Review
BibTex RIS Cite

Brain-Computer interfaces with auditory stimuli: A review study

Year 2025, Volume: 31 Issue: 4, 633 - 647, 25.08.2025

Abstract

This study examines auditory stimulus interface studies, an essential development in brain-computer interfaces. Brain-computer interfaces help individuals with limited motor skills communicate without any muscle intervention. Electroencephalogram is the most frequently used method in brain-computer interface studies. Interfaces developed using auditory evoked potentials obtained from electroencephalogram signals are used in fields such as auditory spellers, mood research, and device control. However, compared to visual and tactile stimuli, interfaces with auditory stimuli appear to perform lower in accuracy and information transfer. Interfaces based on auditory stimuli are essential because they allow communication in individuals with no muscle activity and limited vision. This study reviews the design, classification, and evaluation stages of auditory brain-computer interfaces and examines the studies done in the literature.

References

  • [1] Sengar P, Bardhan S. Brain-Computer Interface. Editors: Jena O P, Bhushan B, Kose U. Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications, 23-38, Boca Raton, Florida, USA, CRC Press, 2022.
  • [2] Gao S, Wang Y, Gao X. "Visual and auditory brain- computer interfaces". IEEE Transaction of Biomedical Engineering, 61(5), 1436-47, 2014.
  • [3] Mori F, Sugino M, Huang Y, Kotani K, Jimbo Y. "Control of electric wheelchair by brain-computer ınterface using mixed reality and virtual sound source". IEEJ Transactions on Electrical and Electronic Engineering, 19(6), 1014-25, 2024.
  • [4] Allison BZ, Kübler A, Jin J. "30+ years of p300 brain-computer interfaces". Psychophysiology, 57(7),1-18, 2020.
  • [5] Saha S, Mamun KA, Ahmed K, Mostafa R, Naik GR, Darvishi S, Khandoker AH, Baumert M. "Progress in brain computer interface, challenges and opportunities". Frontiers in Systems Neuroscience, 15(2),1-20, 2021.
  • [6] Miltiadous A, Aspiotis V, Peschos D, Tzimourta KD, Abosaleh AHS, Giannakeas N, Tzallas. "An ensemble method for EEG-based texture discrimination during open eyes active touch". Engineering, Technology & Applied Science Research, 14(1),12676-87, 2024.
  • [7] Liu Z, Shore J, Wang M, Yuan F, Buss A, Zhao X. "A systematic review on hybrid EEG/fnırs in brain-computer ınterface". Biomedical Signal Processing And Control, 68(3),1-8, 2021.
  • [8] Moon H, Kwon J, Eun J, Chung CK, Kim JS, Chou N, Kim, S. "Electrocorticogram (ECoG), engineering approaches and clinical challenges for translational medicine". Advanced Materials Technologies, 9(12), 2301692, 2024.
  • [9] Liu C. "Application of ECoG and electrode in BCI". Theoretical and Natural Science, 3(1), 410-16, 2023.
  • [10] Kubska ZR, Kamiński J. "How human single-neuron recordings can help us understand cognition, insights from memory studies". Brain Science, 11(4), 443, 2021.
  • [11] Halici U, Agi E, Özgen C, Ulusoy I. "Analysis and classification of EEG signals for brain computer interfaces". 10th International Conference on Cognitive Neuroscience, Bodrum, Türkiye, 1 September-5 September 2008.
  • [12] Ioannides A. Magnetoencephalography (MEG). Editor: Hyder F. Dynamic Brain Imaging. Methods In Molecular Bıology, 167-188, Yale University, New Haven, CT, USA, Humana Press, 2009.
  • [13] Buxton RB. "The physics of functional magnetic resonance imaging (fMRI)". Reports on Progress in Physics, 76(9), 096601, 2013.
  • [14] Cox DD, Savoy RL. "Functional magnetic resonance imaging (Fmrı) “brain reading”. detecting and classifying distributed patterns of FMRI activity in human visual cortex". Neuroimage, 19(2),261-70, 2003.
  • [15] Alavi A, Huang SS. "Positron emission tomography in medicine, an overview". Cancer Imaging, 31(1), 39-44, 2007.
  • [16] Zhu Y, Xu K, Xu C, Zhang J, Ji J, Zheng X, Zhang H, Tian M. "PET mapping for brain-computer interface stimulation of the ventroposterior medial nucleus of the thalamus in rats with ımplanted electrodes". Journal of Nuclear Medicine, 57(7), 1141-1145, 2016.
  • [17] Padilla-Buritica JI, Hurtado JV, Castellanos-Dominguez G. "Supervised piecewise network connectivity analysis for enhanced confidence of auditory oddball tasks". Biomedical Signal Processing And Control, 52, 341-346, 2019.
  • [18] Alsuwaiket MA. "Feature extraction of EEG signals for seizure detection using machine learning algorthims". Engineering, Technology and Applied Science Research, 12(5), 9247-51, 2022.
  • [19] Fernández-Sotos P, García-Martínez B, Ricarte JJ, Latorre JM, Sánchez-Morla EM, Fernández-Caballero A, Rodriguez-Jimenez R. "Electroencephalographic spectral analysis from a wireless low-cost brain-computer ınterface for symptom capture of auditory verbal hallucinations in schizophrenia". Schizophrenia Research, 220, 297-299, 2020.
  • [20] Bera TK. Noninvasive Electromagnetic Methods For Brain Monitoring, A Technical Review. Editors: Hassanien A, Azar A. Brain-Computer Interfaces, 51-95, Switzerland, Springer, 2015.
  • [21] Belwafi K, Ghaffari F, Djemal R, Romain O. "A hardware/software prototype of EEG-based BCI system for home device control". Journal of Signal Processing Systems, 89(2), 263-79, 2017.
  • [22] Zhuang T, Zhao H, Tang Z. "A study of brainwave entrainment based on EEG brain dynamics". Computer and Information Science, 2(2), 80-86, 2009.
  • [23] Proverbio AM, Tacchini M, Jiang K. "What do you have in mind? ERP markers of visual and auditory imagery". Brain Cognitive, 166(1), 105954, 2023.
  • [24] Mudgal SK, Sharma SK, Chaturvedi J, Sharma A. "Brain computer interface advancement ın neurosciences, applications and issues". Interdisciplinary Neurosurgery: Advanced Techniques and Case Management, 20(4),100694, 2020.
  • [25] Hinterberger T, Veit R, Wilhelm B, Weiskopf N, Vatine JJ, Birbaumer N. "Neuronal mechanisms underlying control of a brain-computer interface". European Journal of Neuroscience, 21(11), 3169-3181, 2005.
  • [26] Bilal Aygün A, Reşit Kavsaoğlu A. "An innovative p300 speller brain-computer ınterface design, easy screen". Biomedical Signal Processing And Control, 75(2), 103593, 2022.
  • [27] Xiao W, Manyi G, Khaleghi A. "Deficits in auditory and visual steady-state responses in adolescents with bipolar disorder". Journal of Psychiatric Research, 151(4), 368-76, 2022.
  • [28] Müller-Putz GR, Scherer R, Neuper C, Pfurtscheller G. "Steady-State somatosensory evoked potentials, suitable brain signals for brain-computer interfaces". IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(1), 30-37, 2006.
  • [29] Ergün E, Aydemir Ö. "Improving classification accuracy of motor imagery EEG signals via effective epochs". Pamukkale University Journal of Engineering Sciences, 24(5), 817-23, 2018.
  • [30] Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kübler A. "An auditory brain-computer interface (BCI)". Journal of Neuroscience Methods, 167(1), 43-50, 2008.
  • [31] Paulraj MP, Subramaniam K, Yaccob S Bin, Adom AH Bin, Hema CR. "Auditory evoked potential response and hearing loss, a review". The Open Biomedical Engineering Journal, 9(1),17-24, 2015.
  • [32] Bohórquez J, Özdamar Ö. "Generation of the 40-hz auditory steady-state response (ASSR) explained using convolution". Clinical Neurophysiology, 119(11), 2598-607, 2008.
  • [33] Pérez-González D, Malmierca MS. "Adaptation in the auditory system, an overview". Frontiers in Integrative Neuroscience, 8(2), 1-10, 2014.
  • [34] Markovinović I, Vrankić M, Vlahinić S, Šverko Z. "Design considerations for the auditory brain computer interface speller". Biomedical Signal Processing And Control, 75(1), 103546, 2022.
  • [35] Baykara E, Ruf CA, Fioravanti C, Käthner I, Simon N, Kleih SC, Kübler A, Halder S. "Effects of training and motivation on auditory P300 brain-computer interface performance". Clinical Neurophysiology, 127(1), 379-387, 2016.
  • [36] Christodoulides P, Miltiadous A, Tzimourta KD, Peschos D, Ntritsos G, Zakopoulou V, Giannakeas N,Astrakas LG, Tsipouras MG, Tsamis KI,Glavas E, Tzallas, AT. "Classification of EEG signals from young adults with dyslexia combining a brain computer interface device and an ınteractive linguistic software tool". Biomedical Signal Processing And Control, 76(2), 103646, 2022.
  • [37] Zhang B, Zhou Z, Jiang J. "A 36-class bimodal erp brain-computer ınterface using location-congruent auditory-tactile stimuli". Brain Science, 10(8), 1-18, 2020.
  • [38] Klatt LI, Getzmann S, Wascher E, Schneider D. "The contribution of selective spatial attention to sound detection and sound localization, evidence from event-related potentials and lateralized alpha oscillations". Biol Psychology, 138(8), 133-45, 2018.
  • [39] Jijomon CM, Vinod AP. "Person-identification using familiar-name auditory evoked potentials from frontal EEG electrodes". Biomedical Signal Processing and Control, 68(3), 102739, 2021.
  • [40] Lu Y, Wang M, Yao L, Shen H, Wu W, Zhang Q, Zhang L, Chen M, Liu H, Peng R, Liu M, Chen S. "Auditory attention decoding from electroencephalography based on long short-term memory networks". Biomedical Signal Processing And Control, 70(10), 102966, 2021.
  • [41] Heo J, Baek HJ, Hong S, Chang MH, Lee JS, Park KS. "Music and natural sounds in an auditory steady-state response based brain-computer interface to increase user acceptance". Computers in Biology and Medicine, 84(3), 45-52, 2017.
  • [42] Kaongoen N, Jo S. "A novel hybrid auditory BCI paradigm combining ASSR and P300". Journal of Neuroscience Methods, 279, 44-51, 2017.
  • [43] Onishi A, Takano K, Kawase T, Ora H, Kansaku K. "Affective stimuli for an auditory P300 brain-computer interface". Frontiers in Neuroscience, 11(9), 1-9, 2017.
  • [44] Iacoviello D, Petracca A, Spezialetti M, Placidi G. "A real-time classification algorithm for EEG-based BCI driven by self-induced emotions". Computer Methods and Programs in Biomedicine, 122(3), 293-303, 2015.
  • [45] Nambu I, Ebisawa M, Kogure M, Yano S, Hokari H, Wada Y. "Estimating the intended sound direction of the user, toward an auditory brain-computer ınterface using out-of-head sound localization". PLoS One, 8(2), e57174, 2013.
  • [46] Schreuder M, Blankertz B, Tangermann M. "A new auditory multi-class brain-computer interface paradigm, spatial hearing as an ınformative cue". PLoS One, 5(4), e9813, 2010.
  • [47] Wang R, Liu Y, Shi J, Peng B, Fei W, Bi L. "Sound target detection under noisy environment using brain-computer interface". IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 229-37, 2023.
  • [48] Manian V. "Auditory source localization by time frequency analysis and classification of electroencephalogram signals". Biomedical Journal of Scientific & Technical Research, 19(5), 14595-606, 2019.
  • [49] Cai Z, Makino S, Rutkowski TM. "Brain evoked potential latencies optimization for spatial auditory brain-computer interface". Cognitive Computation, 7(1), 34-43, 2015.
  • [50] Kiroy VN, Bakhtin OM, Krivko EM, Lazurenko DM, Aslanyan EV, Shaposhnikov DG, Shcherban IV. "Spoken and inner speech-related EEG connectivity in different spatial directon". Biomedical Signal Processing And Control, 71, 103224, 2022.
  • [51] Edlinger G, Holzner C, Guger C. "A hybrid brain-computer ınterface for smart home control". Lecture Notes Computer Science, 6762, 417-26, 2011.
  • [52] Choi YJ, Kwon OS, Kim SP. "Design of auditory P300-based brain-computer ınterfaces with a single auditory channel and no visual support". Cognitive Neurodynamics, 3, 1401-16, 2022.
  • [53] Shivappa VKK, Luu B, Solis M, George K. "Home automation system using brain computer interface paradigm based on auditory selection attention". IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 14-17 May 2018.
  • [54] Velasco-Álvarez F, Fernández-Rodríguez Á, Ron-Angevin R. "Brain-computer interface (BCI)-generated speech to control domotic devices". Neurocomputing, 509, 121-36, 2022.
  • [55] Halder S, Käthner I, Kübler A. "Training leads to increased auditory brain-computer interface performance of end-users with motor impairments". Clinical Neurophysiology, 127(2), 1288-96, 2016.
  • [56] De Souza AP, Soares QB, Mendes EMAM, Felix LB. "Brain-computer interface in an inter-ındividual approach using spatial coherence, identification of better channels and tests repetition using auditory selective attention". Biomedical Signal Processing And Control, 83(1), 104573, 2023.
  • [57] Jijomon CM, Vinod AP. "Detection and classification of long-latency own-name auditory evoked potential from electroencephalogram". Biomedical Signal Processing And Control, 68(3), 102724, 2021.
  • [58] Sugi M, Hagimoto Y, Nambu I, Gonzalez A, Takei Y, Yano S, Hokar H, Wada Y. "Improving the performance of an auditory brain-computer interface using virtual sound sources by shortening stimulus onset asynchrony". Frontiers in Neuroscience, 12(2), 1-11, 2018.
  • [59] Squires, Nancy K, Squires, Kenneth C, Hillyard, Stephen A. "Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man". Electroencephalography and Clinical Neurophysiology, 38(4), 387-401, 1975.
  • [60] Pereira DR, Cardoso S, Ferreira-Santos F, Fernandes C, Cunha-Reis C, Paiva TO, Almeida PR, Silveira C, Barbosa F, Marques-Teixeira J. "Effects of ınter-stimulus interval (ISI) duration on the N1 and P2 components of the auditory event-related potential". International Journal of Psychophysiology, 94(3), 311-8, 2014.
  • [61] Stegman P, Crawford CS, Andujar M, Nijholt A, Gilbert JE. "Brain-computer interface software, a review and discussion". IEEE Transactions on Human-Machine Systems, 50(2), 101-15, 2020.
  • [62] Mei J, Luo R, Xu L, Zhao W, Wen S, Wang K, Xiao X, Meng J, Huang Y, Tang J, Cheng L, Xu M, Ming D. “MetaBCI: an open-source platform for brain-computer interfaces". Computers in Biology and Medicine, 168(11), 107806, 2024.
  • [63] Schalk G, Mcfarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR, "BCI2000 , a general-purpose brain-computer interface (BCI) System". IEEE Transactıons On Bıomedıcal Engıneerıng, 51(6), 1034-43, 2004.
  • [64] Renard Y, Lotte F, Gibert G, Congedo M, Maby E, Delannoy V, Bertrand O, Lécuyer A. "OpenViBE: an open-source software platform to design, test, and use brain-computer ınterfaces ın real and virtual environments". Presence: Teleoperators and Virtual Environments, 19(1), 35-53, 2010.
  • [65] Kothe CA, Makeig S. "BCILAB, a platform for brain-computer interface development". Journal of Neural Engineering, 10(5), 056014, 2013.
  • [66] Delorme A, Makeig S. "EEGLAB, an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis". Journal of Neuroscience Methods, 134(1), 9-21, 2004.
  • [67] Erat K, Onay Durdu P. "User experience evaluation of low cost EEG headsets". Pamukkale University Journal of Engineering Sciences, 27(5), 646-59, 2021.
  • [68] Borirakarawin M, Punsawad Y. "Event-related potential-based brain-computer interface using the thai vowels’ and numerals’ auditory stimulus pattern". Sensors, 22(15), 5864, 2022.
  • [69] Akira D. “An information theoretic analysis of 256-channel EEG recordings: mutual information and measurement selection problem”. International Conference on Independent Component Analysis and Blind Signal Separation, San Diego, Calif, USA, 9-12 January 2001.
  • [70] Compumedics Neuroscan, “Compumedics Neuroscan/Caps,” Caps. https://compumedicsneuroscan.com/products/caps/ (21.05.2024).
  • [71] Brain Products. “Electrodes & caps”. Electrodes & Caps. https://www.brainproducts.com/solutions/#electrodes-caps (21.05.2024).
  • [72] Klem GH, Luders HO, Jasper HH. "The ten-twenty electrode system of the international federation". International Federation of Clinical Neurophysiology, 10, 371-375, 1998.
  • [73] McFarland DJ, Anderson CW, Müller KR, Schlögl A, Krusienski DJ. "BCI meeting 2005-workshop on BCI signal processing, feature extraction and translation". IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2),135-138, 2006.
  • [74] Oralhan Z. "A new paradigm for region-based P300 speller in brain computer interface". IEEE Access, 7, 106618-27, 2019.
  • [75] Tzimourta KD, Astrakas LG, Gianni AM, Tzallas AT, Giannakeas N, Paliokas I, Tsalikakis, DG, Tsipouras, MG. "Evaluation of window size in classification of epileptic short-term EEG signals using a brain computer interface software". Engineering, Technology & Applied Science Research, 8(4), 3093-7, 2018.
  • [76] Lee T, Kim M, Kim S. "Improvement of P300-based brain -computer balancing techniques". Sensors, 20(19), 1-16, 2020.
  • [77] Phanikrishna BV, Pławiak PJ, Prakash A. “A brief review on EEG signal pre-processing techniques for real-time brain-computer interface applications,” TechRxiv, 2021. https://doi.org/10.36227/techrxiv.16691605.v1
  • [78] Xu Z, Tang S, Liu C, Zhang Q, Gu H, Li X, Di Z, Li Z. “Temporal segmentation of EEG based on functional connectivity network structure,” Scientific Reports, 13(1), 1-19, 2023.
  • [79] Olgun N, Turkoglu I. "Brain-computer interface systems". 8th International Advanced Technologies Symposium (IATS’17), Elazığ, Türkiye, 19-22 October 2017.
  • [80] Pahuja SK, Veer K." Recent approaches on classification and feature extraction of EEG signal , a review". Robotica, 5, 1-25, 2021.
  • [81] Huang Z and Wang M. “A review of electroencephalogram signal processing methods for brain-controlled robots,” Cognitive Robotics, 1(8), 111-24, 2021.
  • [82] Turner MR, Wolpaw JR. "EEG-based brain-computer interfaces". Physiology & behavior, 176(1),139-48, 2016.
  • [83] Vanneschi L, Silva S." Introduction to machine learning." Natural Computing Series, 2, 115-48, 2023.
  • [84] Kononenko I, Kukar M. Machine Learning Basics. Editors: Kononenko I, Kukar M. Machine Learning and Data Mining, 59-105, Sawston, Cambridge, England Woodhead Publishing, 2007.
  • [85] Oladipupo T. Machine Learning Overview. Editors: Zhang Y. New Advances in Machine Learning, 8-18, Rijeka, Croatia, Intech Europe, 2010.
  • [86] Mahesh B. "Machine learning algorithms-a review". International Journal of Science and Research, 9(1), 381-6, 2020.
  • [87] RK, Reddy GYS, Pathak H." The understanding of deep learning, a comprehensive review". Mathematical Problems in Engineering, 2021(1), 1-15, 2021.
  • [88] Sengupta S, Basak S, Saikia P, Paul S, Tsalavoutis V, Atiah F, Ravi V, Peters A. "A review of deep learning with special emphasis on architectures, applications and recent trends". Knowledge-Based System, 194, 105596, 2020.
  • [89] Al-Canaan A, Chakib H, Uzair M, Toor S, Al‐Khatib A. "BCI‐control and monitoring system for smart home automation using wavelet". IET Signal Processing, 16, 141-56, 2022.
  • [90] Ghosh A, Sufian A, Sultana F, Chakrabarti A, De D. "Fundamental concepts of convolutional neural network". Intelligent Systems Reference Library. 172, 519-67, 2019.
  • [91] Singh SA, Meitei TG, Devi MD, MajumderS. “A deep neural network approach for P300 detection-based BCI using single-channel EEG scalogram images,” Physical and Engineering Sciences in Medicine, 44(4), 1221-1230, 2021.
  • [92] Hossain KM, Islam MA, Hossain S, Nijholt A, Ahad MAR. “Status of deep learning for EEG-based brain-computer interface applications,” Frontiers in Computational Neuroscience, 2023(1), 1-117, 2023.
  • [93] Alanazi M, Aldahr RS, Ilyas M. "Human activity recognition through smartphone inertial sensors with ML approach". Engineering, Technology and Applied Science Research,14(1), 12780-12787, 2024.
  • [94] Küçükakarsu M, Kavsaoğlu AR, Alenezi F, Alhudhaif A, Alwadie R, Polat K. "A novel automatic audiometric system design based on machine learning methods using the brain’s electrical activity signals". Diagnostics, 13(3), 575, 2023.
  • [95] Guo M, Xu G, Wang L, Masters M, Milsap G, Thakor N, Soares AB. "The anterior contralateral response ımproves performance in a single trial auditory oddball BMI". Biomedical Signal Processing And Control, 22, 74-84, 2015.
  • [96] Kimura R, Nambu I, Fujitsuka R, Maruyama Y, Yano S, Wada Y. "An auditory brain-computer ınterface to detect changes in sound pressure level for automatic volume control". Heliyon, 10(1),e23948, 2024.
  • [97] Ogino M, Kanoga S, Ito SI, Mitsukura Y. "Semi-Supervised learning for auditory event-related potential-based brain-computer ınterface". IEEE Access, 9, 47008-47023, 2021.
  • [98] Borirakarawin M, Punsawad Y. "Hybrid brain-computer interface system using auditory stimulation and speech imagination paradigms for assistive technology". IEEE Access, 11(5), 53079-90, 2023.
  • [99] Wang J, Wang T, Liu H, Wang K, Moses K, Feng Z, Li P,Huang W. "Flexible electrodes for brain-computer interface system". Advanced Materials, 35(47), 2211012, 2023.
  • [100] Halder S, Leinfelder T, Schulz SM, Kübler A. "Neural mechanisms of training an auditory event-related potential task in a brain-computer iınterface context". Human Brain Mapping, 40(8), 2399-412, 2019.
  • [101] Sun K, Hsieh K, Lee S. "Using mental shadowing tasks to improve the sound-evoked potential of EEG in the design of an auditory brain-computer interface". Applied Science, 13(856), 1-24, 2023.
  • [102] Barbosa S, Pires G, Nunes U. "Toward a reliable gaze-ındependent hybrid BCI combining visual and natural auditory stimuli". Journal of Neuroscience Methods, 261,47-61, 2016.
  • [103] Ogino M, Kanoga S, Muto M, Mitsukura Y. "Analysis of prefrontal single-channel EEG data for portable auditory ERP-based brain-computer interfaces". Frontiers in Human Neuroscience, 13(7),1-14, 2019.
  • [104] Jijomon CM, Vinod AP. "Person-identification using familiar-name auditory evoked potentials from frontal EEG electrodes". Biomedical Signal Processing And Control, 68(4), 102739, 2021.
  • [105] An WW, Shinn-Cunningham B, Gamper H, Emmanouilidou D, Johnston D, Jalobeanu M, Cutrell E, Wilson A, Chiang KJ, Tashev I. "Decoding music attention from “EEG headphones”: a user-friendly auditory brain-computer interface ". IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, 6-11 June 2021.

İşitsel uyaranlı beyin-bilgisayar arayüzleri: Bir derleme çalışması

Year 2025, Volume: 31 Issue: 4, 633 - 647, 25.08.2025

Abstract

Bu çalışma, beyin-bilgisayar arayüzleri alanında önemli bir gelişme olan işitsel uyaranlı arayüz çalışmalarının incelenmesine odaklanmaktadır. Beyin-bilgisayar arayüzleri, motor becerileri kısıtlı bireylerin herhangi bir kas müdahalesi olmadan iletişim kurmalarına yardımcı olmaktadır. Elektroensefalogram beyin bilgisayar aryüzü çalışmalarında en sık kullanılan yöntemdir. Elektroensefalogram sinyallerinden elde edilen işitsel uyarılmış potansiyeller kullanılarak geliştirilen arayüzler işitsel heceleyici, duygu durum araştırmaları ve cihaz kontrolü gibi farklı alanlarda kullanılmaktadır. Ancak görsel ve dokunsal uyaranlarla karşılaştırıldığında, işitsel uyaranlı arayüzlerin doğruluk ve bilgi aktarımı açısından daha düşük performans gösterdiği görülmektedir. Herhangi bir kas aktivitesi bulunmyan ve aynı zamanda görme yetisi de kısıtlanmış bireylerde işitsel uyaranlara dayalı arayüzler, iletişim kurma imkanı sunması nedeniyle önemlidir. Bu çalışma, işitsel uyaranlı beyin-bilgisayar arayüzlerinin tasarım, sınıflandırma ve değerlendirme aşamaları hakkında bir inceleme sunmakta ve literatürde yapılmış olan çalışmaları incelemektedir.

References

  • [1] Sengar P, Bardhan S. Brain-Computer Interface. Editors: Jena O P, Bhushan B, Kose U. Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications, 23-38, Boca Raton, Florida, USA, CRC Press, 2022.
  • [2] Gao S, Wang Y, Gao X. "Visual and auditory brain- computer interfaces". IEEE Transaction of Biomedical Engineering, 61(5), 1436-47, 2014.
  • [3] Mori F, Sugino M, Huang Y, Kotani K, Jimbo Y. "Control of electric wheelchair by brain-computer ınterface using mixed reality and virtual sound source". IEEJ Transactions on Electrical and Electronic Engineering, 19(6), 1014-25, 2024.
  • [4] Allison BZ, Kübler A, Jin J. "30+ years of p300 brain-computer interfaces". Psychophysiology, 57(7),1-18, 2020.
  • [5] Saha S, Mamun KA, Ahmed K, Mostafa R, Naik GR, Darvishi S, Khandoker AH, Baumert M. "Progress in brain computer interface, challenges and opportunities". Frontiers in Systems Neuroscience, 15(2),1-20, 2021.
  • [6] Miltiadous A, Aspiotis V, Peschos D, Tzimourta KD, Abosaleh AHS, Giannakeas N, Tzallas. "An ensemble method for EEG-based texture discrimination during open eyes active touch". Engineering, Technology & Applied Science Research, 14(1),12676-87, 2024.
  • [7] Liu Z, Shore J, Wang M, Yuan F, Buss A, Zhao X. "A systematic review on hybrid EEG/fnırs in brain-computer ınterface". Biomedical Signal Processing And Control, 68(3),1-8, 2021.
  • [8] Moon H, Kwon J, Eun J, Chung CK, Kim JS, Chou N, Kim, S. "Electrocorticogram (ECoG), engineering approaches and clinical challenges for translational medicine". Advanced Materials Technologies, 9(12), 2301692, 2024.
  • [9] Liu C. "Application of ECoG and electrode in BCI". Theoretical and Natural Science, 3(1), 410-16, 2023.
  • [10] Kubska ZR, Kamiński J. "How human single-neuron recordings can help us understand cognition, insights from memory studies". Brain Science, 11(4), 443, 2021.
  • [11] Halici U, Agi E, Özgen C, Ulusoy I. "Analysis and classification of EEG signals for brain computer interfaces". 10th International Conference on Cognitive Neuroscience, Bodrum, Türkiye, 1 September-5 September 2008.
  • [12] Ioannides A. Magnetoencephalography (MEG). Editor: Hyder F. Dynamic Brain Imaging. Methods In Molecular Bıology, 167-188, Yale University, New Haven, CT, USA, Humana Press, 2009.
  • [13] Buxton RB. "The physics of functional magnetic resonance imaging (fMRI)". Reports on Progress in Physics, 76(9), 096601, 2013.
  • [14] Cox DD, Savoy RL. "Functional magnetic resonance imaging (Fmrı) “brain reading”. detecting and classifying distributed patterns of FMRI activity in human visual cortex". Neuroimage, 19(2),261-70, 2003.
  • [15] Alavi A, Huang SS. "Positron emission tomography in medicine, an overview". Cancer Imaging, 31(1), 39-44, 2007.
  • [16] Zhu Y, Xu K, Xu C, Zhang J, Ji J, Zheng X, Zhang H, Tian M. "PET mapping for brain-computer interface stimulation of the ventroposterior medial nucleus of the thalamus in rats with ımplanted electrodes". Journal of Nuclear Medicine, 57(7), 1141-1145, 2016.
  • [17] Padilla-Buritica JI, Hurtado JV, Castellanos-Dominguez G. "Supervised piecewise network connectivity analysis for enhanced confidence of auditory oddball tasks". Biomedical Signal Processing And Control, 52, 341-346, 2019.
  • [18] Alsuwaiket MA. "Feature extraction of EEG signals for seizure detection using machine learning algorthims". Engineering, Technology and Applied Science Research, 12(5), 9247-51, 2022.
  • [19] Fernández-Sotos P, García-Martínez B, Ricarte JJ, Latorre JM, Sánchez-Morla EM, Fernández-Caballero A, Rodriguez-Jimenez R. "Electroencephalographic spectral analysis from a wireless low-cost brain-computer ınterface for symptom capture of auditory verbal hallucinations in schizophrenia". Schizophrenia Research, 220, 297-299, 2020.
  • [20] Bera TK. Noninvasive Electromagnetic Methods For Brain Monitoring, A Technical Review. Editors: Hassanien A, Azar A. Brain-Computer Interfaces, 51-95, Switzerland, Springer, 2015.
  • [21] Belwafi K, Ghaffari F, Djemal R, Romain O. "A hardware/software prototype of EEG-based BCI system for home device control". Journal of Signal Processing Systems, 89(2), 263-79, 2017.
  • [22] Zhuang T, Zhao H, Tang Z. "A study of brainwave entrainment based on EEG brain dynamics". Computer and Information Science, 2(2), 80-86, 2009.
  • [23] Proverbio AM, Tacchini M, Jiang K. "What do you have in mind? ERP markers of visual and auditory imagery". Brain Cognitive, 166(1), 105954, 2023.
  • [24] Mudgal SK, Sharma SK, Chaturvedi J, Sharma A. "Brain computer interface advancement ın neurosciences, applications and issues". Interdisciplinary Neurosurgery: Advanced Techniques and Case Management, 20(4),100694, 2020.
  • [25] Hinterberger T, Veit R, Wilhelm B, Weiskopf N, Vatine JJ, Birbaumer N. "Neuronal mechanisms underlying control of a brain-computer interface". European Journal of Neuroscience, 21(11), 3169-3181, 2005.
  • [26] Bilal Aygün A, Reşit Kavsaoğlu A. "An innovative p300 speller brain-computer ınterface design, easy screen". Biomedical Signal Processing And Control, 75(2), 103593, 2022.
  • [27] Xiao W, Manyi G, Khaleghi A. "Deficits in auditory and visual steady-state responses in adolescents with bipolar disorder". Journal of Psychiatric Research, 151(4), 368-76, 2022.
  • [28] Müller-Putz GR, Scherer R, Neuper C, Pfurtscheller G. "Steady-State somatosensory evoked potentials, suitable brain signals for brain-computer interfaces". IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(1), 30-37, 2006.
  • [29] Ergün E, Aydemir Ö. "Improving classification accuracy of motor imagery EEG signals via effective epochs". Pamukkale University Journal of Engineering Sciences, 24(5), 817-23, 2018.
  • [30] Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kübler A. "An auditory brain-computer interface (BCI)". Journal of Neuroscience Methods, 167(1), 43-50, 2008.
  • [31] Paulraj MP, Subramaniam K, Yaccob S Bin, Adom AH Bin, Hema CR. "Auditory evoked potential response and hearing loss, a review". The Open Biomedical Engineering Journal, 9(1),17-24, 2015.
  • [32] Bohórquez J, Özdamar Ö. "Generation of the 40-hz auditory steady-state response (ASSR) explained using convolution". Clinical Neurophysiology, 119(11), 2598-607, 2008.
  • [33] Pérez-González D, Malmierca MS. "Adaptation in the auditory system, an overview". Frontiers in Integrative Neuroscience, 8(2), 1-10, 2014.
  • [34] Markovinović I, Vrankić M, Vlahinić S, Šverko Z. "Design considerations for the auditory brain computer interface speller". Biomedical Signal Processing And Control, 75(1), 103546, 2022.
  • [35] Baykara E, Ruf CA, Fioravanti C, Käthner I, Simon N, Kleih SC, Kübler A, Halder S. "Effects of training and motivation on auditory P300 brain-computer interface performance". Clinical Neurophysiology, 127(1), 379-387, 2016.
  • [36] Christodoulides P, Miltiadous A, Tzimourta KD, Peschos D, Ntritsos G, Zakopoulou V, Giannakeas N,Astrakas LG, Tsipouras MG, Tsamis KI,Glavas E, Tzallas, AT. "Classification of EEG signals from young adults with dyslexia combining a brain computer interface device and an ınteractive linguistic software tool". Biomedical Signal Processing And Control, 76(2), 103646, 2022.
  • [37] Zhang B, Zhou Z, Jiang J. "A 36-class bimodal erp brain-computer ınterface using location-congruent auditory-tactile stimuli". Brain Science, 10(8), 1-18, 2020.
  • [38] Klatt LI, Getzmann S, Wascher E, Schneider D. "The contribution of selective spatial attention to sound detection and sound localization, evidence from event-related potentials and lateralized alpha oscillations". Biol Psychology, 138(8), 133-45, 2018.
  • [39] Jijomon CM, Vinod AP. "Person-identification using familiar-name auditory evoked potentials from frontal EEG electrodes". Biomedical Signal Processing and Control, 68(3), 102739, 2021.
  • [40] Lu Y, Wang M, Yao L, Shen H, Wu W, Zhang Q, Zhang L, Chen M, Liu H, Peng R, Liu M, Chen S. "Auditory attention decoding from electroencephalography based on long short-term memory networks". Biomedical Signal Processing And Control, 70(10), 102966, 2021.
  • [41] Heo J, Baek HJ, Hong S, Chang MH, Lee JS, Park KS. "Music and natural sounds in an auditory steady-state response based brain-computer interface to increase user acceptance". Computers in Biology and Medicine, 84(3), 45-52, 2017.
  • [42] Kaongoen N, Jo S. "A novel hybrid auditory BCI paradigm combining ASSR and P300". Journal of Neuroscience Methods, 279, 44-51, 2017.
  • [43] Onishi A, Takano K, Kawase T, Ora H, Kansaku K. "Affective stimuli for an auditory P300 brain-computer interface". Frontiers in Neuroscience, 11(9), 1-9, 2017.
  • [44] Iacoviello D, Petracca A, Spezialetti M, Placidi G. "A real-time classification algorithm for EEG-based BCI driven by self-induced emotions". Computer Methods and Programs in Biomedicine, 122(3), 293-303, 2015.
  • [45] Nambu I, Ebisawa M, Kogure M, Yano S, Hokari H, Wada Y. "Estimating the intended sound direction of the user, toward an auditory brain-computer ınterface using out-of-head sound localization". PLoS One, 8(2), e57174, 2013.
  • [46] Schreuder M, Blankertz B, Tangermann M. "A new auditory multi-class brain-computer interface paradigm, spatial hearing as an ınformative cue". PLoS One, 5(4), e9813, 2010.
  • [47] Wang R, Liu Y, Shi J, Peng B, Fei W, Bi L. "Sound target detection under noisy environment using brain-computer interface". IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 229-37, 2023.
  • [48] Manian V. "Auditory source localization by time frequency analysis and classification of electroencephalogram signals". Biomedical Journal of Scientific & Technical Research, 19(5), 14595-606, 2019.
  • [49] Cai Z, Makino S, Rutkowski TM. "Brain evoked potential latencies optimization for spatial auditory brain-computer interface". Cognitive Computation, 7(1), 34-43, 2015.
  • [50] Kiroy VN, Bakhtin OM, Krivko EM, Lazurenko DM, Aslanyan EV, Shaposhnikov DG, Shcherban IV. "Spoken and inner speech-related EEG connectivity in different spatial directon". Biomedical Signal Processing And Control, 71, 103224, 2022.
  • [51] Edlinger G, Holzner C, Guger C. "A hybrid brain-computer ınterface for smart home control". Lecture Notes Computer Science, 6762, 417-26, 2011.
  • [52] Choi YJ, Kwon OS, Kim SP. "Design of auditory P300-based brain-computer ınterfaces with a single auditory channel and no visual support". Cognitive Neurodynamics, 3, 1401-16, 2022.
  • [53] Shivappa VKK, Luu B, Solis M, George K. "Home automation system using brain computer interface paradigm based on auditory selection attention". IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 14-17 May 2018.
  • [54] Velasco-Álvarez F, Fernández-Rodríguez Á, Ron-Angevin R. "Brain-computer interface (BCI)-generated speech to control domotic devices". Neurocomputing, 509, 121-36, 2022.
  • [55] Halder S, Käthner I, Kübler A. "Training leads to increased auditory brain-computer interface performance of end-users with motor impairments". Clinical Neurophysiology, 127(2), 1288-96, 2016.
  • [56] De Souza AP, Soares QB, Mendes EMAM, Felix LB. "Brain-computer interface in an inter-ındividual approach using spatial coherence, identification of better channels and tests repetition using auditory selective attention". Biomedical Signal Processing And Control, 83(1), 104573, 2023.
  • [57] Jijomon CM, Vinod AP. "Detection and classification of long-latency own-name auditory evoked potential from electroencephalogram". Biomedical Signal Processing And Control, 68(3), 102724, 2021.
  • [58] Sugi M, Hagimoto Y, Nambu I, Gonzalez A, Takei Y, Yano S, Hokar H, Wada Y. "Improving the performance of an auditory brain-computer interface using virtual sound sources by shortening stimulus onset asynchrony". Frontiers in Neuroscience, 12(2), 1-11, 2018.
  • [59] Squires, Nancy K, Squires, Kenneth C, Hillyard, Stephen A. "Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man". Electroencephalography and Clinical Neurophysiology, 38(4), 387-401, 1975.
  • [60] Pereira DR, Cardoso S, Ferreira-Santos F, Fernandes C, Cunha-Reis C, Paiva TO, Almeida PR, Silveira C, Barbosa F, Marques-Teixeira J. "Effects of ınter-stimulus interval (ISI) duration on the N1 and P2 components of the auditory event-related potential". International Journal of Psychophysiology, 94(3), 311-8, 2014.
  • [61] Stegman P, Crawford CS, Andujar M, Nijholt A, Gilbert JE. "Brain-computer interface software, a review and discussion". IEEE Transactions on Human-Machine Systems, 50(2), 101-15, 2020.
  • [62] Mei J, Luo R, Xu L, Zhao W, Wen S, Wang K, Xiao X, Meng J, Huang Y, Tang J, Cheng L, Xu M, Ming D. “MetaBCI: an open-source platform for brain-computer interfaces". Computers in Biology and Medicine, 168(11), 107806, 2024.
  • [63] Schalk G, Mcfarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR, "BCI2000 , a general-purpose brain-computer interface (BCI) System". IEEE Transactıons On Bıomedıcal Engıneerıng, 51(6), 1034-43, 2004.
  • [64] Renard Y, Lotte F, Gibert G, Congedo M, Maby E, Delannoy V, Bertrand O, Lécuyer A. "OpenViBE: an open-source software platform to design, test, and use brain-computer ınterfaces ın real and virtual environments". Presence: Teleoperators and Virtual Environments, 19(1), 35-53, 2010.
  • [65] Kothe CA, Makeig S. "BCILAB, a platform for brain-computer interface development". Journal of Neural Engineering, 10(5), 056014, 2013.
  • [66] Delorme A, Makeig S. "EEGLAB, an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis". Journal of Neuroscience Methods, 134(1), 9-21, 2004.
  • [67] Erat K, Onay Durdu P. "User experience evaluation of low cost EEG headsets". Pamukkale University Journal of Engineering Sciences, 27(5), 646-59, 2021.
  • [68] Borirakarawin M, Punsawad Y. "Event-related potential-based brain-computer interface using the thai vowels’ and numerals’ auditory stimulus pattern". Sensors, 22(15), 5864, 2022.
  • [69] Akira D. “An information theoretic analysis of 256-channel EEG recordings: mutual information and measurement selection problem”. International Conference on Independent Component Analysis and Blind Signal Separation, San Diego, Calif, USA, 9-12 January 2001.
  • [70] Compumedics Neuroscan, “Compumedics Neuroscan/Caps,” Caps. https://compumedicsneuroscan.com/products/caps/ (21.05.2024).
  • [71] Brain Products. “Electrodes & caps”. Electrodes & Caps. https://www.brainproducts.com/solutions/#electrodes-caps (21.05.2024).
  • [72] Klem GH, Luders HO, Jasper HH. "The ten-twenty electrode system of the international federation". International Federation of Clinical Neurophysiology, 10, 371-375, 1998.
  • [73] McFarland DJ, Anderson CW, Müller KR, Schlögl A, Krusienski DJ. "BCI meeting 2005-workshop on BCI signal processing, feature extraction and translation". IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2),135-138, 2006.
  • [74] Oralhan Z. "A new paradigm for region-based P300 speller in brain computer interface". IEEE Access, 7, 106618-27, 2019.
  • [75] Tzimourta KD, Astrakas LG, Gianni AM, Tzallas AT, Giannakeas N, Paliokas I, Tsalikakis, DG, Tsipouras, MG. "Evaluation of window size in classification of epileptic short-term EEG signals using a brain computer interface software". Engineering, Technology & Applied Science Research, 8(4), 3093-7, 2018.
  • [76] Lee T, Kim M, Kim S. "Improvement of P300-based brain -computer balancing techniques". Sensors, 20(19), 1-16, 2020.
  • [77] Phanikrishna BV, Pławiak PJ, Prakash A. “A brief review on EEG signal pre-processing techniques for real-time brain-computer interface applications,” TechRxiv, 2021. https://doi.org/10.36227/techrxiv.16691605.v1
  • [78] Xu Z, Tang S, Liu C, Zhang Q, Gu H, Li X, Di Z, Li Z. “Temporal segmentation of EEG based on functional connectivity network structure,” Scientific Reports, 13(1), 1-19, 2023.
  • [79] Olgun N, Turkoglu I. "Brain-computer interface systems". 8th International Advanced Technologies Symposium (IATS’17), Elazığ, Türkiye, 19-22 October 2017.
  • [80] Pahuja SK, Veer K." Recent approaches on classification and feature extraction of EEG signal , a review". Robotica, 5, 1-25, 2021.
  • [81] Huang Z and Wang M. “A review of electroencephalogram signal processing methods for brain-controlled robots,” Cognitive Robotics, 1(8), 111-24, 2021.
  • [82] Turner MR, Wolpaw JR. "EEG-based brain-computer interfaces". Physiology & behavior, 176(1),139-48, 2016.
  • [83] Vanneschi L, Silva S." Introduction to machine learning." Natural Computing Series, 2, 115-48, 2023.
  • [84] Kononenko I, Kukar M. Machine Learning Basics. Editors: Kononenko I, Kukar M. Machine Learning and Data Mining, 59-105, Sawston, Cambridge, England Woodhead Publishing, 2007.
  • [85] Oladipupo T. Machine Learning Overview. Editors: Zhang Y. New Advances in Machine Learning, 8-18, Rijeka, Croatia, Intech Europe, 2010.
  • [86] Mahesh B. "Machine learning algorithms-a review". International Journal of Science and Research, 9(1), 381-6, 2020.
  • [87] RK, Reddy GYS, Pathak H." The understanding of deep learning, a comprehensive review". Mathematical Problems in Engineering, 2021(1), 1-15, 2021.
  • [88] Sengupta S, Basak S, Saikia P, Paul S, Tsalavoutis V, Atiah F, Ravi V, Peters A. "A review of deep learning with special emphasis on architectures, applications and recent trends". Knowledge-Based System, 194, 105596, 2020.
  • [89] Al-Canaan A, Chakib H, Uzair M, Toor S, Al‐Khatib A. "BCI‐control and monitoring system for smart home automation using wavelet". IET Signal Processing, 16, 141-56, 2022.
  • [90] Ghosh A, Sufian A, Sultana F, Chakrabarti A, De D. "Fundamental concepts of convolutional neural network". Intelligent Systems Reference Library. 172, 519-67, 2019.
  • [91] Singh SA, Meitei TG, Devi MD, MajumderS. “A deep neural network approach for P300 detection-based BCI using single-channel EEG scalogram images,” Physical and Engineering Sciences in Medicine, 44(4), 1221-1230, 2021.
  • [92] Hossain KM, Islam MA, Hossain S, Nijholt A, Ahad MAR. “Status of deep learning for EEG-based brain-computer interface applications,” Frontiers in Computational Neuroscience, 2023(1), 1-117, 2023.
  • [93] Alanazi M, Aldahr RS, Ilyas M. "Human activity recognition through smartphone inertial sensors with ML approach". Engineering, Technology and Applied Science Research,14(1), 12780-12787, 2024.
  • [94] Küçükakarsu M, Kavsaoğlu AR, Alenezi F, Alhudhaif A, Alwadie R, Polat K. "A novel automatic audiometric system design based on machine learning methods using the brain’s electrical activity signals". Diagnostics, 13(3), 575, 2023.
  • [95] Guo M, Xu G, Wang L, Masters M, Milsap G, Thakor N, Soares AB. "The anterior contralateral response ımproves performance in a single trial auditory oddball BMI". Biomedical Signal Processing And Control, 22, 74-84, 2015.
  • [96] Kimura R, Nambu I, Fujitsuka R, Maruyama Y, Yano S, Wada Y. "An auditory brain-computer ınterface to detect changes in sound pressure level for automatic volume control". Heliyon, 10(1),e23948, 2024.
  • [97] Ogino M, Kanoga S, Ito SI, Mitsukura Y. "Semi-Supervised learning for auditory event-related potential-based brain-computer ınterface". IEEE Access, 9, 47008-47023, 2021.
  • [98] Borirakarawin M, Punsawad Y. "Hybrid brain-computer interface system using auditory stimulation and speech imagination paradigms for assistive technology". IEEE Access, 11(5), 53079-90, 2023.
  • [99] Wang J, Wang T, Liu H, Wang K, Moses K, Feng Z, Li P,Huang W. "Flexible electrodes for brain-computer interface system". Advanced Materials, 35(47), 2211012, 2023.
  • [100] Halder S, Leinfelder T, Schulz SM, Kübler A. "Neural mechanisms of training an auditory event-related potential task in a brain-computer iınterface context". Human Brain Mapping, 40(8), 2399-412, 2019.
  • [101] Sun K, Hsieh K, Lee S. "Using mental shadowing tasks to improve the sound-evoked potential of EEG in the design of an auditory brain-computer interface". Applied Science, 13(856), 1-24, 2023.
  • [102] Barbosa S, Pires G, Nunes U. "Toward a reliable gaze-ındependent hybrid BCI combining visual and natural auditory stimuli". Journal of Neuroscience Methods, 261,47-61, 2016.
  • [103] Ogino M, Kanoga S, Muto M, Mitsukura Y. "Analysis of prefrontal single-channel EEG data for portable auditory ERP-based brain-computer interfaces". Frontiers in Human Neuroscience, 13(7),1-14, 2019.
  • [104] Jijomon CM, Vinod AP. "Person-identification using familiar-name auditory evoked potentials from frontal EEG electrodes". Biomedical Signal Processing And Control, 68(4), 102739, 2021.
  • [105] An WW, Shinn-Cunningham B, Gamper H, Emmanouilidou D, Johnston D, Jalobeanu M, Cutrell E, Wilson A, Chiang KJ, Tashev I. "Decoding music attention from “EEG headphones”: a user-friendly auditory brain-computer interface ". IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, 6-11 June 2021.
There are 105 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Review Article
Authors

Bahar Nazli

Ahmet Reşit Kavsaoğlu

Publication Date August 25, 2025
Submission Date March 28, 2024
Acceptance Date October 24, 2024
Published in Issue Year 2025 Volume: 31 Issue: 4

Cite

APA Nazli, B., & Kavsaoğlu, A. R. (2025). Brain-Computer interfaces with auditory stimuli: A review study. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(4), 633-647.
AMA Nazli B, Kavsaoğlu AR. Brain-Computer interfaces with auditory stimuli: A review study. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. August 2025;31(4):633-647.
Chicago Nazli, Bahar, and Ahmet Reşit Kavsaoğlu. “Brain-Computer Interfaces With Auditory Stimuli: A Review Study”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, no. 4 (August 2025): 633-47.
EndNote Nazli B, Kavsaoğlu AR (August 1, 2025) Brain-Computer interfaces with auditory stimuli: A review study. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 4 633–647.
IEEE B. Nazli and A. R. Kavsaoğlu, “Brain-Computer interfaces with auditory stimuli: A review study”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 4, pp. 633–647, 2025.
ISNAD Nazli, Bahar - Kavsaoğlu, Ahmet Reşit. “Brain-Computer Interfaces With Auditory Stimuli: A Review Study”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/4 (August2025), 633-647.
JAMA Nazli B, Kavsaoğlu AR. Brain-Computer interfaces with auditory stimuli: A review study. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:633–647.
MLA Nazli, Bahar and Ahmet Reşit Kavsaoğlu. “Brain-Computer Interfaces With Auditory Stimuli: A Review Study”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 4, 2025, pp. 633-47.
Vancouver Nazli B, Kavsaoğlu AR. Brain-Computer interfaces with auditory stimuli: A review study. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(4):633-47.

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif