Research Article
BibTex RIS Cite

Investigating the mechanical behavior of the human lumbar spine model by using finite element method

Year 2025, Volume: 31 Issue: 7
https://doi.org/10.5505/pajes.2025.93395

Abstract

Understanding the mechanical behavior of the human lumbar spine is important in spinal disorders and treatment. For this reason, spinal mechanics is examined in many biomechanical studies. The aim of this study is to examine the mechanical behavior of the human lumbar spine with the finite element method and to verify it by comparing it with experimental data in the literature. In addition, by trying different models, it is aimed to determine which structure in the spine functions under which loads and to show new researchers how these processes are applied. The human L1-L5 vertebrae were used. There were two models; one had facets as a single body in each without ligaments and the second one had facets as paired bodies at opposing bones with ligaments. Each intervertebral disc included nucleus pulposus, annulus fibrosus, and two end plates. Flexion, extension, left lateral bending, and right lateral bending loads were applied to the models with 4 Nm moment. The range of motions of each spinal segment in degrees were used as the analysis output and compared to the experimental data in the literature to validate the results. According to the results, modeling the facets as a single body caused excessive stiffness, while modeling them as facet pairs at opposing bones caused excessive movement. It can be said that using a model which, has paired facet joints and ligaments, provided converged range of motion values in each L1-L5 spinal segment under flexion/extension and left/right lateral bending moments.

References

  • [1] Şengül E. Posterior Stabilizasyon Yapılmış Lomber Omurga İçin Özgün Bir Sonlu Elemanlar Modelinin Geliştirilmesi ve Stabilizasyon Sonrası Biyomekanik Özelliklerinin İncelenmesi. Doktora Tezi, TOBB Ekonomi ve Teknoloji Üniversitesi, Ankara, Türkiye, 2021.
  • [2] Calek AK, Cornaz F, Suter M, Fasser MR, Baumgartner S, Sager P, Farshad M, Widmer J. “Load distribution on intervertebral cages with and without posterior instrumentation”. The Spine Journal, 24(5), 889-898, 2024.
  • [3] Hsieh YY, Kuo YJ, Chen CH, Wu LC, Chiang CJ, Lin CL. “Biomechanical Assessment of Vertebroplasty Combined with Cement-Augmented Screw Fixation for Lumbar Burst Fractures: A Finite Element Analysis”. Applied Sciences, 10(6), 2133, 2020.
  • [4] La Barbera L, Wilke HJ, Ruspi ML, Palanca M, Liebsch C, Luca A, Brayda-Bruno M, Galbusera F, Cristofolini L. “Load-sharing biomechanics of lumbar fixation and fusion with pedicle subtraction osteotomy”. Scientific Reports, 11, 3595, 2021.
  • [5] Zhang F, Liu J, He X, Wang R, Lu T, Zhang T, Liu Z. “Preclinical Evaluation of a Novel 3D-Printed Movable Lumbar Vertebral Complex for Replacement: In Vivo and Biomechanical Evaluation of Goat Model”. BioMed Research International, 2343404, 2021
  • [6] Lai O, Chen Y, Chen Q, Hu Y, Ma W. “Cadaveric biomechanical analysis of multilevel lateral lumbar interbody fusion with and without supplemental instrumentation”. BMC Musculoskeletal Disorders, 22, 280 2021.
  • [7] Widmer J, Cornaz F, Scheibler G, Spirig JM, Snedeker JG, Farshad M. “Biomechanical contribution of spinal structures to stability of the lumbar spine—novel biomechanical insights”. The Spine Journal, 20(10), 1705-1716, 2020.
  • [8] Tsutsui S, Yamamoto E, Kozaki T, Murata A, Yamada H. “Biomechanical study of rod stress in lumbopelvic fixation with lateral interbody fusion: an in vitro experimental study using synthetic bone models”. Journal of Neurosurgery: Spine, 37(1), 73-79, 2022.
  • [9] Umale S, Yoganandan N, Baisden JL, Choi H, Kurpad SN. “A biomechanical investigation of lumbar interbody fusion techniques”. J Mech Behav Biomed Mater, 125, 104961, 2022.
  • [10] Guo HZ, Tang YC, Guo DQ, Luo PJ, Li YX, Mo GY, Ma YH, Peng JC, Liang D, Zhang SC. “Stability Evaluation of Oblique Lumbar Interbody Fusion Constructs with Various Fixation Options: A Finite Element Analysis Based on Three-Dimensional Scanning Models”. World Neurosurgery, 138, 530-538, 2020.
  • [11] Fang G, Lin Y, Wu J, Cui W, Zhang S, Guo L, Sang H, Huang W. “Biomechanical Comparison of Stand-Alone and Bilateral Pedicle Screw Fixation for Oblique Lumbar Interbody Fusion Surgery-A Finite Element Analysis”. World Neurosurgery, 141, 204-212, 2020.
  • [12] Sengul E, Ozmen R, Yaman ME, Demir T. “Influence of posterior pedicle screw fixation at L4–L5 level on biomechanics of the lumbar spine with and without fusion: a finite element method”. BioMed Eng OnLine, 20(98), 2021.
  • [13] McDonald K, Little J, Pearcy M, Adam C. “Development of a multi-scale finite element model of the osteoporotic lumbar vertebral body for the investigation of apparent level vertebra mechanics and micro-level trabecular mechanics”. Medical Engineering & Physics, 32(6), 653-661, 2010.
  • [14] Kim YH, Wu M, Kim K. “Stress Analysis of Osteoporotic Lumbar Vertebra Using Finite Element Model with Microscaled Beam-Shell Trabecular-Cortical Structure”. Journal of Applied Mathematics, 285165, 2013.
  • [15] Ardatov O, Maknickas A, Alekna V, Tamulaitienė M, Kačianauskas R. “The finite element analysis of osteoporotic lumbar vertebral body by influence of trabecular bone apparent density and thickness of cortical shell”. Acta Mech Autom, 11(4), 285-292, 2017.
  • [16] Ritzel H, Amling M, Pösl M, Hahn M, Delling G. “The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: A histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens”. J Bone Miner Res, 12(1), 89-95, 2017.
  • [17] Yang B, Lu Y, Um C, O'Connell GD. "Relative Nucleus Pulposus Area and Position Alter Disk Joint Mechanics". ASME. J Biomech Eng, 141(5), 051004, 2019
  • [18] O'Connell GD, Vresilovic EJ, Elliott DM. “Comparison of Animals Used in Disc Research to Human Lumbar Disc Geometry”. Spine, 32(3), 328–333, 2007.
  • [19] Showalter BL, Beckstein JC, Martin JT, Beattie EE, Orías AAE, Schaer TP, Vresilovic EJ, Elliott DM. “Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Torsion Mechanics and Collagen Content.” Spine, 37(15), 900–907, 2012.
  • [20] Shirazi-Adl A, Ahmed A, Shrivastava S. “A Finite Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments.” J. Biomech, 19(4), 331–350, 1986.
  • [21] Guan Y, Yoganandan N, Moore J, Pintar FA, Zhang J, Maiman DJ, Laud P. “Moment-rotation responses of the human lumbosacral spinal column”. J Biomech, 40(9), 1975-1980, 2007.
  • [22] Kurutz M. Finite element modelling of human lumbar spine. Editor: Moratal D, s Analysis, 209-236, Sciyo, 2010.
  • [23] Wang K, Deng Z, Wang H, Li Z, Zhan H, Niu W. “Influence of variations in stiffness of cervical ligaments on C5-C6 segment”. J Mech Behav Biomed Mater, 72, 129-137, 2017.
  • [24] Galbusera F, Bellini CM, Raimondi MT, Fornari M, Assietti R. “Cervical spine biomechanics following implantation of a disc prosthesis”. Med Eng Phys, 30(9): 1127-1133, 2008.
  • [25] Erbulut D, Zafarparandeh I, Hassan C, Lazoglu I, and Ozer A. “Determination of the biomechanical effect of an interspinous process device on implanted and adjacent lumbar spinal segments using a hybrid testing protocol: a finite-element study”. J Neurosurgery, 23(2), 1-9, 2015.

İnsan lomber omurgasının mekanik davranışının sonlu elemanlar yöntemi ile incelenmesi

Year 2025, Volume: 31 Issue: 7
https://doi.org/10.5505/pajes.2025.93395

Abstract

İnsan lomber omurgasının mekanik davranışının anlaşılması, omurga rahatsızlıklarında ve tedavisinde önemli bir yer tutmaktadır. Bu sebeple pek çok biyomekanik çalışmada omurga mekaniği incelenmektedir. Bu çalışmanın amacı, insan lomber omurgasının mekanik davranışını sonlu elemanlar yöntemi ile incelemek ve literatürdeki deneysel veriler ile karşılaştırarak doğrulamaktır. Ayrıca, farklı modeller deneyerek, omurgada hangi yapının hangi yükler altında işlev gördüğünü belirlemek ve bu süreçlerin nasıl uygulandığını yeni araştırmacılara göstermektir. Bu çalışmada insan L1-L5 omurgası kullanılmıştır. İlki, faset eklemlerin tek bir gövde olarak modellendiği ligamentsiz bir omurga modeli ve ikincisi faset eklemlerin karşılıklı kemiklerde iki farklı gövde çifti olarak modellendiği ligamentli omurga modeli olmak üzere iki farklı model incelenmiştir. Her bir intervertebral disk, nükleus pulpozus, anülüs fibrozus ve iki adet end-plate’ten oluşmaktadır. Modellere, fleksiyon, ekstansiyon, sola eğilme ve sağa eğilme yükleri 4 Nm’lik moment ile uygulanmıştır. Her bir spinal segmentin derece cinsinden dönme miktarı analiz çıktısı olarak kullanılmış ve doğrulama için literatürdeki deneysel veriler ile karşılaştırılmıştır. Sonuçlara göre, fasetleri tek bir gövde olarak modellemek aşırı direngenliğe neden olurken, karşıt kemiklerde faset çiftleri olarak modellemek aşırı harekete neden oldu. Fasetlerin karşılıklı kemiklerde faset çiftleri olarak modellendiği ve ligamentleri olan bir modelin, fleksiyon/ekstansiyon ve sola/sağa eğilme momentleri altında her bir L1-L5 spinal segmentinde deneysel verilere yakınsayan dönme miktarı değerleri sağladığı söylenebilir.

References

  • [1] Şengül E. Posterior Stabilizasyon Yapılmış Lomber Omurga İçin Özgün Bir Sonlu Elemanlar Modelinin Geliştirilmesi ve Stabilizasyon Sonrası Biyomekanik Özelliklerinin İncelenmesi. Doktora Tezi, TOBB Ekonomi ve Teknoloji Üniversitesi, Ankara, Türkiye, 2021.
  • [2] Calek AK, Cornaz F, Suter M, Fasser MR, Baumgartner S, Sager P, Farshad M, Widmer J. “Load distribution on intervertebral cages with and without posterior instrumentation”. The Spine Journal, 24(5), 889-898, 2024.
  • [3] Hsieh YY, Kuo YJ, Chen CH, Wu LC, Chiang CJ, Lin CL. “Biomechanical Assessment of Vertebroplasty Combined with Cement-Augmented Screw Fixation for Lumbar Burst Fractures: A Finite Element Analysis”. Applied Sciences, 10(6), 2133, 2020.
  • [4] La Barbera L, Wilke HJ, Ruspi ML, Palanca M, Liebsch C, Luca A, Brayda-Bruno M, Galbusera F, Cristofolini L. “Load-sharing biomechanics of lumbar fixation and fusion with pedicle subtraction osteotomy”. Scientific Reports, 11, 3595, 2021.
  • [5] Zhang F, Liu J, He X, Wang R, Lu T, Zhang T, Liu Z. “Preclinical Evaluation of a Novel 3D-Printed Movable Lumbar Vertebral Complex for Replacement: In Vivo and Biomechanical Evaluation of Goat Model”. BioMed Research International, 2343404, 2021
  • [6] Lai O, Chen Y, Chen Q, Hu Y, Ma W. “Cadaveric biomechanical analysis of multilevel lateral lumbar interbody fusion with and without supplemental instrumentation”. BMC Musculoskeletal Disorders, 22, 280 2021.
  • [7] Widmer J, Cornaz F, Scheibler G, Spirig JM, Snedeker JG, Farshad M. “Biomechanical contribution of spinal structures to stability of the lumbar spine—novel biomechanical insights”. The Spine Journal, 20(10), 1705-1716, 2020.
  • [8] Tsutsui S, Yamamoto E, Kozaki T, Murata A, Yamada H. “Biomechanical study of rod stress in lumbopelvic fixation with lateral interbody fusion: an in vitro experimental study using synthetic bone models”. Journal of Neurosurgery: Spine, 37(1), 73-79, 2022.
  • [9] Umale S, Yoganandan N, Baisden JL, Choi H, Kurpad SN. “A biomechanical investigation of lumbar interbody fusion techniques”. J Mech Behav Biomed Mater, 125, 104961, 2022.
  • [10] Guo HZ, Tang YC, Guo DQ, Luo PJ, Li YX, Mo GY, Ma YH, Peng JC, Liang D, Zhang SC. “Stability Evaluation of Oblique Lumbar Interbody Fusion Constructs with Various Fixation Options: A Finite Element Analysis Based on Three-Dimensional Scanning Models”. World Neurosurgery, 138, 530-538, 2020.
  • [11] Fang G, Lin Y, Wu J, Cui W, Zhang S, Guo L, Sang H, Huang W. “Biomechanical Comparison of Stand-Alone and Bilateral Pedicle Screw Fixation for Oblique Lumbar Interbody Fusion Surgery-A Finite Element Analysis”. World Neurosurgery, 141, 204-212, 2020.
  • [12] Sengul E, Ozmen R, Yaman ME, Demir T. “Influence of posterior pedicle screw fixation at L4–L5 level on biomechanics of the lumbar spine with and without fusion: a finite element method”. BioMed Eng OnLine, 20(98), 2021.
  • [13] McDonald K, Little J, Pearcy M, Adam C. “Development of a multi-scale finite element model of the osteoporotic lumbar vertebral body for the investigation of apparent level vertebra mechanics and micro-level trabecular mechanics”. Medical Engineering & Physics, 32(6), 653-661, 2010.
  • [14] Kim YH, Wu M, Kim K. “Stress Analysis of Osteoporotic Lumbar Vertebra Using Finite Element Model with Microscaled Beam-Shell Trabecular-Cortical Structure”. Journal of Applied Mathematics, 285165, 2013.
  • [15] Ardatov O, Maknickas A, Alekna V, Tamulaitienė M, Kačianauskas R. “The finite element analysis of osteoporotic lumbar vertebral body by influence of trabecular bone apparent density and thickness of cortical shell”. Acta Mech Autom, 11(4), 285-292, 2017.
  • [16] Ritzel H, Amling M, Pösl M, Hahn M, Delling G. “The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: A histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens”. J Bone Miner Res, 12(1), 89-95, 2017.
  • [17] Yang B, Lu Y, Um C, O'Connell GD. "Relative Nucleus Pulposus Area and Position Alter Disk Joint Mechanics". ASME. J Biomech Eng, 141(5), 051004, 2019
  • [18] O'Connell GD, Vresilovic EJ, Elliott DM. “Comparison of Animals Used in Disc Research to Human Lumbar Disc Geometry”. Spine, 32(3), 328–333, 2007.
  • [19] Showalter BL, Beckstein JC, Martin JT, Beattie EE, Orías AAE, Schaer TP, Vresilovic EJ, Elliott DM. “Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Torsion Mechanics and Collagen Content.” Spine, 37(15), 900–907, 2012.
  • [20] Shirazi-Adl A, Ahmed A, Shrivastava S. “A Finite Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments.” J. Biomech, 19(4), 331–350, 1986.
  • [21] Guan Y, Yoganandan N, Moore J, Pintar FA, Zhang J, Maiman DJ, Laud P. “Moment-rotation responses of the human lumbosacral spinal column”. J Biomech, 40(9), 1975-1980, 2007.
  • [22] Kurutz M. Finite element modelling of human lumbar spine. Editor: Moratal D, s Analysis, 209-236, Sciyo, 2010.
  • [23] Wang K, Deng Z, Wang H, Li Z, Zhan H, Niu W. “Influence of variations in stiffness of cervical ligaments on C5-C6 segment”. J Mech Behav Biomed Mater, 72, 129-137, 2017.
  • [24] Galbusera F, Bellini CM, Raimondi MT, Fornari M, Assietti R. “Cervical spine biomechanics following implantation of a disc prosthesis”. Med Eng Phys, 30(9): 1127-1133, 2008.
  • [25] Erbulut D, Zafarparandeh I, Hassan C, Lazoglu I, and Ozer A. “Determination of the biomechanical effect of an interspinous process device on implanted and adjacent lumbar spinal segments using a hybrid testing protocol: a finite-element study”. J Neurosurgery, 23(2), 1-9, 2015.
There are 25 citations in total.

Details

Primary Language English
Subjects Biomechanic
Journal Section Research Article
Authors

Berna Seval Dogan 0009-0000-3096-8918

Mustafa Özkaya 0000-0002-3916-1261

Early Pub Date November 2, 2025
Publication Date November 19, 2025
Submission Date October 24, 2024
Acceptance Date April 21, 2025
Published in Issue Year 2025 Volume: 31 Issue: 7

Cite

APA Dogan, B. S., & Özkaya, M. (2025). Investigating the mechanical behavior of the human lumbar spine model by using finite element method. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(7). https://doi.org/10.5505/pajes.2025.93395
AMA Dogan BS, Özkaya M. Investigating the mechanical behavior of the human lumbar spine model by using finite element method. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2025;31(7). doi:10.5505/pajes.2025.93395
Chicago Dogan, Berna Seval, and Mustafa Özkaya. “Investigating the Mechanical Behavior of the Human Lumbar Spine Model by Using Finite Element Method”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, no. 7 (November 2025). https://doi.org/10.5505/pajes.2025.93395.
EndNote Dogan BS, Özkaya M (November 1, 2025) Investigating the mechanical behavior of the human lumbar spine model by using finite element method. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 7
IEEE B. S. Dogan and M. Özkaya, “Investigating the mechanical behavior of the human lumbar spine model by using finite element method”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 7, 2025, doi: 10.5505/pajes.2025.93395.
ISNAD Dogan, Berna Seval - Özkaya, Mustafa. “Investigating the Mechanical Behavior of the Human Lumbar Spine Model by Using Finite Element Method”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/7 (November2025). https://doi.org/10.5505/pajes.2025.93395.
JAMA Dogan BS, Özkaya M. Investigating the mechanical behavior of the human lumbar spine model by using finite element method. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31. doi:10.5505/pajes.2025.93395.
MLA Dogan, Berna Seval and Mustafa Özkaya. “Investigating the Mechanical Behavior of the Human Lumbar Spine Model by Using Finite Element Method”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 7, 2025, doi:10.5505/pajes.2025.93395.
Vancouver Dogan BS, Özkaya M. Investigating the mechanical behavior of the human lumbar spine model by using finite element method. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(7).

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif