve Taban İzolatörlü Betonarme Binaların Sismik Davranışlarının Karşılaştırılması. Doktora Tezi, Pamukkale Üniversitesi, Denizli, Türkiye, 2022.
  • [7] Castaldo P. Integrated Seismic Design of Structure and Control Systems. New York, USA, Springer International Publishing, 2014.
  • [8] Constantinou MC, Symans MD. Experimental Study of Seismic Response of Buildings with Supplemental Fluid Dampers. 2nd ed. New York, USA, Wiley, 1993.
  • [9] Ras A, Boumechra N. “Seismic energy dissipation study of linear fluid viscous dampers in steel structure design.” Alexandria Engineering Journal, 55(3), 2821-2832, 2016.
  • [10] Kandemir EC, Mazda T, Nurui H, Miyamoto H. “Seismic retrofit of an existing steel arch bridge using viscous damper”. Procedia Engineering, 14, 2301-2306, 2011.
  • [11] Martinez-Rodrigo M, Romero ML. “An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications”. Engineering Structures, 25(7), 913-925, 2003.
  • [12] Guo T, Xu J, Xu W, Di Z. “Seismic upgrade of existing buildings with fluid viscous dampers: Design methodologies and case study”. Journal of Performance of Constructed Facilities, 29(6), 1-11, 2015.
  • [13] Hicyilmaz M, Doğan M, Gönen H. “Investigation of optimum viscous damper distribution in steel frames with set-back irregularities”. Pamukkale University Journal of Engineering Sciences, 24(6), 1024-1029, 2018.
  • [14] Karimi MRB, Genes MC. “Effectiveness of FVD-BIS for protecting a base-isolated high-rise building against resonance”. Earthquakes and Structures, 21(4), 351-370, 2021.
  • [15] Deringöl AH, Güneyisi EM, Hansu O. “Combined Effect of Bearing Stiffness of the Base Isolator and Damping Characteristics of the Viscous Damper on the Nonlinear Response of Buildings”. International Journal of Steel Structures, 22(5), 1497-1517, 2022.
  • [16] Deringöl AH, Güneyisi EM. “Single and combined use of friction-damped and base-isolated systems in ordinary buildings”. Journal of Constructional Steel Research, 174, 1-18, 2020.
  • [17] Deringöl AH, Güneyisi EM. “Influence of nonlinear fluid viscous dampers in controlling the seismic response of the base-isolated buildings”. In Structures, 34, 1923-1941, 2021.
  • [18] Mokhtari M, Naderpour H. “Seismic Vulnerability Assessment of Reinforced Concrete Buildings Having Nonlinear Fluid Viscous Dampers.” Bulletin of Earthquake Engineering, 20(13), 7675-7704, 2022.
  • [19] Gidaris I, Taflanidis AA. “Performance Assessment and Optimization of Fluid Viscous Dampers Through LifeCycle Cost Criteria and Comparison to Alternative Design Approaches.”.Bulletin of Earthquake Engineering, 13, 1003-1028, 2015.
  • [20] SAP2000 V-20 CSI. “Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual”. Berkeley, USA, 62708, 2020.
  • [21] PEER. “PEER Ground Motion Database”. http://peer.berkeley.edu (09.09.2019).
  • [22] Fardis MN, Biskinis DE. Deformation of RC Members, as Controlled by Flexure or Shear. Editor: Shiohara H. Performance-based Engineering for Earthquake Resistant Reinforced Concrete Structures: a Volume Honoring Shunsuke Otani, University of Tokyo, 515-530, Otani, Tokyo, 2003
  • [23] SEMAp. “Sargı etkisi Modelleme Analiz Programı”. Ankara, Türkiye, Tubitak Proje No: 105M024, 2008.
  • [24] Federal Emergency Management Agency. “2015 NEHRP Recommended Seismic Provisions (P1051): Design Examples”. Washington DC, USA, 2016.
  • [25] International Code Council. “International building code (UBC)”. California, USA, 1997.
  • [26] Taylor Devices Inc. Fluid Viscous Dampers General Guidelines for Engineers Including a Brief History. 1st ed. New York, USA, Taylor, 2020.
  • [27] Nagarajaiah S, Reinhorn AM, Constantinou MC. “Torsion in base-isolated structures with elastomeric isolation systems”. Journal of Structural Engineering, 119(10), 2932–2951, 1993.
  • [28] Tena-Colunga A, Zambrana-Rojas C. “Dynamic torsional amplifications of base-isolated structures with an eccentric isolation system” Engineering Structures, 28(1), 72–83, 2006.
  • [29] Belgium European Committee for Standardization. “Eurocode 8: design of structures for earthquake resistance-Part 2: bridges”. Brussels, Belgium, EN 1998-2, 2005.
  • [30] Seguín CE, de la Llera JC, Almaz ́an JL. “Base-structure interaction of linearly isolated structures with lateraltorsional coupling”. Engineering Structures, 30(1), 110–125, 2008.
  • [31] Lee D, Taylor P. Viscous Damper Development and Future Trends. 1st ed. North Tonawanda, USA, Wiley, 2001.
  • [32] Akcelyan S, Lignos DG, Hikino T. “Adaptive numerical method algorithms for nonlinear viscous and bilinear oil damper models subjected to dynamic loading”. Soil Dynamics and Earthquake Engineering, 113, 488-502, 2018.
  • [33] Kayhan AH, Korkmaz KA, Irfanoglu A. “Selecting and scaling real ground motion records using harmony search algorithm”. Soil Dynamics and Earthquake Engineering, 31(2011), 941-953, 2011.
  • [34] Ozmen HB, Yilmaz H, Yildiz H. “An acceleration record set for different frequency content, amplitude and site classes”. Research on Engineering Structures & Materials, 5(3), 321-333, 2019.
  • [35] Karakutuk O. Effects of Ground Motion Selection on Seismic Response of Buildings. MSc Thesis, Middle East Technical University, Ankara, Turkey, 2015.
  • [36] NEHRP Consultants Joint Venture for the National Institute of Standards and Technology. “Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analyses”. Maryland, USA, NISTGCR1191715, 2011.
  • [37] American Society of Civil Engineers (ASCE). “Nehrp Recommended Provisions for Seismic Regulations for New Buildings and Other Structures”. In, Washington DC, USA, FEMA-P-450, 2003.
  • [38] Yang D, Pan J, Li G. “Interstory Drift Ratio of Building Structures Subjected to Near-Fault Ground Motions Based on Generalized Drift Spectral Analysis.” Soil Dynamics and Earthquake Engineering, 30(11), 1182-1197, 2010.
  • [39] Ras A, Boumechra N. “Study of nonlinear fluid viscous dampers behaviour in seismic steel structures design”. Arabian Journal for Science and Engineering, 39, 8635-8648, 2014.

Akışkan viskoz sönümleyicilerin bir konut binasının performansı üzerindeki etkileri

Year 2024, Volume: 30 Issue: 5, 650 - 659, 30.10.2024

Abstract

Bu çalışmada, burulma düzensizliğine sahip orta yükseklikteki
geleneksel betonarme bir binada, doğrusal ve doğrusal olmayan
akışkan viskoz sönümleyiciler (FVD) kullanılarak sismik performansın
değişimi incelenmiştir. Analizlerde kullanılan betonarme bina
modelleri üç boyutlu(3B) ve beş katlı olarak tasarlanmıştır. Modellerin
yapısal elemanlarında doğrusal elastik olmayan davranış dikkate
alınmıştır. Spektrum uyumlu 11 adet gerçek ivme kayıt takımı
kullanılarak toplam 66 adet çift yönlü doğrusal olmayan zaman tanım
alanında dinamik analiz yapılmıştır. Akışkan viskoz sönümleyicilerin
doğrusal ve doğrusal olmayan sismik davranışları, ankastre mesnetli
model ile karşılaştırılmıştır. Bu karşılaştırmalar, tepe yer değiştirme
oranları, katlar arası göreli öteleme oranları, burulma düzensizlik
katsayısı ve mutlak ivme parametreleri kullanılarak
gerçekleştirilmiştir. Bina yüksekliği boyunca çapraz olarak uygulanan
FVD sönümleyiciler, ankastre mesnetli modele göre sismik talepleri
ciddi oranda azaltmıştır. Ayrıca, yapısal eksantrisiteden kaynaklanan
burulma düzensizliği FVD kullanımı ile ihmal edilebilecek düzeye
indirgenmiştir. En iyi sismik performans doğrusal elastik olmayan
akışkan viskoz sönümleyicinin (NFVD) kullanıldığı modelde elde
edilmiştir.

References

  • [1] Afet ve Acil Durum Başkanlığı. “Türkiye Bina Deprem Yönetmeliği”. Ankara, Türkiye, 30364, 2018.
  • [2] Deringöl AH, Güneyisi EM. “Effect of lead rubber bearing on seismic response of regular and irregular frames in elevation”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(6), 1076-1085, 2020.
  • [3] Çerçevik AE, Avşar Ö. “Doğrusal sismik izolasyon parametrelerinin karga arama algoritması ile optimizasyonu”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 440-447, 2020.
  • [4] Özçelik R. “Burkulması engellenmiş çelik çaprazlar”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(3), 160-170, 2016.
  • [5] Özer E, İnel M. “Sismik izolatörlerin betonarme konut binasının performansı üzerindeki etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 303-311, 2021.
  • [6] Özer E. Geleneksel ve Taban İzolatörlü Betonarme Binaların Sismik Davranışlarının Karşılaştırılması. Doktora Tezi, Pamukkale Üniversitesi, Denizli, Türkiye, 2022.
  • [7] Castaldo P. Integrated Seismic Design of Structure and Control Systems. New York, USA, Springer International Publishing, 2014.
  • [8] Constantinou MC, Symans MD. Experimental Study of Seismic Response of Buildings with Supplemental Fluid Dampers. 2nd ed. New York, USA, Wiley, 1993.
  • [9] Ras A, Boumechra N. “Seismic energy dissipation study of linear fluid viscous dampers in steel structure design.” Alexandria Engineering Journal, 55(3), 2821-2832, 2016.
  • [10] Kandemir EC, Mazda T, Nurui H, Miyamoto H. “Seismic retrofit of an existing steel arch bridge using viscous damper”. Procedia Engineering, 14, 2301-2306, 2011.
  • [11] Martinez-Rodrigo M, Romero ML. “An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications”. Engineering Structures, 25(7), 913-925, 2003.
  • [12] Guo T, Xu J, Xu W, Di Z. “Seismic upgrade of existing buildings with fluid viscous dampers: Design methodologies and case study”. Journal of Performance of Constructed Facilities, 29(6), 1-11, 2015.
  • [13] Hicyilmaz M, Doğan M, Gönen H. “Investigation of optimum viscous damper distribution in steel frames with set-back irregularities”. Pamukkale University Journal of Engineering Sciences, 24(6), 1024-1029, 2018.
  • [14] Karimi MRB, Genes MC. “Effectiveness of FVD-BIS for protecting a base-isolated high-rise building against resonance”. Earthquakes and Structures, 21(4), 351-370, 2021.
  • [15] Deringöl AH, Güneyisi EM, Hansu O. “Combined Effect of Bearing Stiffness of the Base Isolator and Damping Characteristics of the Viscous Damper on the Nonlinear Response of Buildings”. International Journal of Steel Structures, 22(5), 1497-1517, 2022.
  • [16] Deringöl AH, Güneyisi EM. “Single and combined use of friction-damped and base-isolated systems in ordinary buildings”. Journal of Constructional Steel Research, 174, 1-18, 2020.
  • [17] Deringöl AH, Güneyisi EM. “Influence of nonlinear fluid viscous dampers in controlling the seismic response of the base-isolated buildings”. In Structures, 34, 1923-1941, 2021.
  • [18] Mokhtari M, Naderpour H. “Seismic Vulnerability Assessment of Reinforced Concrete Buildings Having Nonlinear Fluid Viscous Dampers.” Bulletin of Earthquake Engineering, 20(13), 7675-7704, 2022.
  • [19] Gidaris I, Taflanidis AA. “Performance Assessment and Optimization of Fluid Viscous Dampers Through LifeCycle Cost Criteria and Comparison to Alternative Design Approaches.”.Bulletin of Earthquake Engineering, 13, 1003-1028, 2015.
  • [20] SAP2000 V-20 CSI. “Integrated Finite Element Analysis and Design of Structures Basic Analysis Reference Manual”. Berkeley, USA, 62708, 2020.
  • [21] PEER. “PEER Ground Motion Database”. http://peer.berkeley.edu (09.09.2019).
  • [22] Fardis MN, Biskinis DE. Deformation of RC Members, as Controlled by Flexure or Shear. Editor: Shiohara H. Performance-based Engineering for Earthquake Resistant Reinforced Concrete Structures: a Volume Honoring Shunsuke Otani, University of Tokyo, 515-530, Otani, Tokyo, 2003
  • [23] SEMAp. “Sargı etkisi Modelleme Analiz Programı”. Ankara, Türkiye, Tubitak Proje No: 105M024, 2008.
  • [24] Federal Emergency Management Agency. “2015 NEHRP Recommended Seismic Provisions (P1051): Design Examples”. Washington DC, USA, 2016.
  • [25] International Code Council. “International building code (UBC)”. California, USA, 1997.
  • [26] Taylor Devices Inc. Fluid Viscous Dampers General Guidelines for Engineers Including a Brief History. 1st ed. New York, USA, Taylor, 2020.
  • [27] Nagarajaiah S, Reinhorn AM, Constantinou MC. “Torsion in base-isolated structures with elastomeric isolation systems”. Journal of Structural Engineering, 119(10), 2932–2951, 1993.
  • [28] Tena-Colunga A, Zambrana-Rojas C. “Dynamic torsional amplifications of base-isolated structures with an eccentric isolation system” Engineering Structures, 28(1), 72–83, 2006.
  • [29] Belgium European Committee for Standardization. “Eurocode 8: design of structures for earthquake resistance-Part 2: bridges”. Brussels, Belgium, EN 1998-2, 2005.
  • [30] Seguín CE, de la Llera JC, Almaz ́an JL. “Base-structure interaction of linearly isolated structures with lateraltorsional coupling”. Engineering Structures, 30(1), 110–125, 2008.
  • [31] Lee D, Taylor P. Viscous Damper Development and Future Trends. 1st ed. North Tonawanda, USA, Wiley, 2001.
  • [32] Akcelyan S, Lignos DG, Hikino T. “Adaptive numerical method algorithms for nonlinear viscous and bilinear oil damper models subjected to dynamic loading”. Soil Dynamics and Earthquake Engineering, 113, 488-502, 2018.
  • [33] Kayhan AH, Korkmaz KA, Irfanoglu A. “Selecting and scaling real ground motion records using harmony search algorithm”. Soil Dynamics and Earthquake Engineering, 31(2011), 941-953, 2011.
  • [34] Ozmen HB, Yilmaz H, Yildiz H. “An acceleration record set for different frequency content, amplitude and site classes”. Research on Engineering Structures & Materials, 5(3), 321-333, 2019.
  • [35] Karakutuk O. Effects of Ground Motion Selection on Seismic Response of Buildings. MSc Thesis, Middle East Technical University, Ankara, Turkey, 2015.
  • [36] NEHRP Consultants Joint Venture for the National Institute of Standards and Technology. “Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analyses”. Maryland, USA, NISTGCR1191715, 2011.
  • [37] American Society of Civil Engineers (ASCE). “Nehrp Recommended Provisions for Seismic Regulations for New Buildings and Other Structures”. In, Washington DC, USA, FEMA-P-450, 2003.
  • [38] Yang D, Pan J, Li G. “Interstory Drift Ratio of Building Structures Subjected to Near-Fault Ground Motions Based on Generalized Drift Spectral Analysis.” Soil Dynamics and Earthquake Engineering, 30(11), 1182-1197, 2010.
  • [39] Ras A, Boumechra N. “Study of nonlinear fluid viscous dampers behaviour in seismic steel structures design”. Arabian Journal for Science and Engineering, 39, 8635-8648, 2014.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering (Other)
Journal Section Research Article
Authors

Esra Özer

Publication Date October 30, 2024
Published in Issue Year 2024 Volume: 30 Issue: 5

Cite

APA Özer, E. (2024). Akışkan viskoz sönümleyicilerin bir konut binasının performansı üzerindeki etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(5), 650-659.
AMA Özer E. Akışkan viskoz sönümleyicilerin bir konut binasının performansı üzerindeki etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. October 2024;30(5):650-659.
Chicago Özer, Esra. “Akışkan Viskoz sönümleyicilerin Bir Konut binasının Performansı üzerindeki Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, no. 5 (October 2024): 650-59.
EndNote Özer E (October 1, 2024) Akışkan viskoz sönümleyicilerin bir konut binasının performansı üzerindeki etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 5 650–659.
IEEE E. Özer, “Akışkan viskoz sönümleyicilerin bir konut binasının performansı üzerindeki etkileri”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 5, pp. 650–659, 2024.
ISNAD Özer, Esra. “Akışkan Viskoz sönümleyicilerin Bir Konut binasının Performansı üzerindeki Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/5 (October 2024), 650-659.
JAMA Özer E. Akışkan viskoz sönümleyicilerin bir konut binasının performansı üzerindeki etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:650–659.
MLA Özer, Esra. “Akışkan Viskoz sönümleyicilerin Bir Konut binasının Performansı üzerindeki Etkileri”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 30, no. 5, 2024, pp. 650-9.
Vancouver Özer E. Akışkan viskoz sönümleyicilerin bir konut binasının performansı üzerindeki etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(5):650-9.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif