Research Article
BibTex RIS Cite

Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi

Year 2025, Volume: 31 Issue: 7

Abstract

Endüksiyon ile ısıtma (EI) teknolojisi, özellikle son yıllarda, yüksek verimlilik, hız, güvenli çalışma ve benzeri özellikleri nedeniyle ev tipi uygulamalarda geniş bir kullanım alanı bulmaktadır. EI sistemlerinde genellikle yüksek verimlilikleri ve yumuşak anahtarlama yetenekleri nedeniyle rezonanslı inverter devreleri kullanılmaktadır. EI sistemlerinde kullanılan çeşitli rezonanslı inverterler arasında, tek anahtarlı kısmi rezonanslı (SSQR) inverter topolojisi düşük maliyetli ve düşük güç gerektiren uygulamalar için tercih edilmektedir. Ancak, SSQR inverter, maliyet avantajına rağmen, yumuşak anahtarlama ile çalışabildiği güç aralığının dar oluşu, güç kontrolünün zorluğu ve yarı iletken anahtarlarda oluşan akım ve gerilim zorlanmalarının diğer inverter uygulamalarına kıyasla yüksek olması gibi dezavantajları barındırır. Güç elektroniği devrelerindeki güvenli çalışma koşullarını zorlayan en önemli unsurlar, yarı iletken anahtarların maruz kalacağı yüksek gerilim ve yüksek akımlardır. Bununla birlikte elektronik devrelerin tüm bileşenleri aşırı akım ve aşırı gerilim stresinden etkilense de, invertör uygulamalarında en savunmasız elemanlar yarı iletken anahtarlardır. Aşırı akımın ürettiği aşırı ısı, zorlamalı soğutma yöntemleriyle azaltılabilse bile, yüksek gerilimlere maruz kalan yarı iletken anahtarlar, muhtemelen kısa devre olacak ve devre çalışamaz hale gelecektir. Bu çalışmada EI'da kullanılan SSQR inverter için yarı iletken anahtarların maruz kaldığı aşırı gerilimleri engelleyecek bir yöntem önerilmektedir. Önerilen yöntemin avantajları teorik olarak incelenmiş ve simulasyonlar ve prototip devreler aracılığıyla doğrulanmıştır.

References

  • [1] O. Lucía, P. Maussion, E. Dede, and J. M. Burdío, “Induction heating technology and its applications: Past Developments, current Technology, and future challenges,” IEEE Trans. Ind. Electron., vol. 61, no. 05, pp. 2509–2520, 2014, doi: 10.1109/TIE.2013.2281162.
  • [2] M. K. Kazimierczuk and S. Wang, “Frequency-domain analysis of series resonant converter for continuous conduction mode,” IEEE Trans. Power Electron., vol. 7, no. 2, pp. 270–279, Apr. 1992, doi: 10.1109/63.136243.
  • [3] M. Ozturk and N. Altintas, “Multi-output AC–AC converter for domestic induction heating,” Electr. Eng., vol. 105, no. 1, pp. 297–316, Feb. 2023, doi: 10.1007/s00202-022-01664-8.
  • [4] T. Tanaka, “A new induction cooking range for heating any kind of metal vessels,” IEEE Trans. Consum. Electron., vol. 35, no. 3, pp. 635–641, 1989, doi: 10.1109/30.44329.
  • [5] H. Sarnago, O. Lucia, A. Mediano, and J. M. Burdio, “A Class-E Direct AC–AC Converter With Multicycle Modulation for Induction Heating Systems,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2521–2530, May 2014, doi: 10.1109/TIE.2013.2281164.
  • [6] P. Vishnuram and G. Ramachandiran, “Capacitor-less induction heating system with self-resonant bifilar coil,” International Journal of Circuit Theory and Applications, vol. 48, no. 9. pp. 1411–1425, 2020, doi: 10.1002/cta.2830.
  • [7] J. M. Sarnago, H. ; Lucia, O. ; Mediano, A. ; Burdio, “Direct AC – AC Resonant Boost Converter for,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1128–1139, 2014, doi: 10.1109/TPEL.2013.2262154.
  • [8] H. P. Park, M. Kim, J. H. Jung, and H. S. Kim, “Load adaptive modulation method for all-metal induction heating application,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2018-March, pp. 3486–3490, 2018, doi: 10.1109/APEC.2018.8341606.
  • [9] H. Sarnago, O. Lucia, and J. M. Burdio, “Multiple-output ZCS resonant inverter for multi-coil induction heating appliances,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 2234–2238, 2017, doi: 10.1109/APEC.2017.7931010.
  • [10] B. S. S. Sevilay ÇETİN, “Mutfak Tipi Isıtma Uygulamaları İçin İki Çıkışlı Bir İndüksiyon Isıtma İnverteri Tasarımı,” Pamukkale Univ. J. Eng. …, vol. 12, no. 3, pp. 397–401, 2006.
  • [11] M. S. Huang, C. C. Liao, Z. F. Li, Z. R. Shih, and H. W. Hsueh, “Quantitative Design and Implementation of an Induction Cooker for a Copper Pan,” IEEE Access, vol. 9. pp. 5105–5118, 2021, doi: 10.1109/ACCESS.2020.3046713.
  • [12] S. H. Jeong, J. Il Jin, H. P. Park, and J. H. Jung, “Enhanced load adaptive modulation of induction heating series resonant inverters to heat various-material vessels,” J. Power Electron., vol. 22, no. 6, pp. 1020–1032, 2022, doi: 10.1007/s43236-022-00409-x.
  • [13] E. Jang, S. M. Park, D. Joo, H. M. Ahn, and B. K. Lee, “Analysis and Comparison of Topological Configurations for All-Metal Induction Cookers,” J. Electr. Eng. Technol., vol. 14, no. 6, pp. 2399–2408, 2019, doi: 10.1007/s42835-019-00292-w.
  • [14] W. Han, K. T. Chau, W. Liu, X. Tian, and H. Wang, “A Dual-Resonant Topology-Reconfigurable Inverter for All-Metal Induction Heating,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 10, no. 4, pp. 3818–3829, 2022, doi: 10.1109/JESTPE.2021.3071700.
  • [15] H. Sarnago, Ó. Lucía, A. Mediano, and J. M. Burdío, “Analytical Model of the Half-Bridge Series Resonant Inverter for Improved Power Conversion Efficiency and Performance,” IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4128–4143, 2015, doi: 10.1109/TPEL.2014.2359576.
  • [16] H. I. Hsieh, C. C. Kuo, and W. Te Chang, “Study of half-bridge series-resonant induction cooker powered by line rectified DC with less filtering,” IET Power Electron., 2023, doi: 10.1049/pel2.12503.
  • [17] H. W. Koertzen, J. D. van Wyk, and J. A. Ferreira, “Design of the half-bridge, series resonant converter for induction cooking,” in PESC Record - IEEE Annual Power Electronics Specialists Conference, 1995, vol. 2, pp. 729–735, doi: 10.1109/pesc.1995.474899.
  • [18] F. Zungor, H. Bodur, M. Ozturk, and H. Obdan, “Design Methodology of Series Resonant Half Bridge Inverter for Induction Cooker,” IEEE Access, vol. 11, no. November, pp. 135476–135492, 2023, doi: 10.1109/ACCESS.2023.3338542.
  • [19] “Mutfak Uygulamaları İçin Yarım Köprü Seri Rezonans İnvertörlü İndüksiyon Isıtma Sistemi Tasarımı,” Pamukkale Univ. J. Eng. …, vol. 8, no. 2, pp. 167–172, 2002, [Online]. Available: http://pajes.pau.edu.tr/jvi.aspx?un=PAJES-80963&volume=.
  • [20] M. Ozturk, “A Simplified Design Method for Quasi-Resonant Inverter Used in Induction Hob,” Electronics, vol. 12, no. 19, p. 4145, Oct. 2023, doi: 10.3390/electronics12194145.
  • [21] I. Sheikhian, N. Kaminski, S. Voß, W. Scholz, and E. Herweg, “Optimisation of Quasi-resonant Induction Cookers,” 2013 15th Eur. Conf. Power Electron. Appl. EPE 2013, 2013, doi: 10.1109/EPE.2013.6631837.
  • [22] M. Ozturk, F. Zungor, B. Emre, and B. Oz, “Quasi Resonant Inverter Load Recognition Method,” IEEE Access, vol. 10, no. August, pp. 89376–89386, 2022, doi: 10.1109/ACCESS.2022.3201355.
  • [23] J. Villa, D. Navarro, A. Dominguez, J. I. Artigas, and L. A. Barragan, “Vessel Recognition in Induction Heating Appliances - A Deep-Learning Approach,” IEEE Access, vol. 9. pp. 16053–16061, 2021, doi: 10.1109/ACCESS.2021.3052864.
  • [24] Z.-F. Li, J.-C. Hu, M.-S. Huang, Y.-L. Lin, C.-W. Lin, and Y.-M. Meng, “Load Estimation for Induction Heating Cookers Based on Series RLC Natural Resonant Current,” Energies, vol. 15, no. 4, p. 1294, Feb. 2022, doi: 10.3390/en15041294.
  • [25] E. Spateri, F. Ruiz, and G. Gruosso, “Modelling and Simulation of Quasi-Resonant Inverter for Induction Heating under Variable Load,” Electron., vol. 12, no. 3, 2023, doi: 10.3390/electronics12030753.
  • [26] J. Acero, J. M. Burdío, L. A. Barragán, and R. Alonso, “A model of the equivalent impedance of the coupled winding-load system for a domestic induction heating application,” IEEE Int. Symp. Ind. Electron., no. 1, pp. 491–496, 2007, doi: 10.1109/ISIE.2007.4374646.
  • [27] H. Okuno, H. Yonemori, and M. Kobayashi, “Relation of gap length and resonant frequency about a double-coil drive type IH cooker,” in 2008 15th IEEE International Conference on Electronics, Circuits and Systems, Aug. 2008, pp. 65–68, doi: 10.1109/ICECS.2008.4674792.
  • [28] N. Jovančić, N. Hadžimejlić, and P. Ćeklić, “Efficient Control of IGBT Transistor as Part of Overvoltage Protection,” IJEEC - Int. J. Electr. Eng. Comput., vol. 1, no. 1, p. Vol. 1 No. 1, Dec. 2017, doi: 10.7251/IJEEC1701046J.
  • [29] M. Chen, Z. Xiong, Y. Zhang, E. Zhu, Y. Zhao, and Z. Ma, “IGBT Overvoltage Protection Based on Dynamic Voltage Feedback and Active Clamping,” Appl. Sci., vol. 13, no. 2, p. 795, Jan. 2023, doi: 10.3390/app13020795.
  • [30] L. Du, C. Ma, Y. Zhang, Y. Chen, and Y. Luo, “A New IGBT Over-Voltage and Over-Current Protection Method Based on Active Clamp Technology,” in 2021 22nd International Vacuum Electronics Conference (IVEC), Apr. 2021, pp. 1–2, doi: 10.1109/IVEC51707.2021.9722429.
  • [31] H. Omori, H. Yamashita, M. Nakaoka, and T. Maruhashi, “A novel type induction-heating single-ended resonant inverter using new bipolar Darlington-Transistor,” in 1985 IEEE Power Electronics Specialists Conference, Jun. 1985, pp. 590–599, doi: 10.1109/PESC.1985.7070998.
  • [32] W. P. W. KOMATSU, “A simple and reliable class E inverter for induction heating applications,” Int. J. Electron., vol. 84, no. 2, pp. 157–165, Feb. 1998, doi: 10.1080/002072198134922.
  • [33] H. Terai et al., “Comparative performance evaluations of IGBTs and MCT in single-ended quasi-resonant zero voltage soft switching inverter,” in 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230), vol. 4, no. 1, pp. 2178–2182, doi: 10.1109/PESC.2001.954443.
  • [34] B. S. Sazak, “Design of a 500W Resonant Inductıon Heater,” Pamukkale Univ. J. Eng. …, vol. 5, no. 1, pp. 871–878, 1999, [Online]. Available: https://www.researchgate.net/publication/267858491_DESIGN_OF_A_500W_RESONANT_INDUCTION_HEATER.
  • [35] M. N. O. S. Charles K. Alexander, Fundamentals of Electric Circuits, 7th Editio. McGraw-Hill Education,.

Safe operating area in single switch quasi resonant inverter

Year 2025, Volume: 31 Issue: 7

Abstract

Induction heating (IH) technology has found extensive use in residential applications in recent times, owing to its high efficiency, speed, and safe operation characteristics. Resonant inverter circuits are commonly employed in IH systems due to their high efficiency and soft-switching capabilities. Among various resonant inverters used in IH systems, the single-switch quasi-resonant (SSQR) inverter topology is preferred for low-cost and low-power applications. However, despite its cost advantages, the SSQR inverter has limitations, including a narrow operating range for soft-switching, challenges in power control, and higher stresses on semiconductor switches compared to other inverter applications. The most critical factors challenging the safe operation conditions of power electronic circuits are the high voltage and current stresses imposed on semiconductor switches. While all components of electronic circuits are affected by excessive current and voltage stresses, semiconductor switches, particularly in inverter applications, are the most vulnerable elements. Despite efforts to reduce excessive heat generated by overcurrent through forced cooling methods, semiconductor switches subjected to high voltages are prone to shortcircuiting, rendering the circuit inoperable. This study proposes a method to mitigate the overvoltage stresses on semiconductor switches used in SSQR inverters for induction heating applications. The theoretical advantages of the proposed method have been investigated and verified through simulations and prototype circuits.

References

  • [1] O. Lucía, P. Maussion, E. Dede, and J. M. Burdío, “Induction heating technology and its applications: Past Developments, current Technology, and future challenges,” IEEE Trans. Ind. Electron., vol. 61, no. 05, pp. 2509–2520, 2014, doi: 10.1109/TIE.2013.2281162.
  • [2] M. K. Kazimierczuk and S. Wang, “Frequency-domain analysis of series resonant converter for continuous conduction mode,” IEEE Trans. Power Electron., vol. 7, no. 2, pp. 270–279, Apr. 1992, doi: 10.1109/63.136243.
  • [3] M. Ozturk and N. Altintas, “Multi-output AC–AC converter for domestic induction heating,” Electr. Eng., vol. 105, no. 1, pp. 297–316, Feb. 2023, doi: 10.1007/s00202-022-01664-8.
  • [4] T. Tanaka, “A new induction cooking range for heating any kind of metal vessels,” IEEE Trans. Consum. Electron., vol. 35, no. 3, pp. 635–641, 1989, doi: 10.1109/30.44329.
  • [5] H. Sarnago, O. Lucia, A. Mediano, and J. M. Burdio, “A Class-E Direct AC–AC Converter With Multicycle Modulation for Induction Heating Systems,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2521–2530, May 2014, doi: 10.1109/TIE.2013.2281164.
  • [6] P. Vishnuram and G. Ramachandiran, “Capacitor-less induction heating system with self-resonant bifilar coil,” International Journal of Circuit Theory and Applications, vol. 48, no. 9. pp. 1411–1425, 2020, doi: 10.1002/cta.2830.
  • [7] J. M. Sarnago, H. ; Lucia, O. ; Mediano, A. ; Burdio, “Direct AC – AC Resonant Boost Converter for,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1128–1139, 2014, doi: 10.1109/TPEL.2013.2262154.
  • [8] H. P. Park, M. Kim, J. H. Jung, and H. S. Kim, “Load adaptive modulation method for all-metal induction heating application,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2018-March, pp. 3486–3490, 2018, doi: 10.1109/APEC.2018.8341606.
  • [9] H. Sarnago, O. Lucia, and J. M. Burdio, “Multiple-output ZCS resonant inverter for multi-coil induction heating appliances,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 2234–2238, 2017, doi: 10.1109/APEC.2017.7931010.
  • [10] B. S. S. Sevilay ÇETİN, “Mutfak Tipi Isıtma Uygulamaları İçin İki Çıkışlı Bir İndüksiyon Isıtma İnverteri Tasarımı,” Pamukkale Univ. J. Eng. …, vol. 12, no. 3, pp. 397–401, 2006.
  • [11] M. S. Huang, C. C. Liao, Z. F. Li, Z. R. Shih, and H. W. Hsueh, “Quantitative Design and Implementation of an Induction Cooker for a Copper Pan,” IEEE Access, vol. 9. pp. 5105–5118, 2021, doi: 10.1109/ACCESS.2020.3046713.
  • [12] S. H. Jeong, J. Il Jin, H. P. Park, and J. H. Jung, “Enhanced load adaptive modulation of induction heating series resonant inverters to heat various-material vessels,” J. Power Electron., vol. 22, no. 6, pp. 1020–1032, 2022, doi: 10.1007/s43236-022-00409-x.
  • [13] E. Jang, S. M. Park, D. Joo, H. M. Ahn, and B. K. Lee, “Analysis and Comparison of Topological Configurations for All-Metal Induction Cookers,” J. Electr. Eng. Technol., vol. 14, no. 6, pp. 2399–2408, 2019, doi: 10.1007/s42835-019-00292-w.
  • [14] W. Han, K. T. Chau, W. Liu, X. Tian, and H. Wang, “A Dual-Resonant Topology-Reconfigurable Inverter for All-Metal Induction Heating,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 10, no. 4, pp. 3818–3829, 2022, doi: 10.1109/JESTPE.2021.3071700.
  • [15] H. Sarnago, Ó. Lucía, A. Mediano, and J. M. Burdío, “Analytical Model of the Half-Bridge Series Resonant Inverter for Improved Power Conversion Efficiency and Performance,” IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4128–4143, 2015, doi: 10.1109/TPEL.2014.2359576.
  • [16] H. I. Hsieh, C. C. Kuo, and W. Te Chang, “Study of half-bridge series-resonant induction cooker powered by line rectified DC with less filtering,” IET Power Electron., 2023, doi: 10.1049/pel2.12503.
  • [17] H. W. Koertzen, J. D. van Wyk, and J. A. Ferreira, “Design of the half-bridge, series resonant converter for induction cooking,” in PESC Record - IEEE Annual Power Electronics Specialists Conference, 1995, vol. 2, pp. 729–735, doi: 10.1109/pesc.1995.474899.
  • [18] F. Zungor, H. Bodur, M. Ozturk, and H. Obdan, “Design Methodology of Series Resonant Half Bridge Inverter for Induction Cooker,” IEEE Access, vol. 11, no. November, pp. 135476–135492, 2023, doi: 10.1109/ACCESS.2023.3338542.
  • [19] “Mutfak Uygulamaları İçin Yarım Köprü Seri Rezonans İnvertörlü İndüksiyon Isıtma Sistemi Tasarımı,” Pamukkale Univ. J. Eng. …, vol. 8, no. 2, pp. 167–172, 2002, [Online]. Available: http://pajes.pau.edu.tr/jvi.aspx?un=PAJES-80963&volume=.
  • [20] M. Ozturk, “A Simplified Design Method for Quasi-Resonant Inverter Used in Induction Hob,” Electronics, vol. 12, no. 19, p. 4145, Oct. 2023, doi: 10.3390/electronics12194145.
  • [21] I. Sheikhian, N. Kaminski, S. Voß, W. Scholz, and E. Herweg, “Optimisation of Quasi-resonant Induction Cookers,” 2013 15th Eur. Conf. Power Electron. Appl. EPE 2013, 2013, doi: 10.1109/EPE.2013.6631837.
  • [22] M. Ozturk, F. Zungor, B. Emre, and B. Oz, “Quasi Resonant Inverter Load Recognition Method,” IEEE Access, vol. 10, no. August, pp. 89376–89386, 2022, doi: 10.1109/ACCESS.2022.3201355.
  • [23] J. Villa, D. Navarro, A. Dominguez, J. I. Artigas, and L. A. Barragan, “Vessel Recognition in Induction Heating Appliances - A Deep-Learning Approach,” IEEE Access, vol. 9. pp. 16053–16061, 2021, doi: 10.1109/ACCESS.2021.3052864.
  • [24] Z.-F. Li, J.-C. Hu, M.-S. Huang, Y.-L. Lin, C.-W. Lin, and Y.-M. Meng, “Load Estimation for Induction Heating Cookers Based on Series RLC Natural Resonant Current,” Energies, vol. 15, no. 4, p. 1294, Feb. 2022, doi: 10.3390/en15041294.
  • [25] E. Spateri, F. Ruiz, and G. Gruosso, “Modelling and Simulation of Quasi-Resonant Inverter for Induction Heating under Variable Load,” Electron., vol. 12, no. 3, 2023, doi: 10.3390/electronics12030753.
  • [26] J. Acero, J. M. Burdío, L. A. Barragán, and R. Alonso, “A model of the equivalent impedance of the coupled winding-load system for a domestic induction heating application,” IEEE Int. Symp. Ind. Electron., no. 1, pp. 491–496, 2007, doi: 10.1109/ISIE.2007.4374646.
  • [27] H. Okuno, H. Yonemori, and M. Kobayashi, “Relation of gap length and resonant frequency about a double-coil drive type IH cooker,” in 2008 15th IEEE International Conference on Electronics, Circuits and Systems, Aug. 2008, pp. 65–68, doi: 10.1109/ICECS.2008.4674792.
  • [28] N. Jovančić, N. Hadžimejlić, and P. Ćeklić, “Efficient Control of IGBT Transistor as Part of Overvoltage Protection,” IJEEC - Int. J. Electr. Eng. Comput., vol. 1, no. 1, p. Vol. 1 No. 1, Dec. 2017, doi: 10.7251/IJEEC1701046J.
  • [29] M. Chen, Z. Xiong, Y. Zhang, E. Zhu, Y. Zhao, and Z. Ma, “IGBT Overvoltage Protection Based on Dynamic Voltage Feedback and Active Clamping,” Appl. Sci., vol. 13, no. 2, p. 795, Jan. 2023, doi: 10.3390/app13020795.
  • [30] L. Du, C. Ma, Y. Zhang, Y. Chen, and Y. Luo, “A New IGBT Over-Voltage and Over-Current Protection Method Based on Active Clamp Technology,” in 2021 22nd International Vacuum Electronics Conference (IVEC), Apr. 2021, pp. 1–2, doi: 10.1109/IVEC51707.2021.9722429.
  • [31] H. Omori, H. Yamashita, M. Nakaoka, and T. Maruhashi, “A novel type induction-heating single-ended resonant inverter using new bipolar Darlington-Transistor,” in 1985 IEEE Power Electronics Specialists Conference, Jun. 1985, pp. 590–599, doi: 10.1109/PESC.1985.7070998.
  • [32] W. P. W. KOMATSU, “A simple and reliable class E inverter for induction heating applications,” Int. J. Electron., vol. 84, no. 2, pp. 157–165, Feb. 1998, doi: 10.1080/002072198134922.
  • [33] H. Terai et al., “Comparative performance evaluations of IGBTs and MCT in single-ended quasi-resonant zero voltage soft switching inverter,” in 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230), vol. 4, no. 1, pp. 2178–2182, doi: 10.1109/PESC.2001.954443.
  • [34] B. S. Sazak, “Design of a 500W Resonant Inductıon Heater,” Pamukkale Univ. J. Eng. …, vol. 5, no. 1, pp. 871–878, 1999, [Online]. Available: https://www.researchgate.net/publication/267858491_DESIGN_OF_A_500W_RESONANT_INDUCTION_HEATER.
  • [35] M. N. O. S. Charles K. Alexander, Fundamentals of Electric Circuits, 7th Editio. McGraw-Hill Education,.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering (Other)
Journal Section Research Article
Authors

Metin Öztürk 0000-0001-9369-8206

Early Pub Date November 2, 2025
Publication Date November 19, 2025
Submission Date February 25, 2024
Acceptance Date May 13, 2025
Published in Issue Year 2025 Volume: 31 Issue: 7

Cite

APA Öztürk, M. (2025). Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(7). https://doi.org/10.5505/pajes.2025.05673
AMA Öztürk M. Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2025;31(7). doi:10.5505/pajes.2025.05673
Chicago Öztürk, Metin. “Tek Anahtarlı Kısmi Rezonanslı Inverterde Güvenli çalışma Bölgesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, no. 7 (November 2025). https://doi.org/10.5505/pajes.2025.05673.
EndNote Öztürk M (November 1, 2025) Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 7
IEEE M. Öztürk, “Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 7, 2025, doi: 10.5505/pajes.2025.05673.
ISNAD Öztürk, Metin. “Tek Anahtarlı Kısmi Rezonanslı Inverterde Güvenli çalışma Bölgesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/7 (November2025). https://doi.org/10.5505/pajes.2025.05673.
JAMA Öztürk M. Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31. doi:10.5505/pajes.2025.05673.
MLA Öztürk, Metin. “Tek Anahtarlı Kısmi Rezonanslı Inverterde Güvenli çalışma Bölgesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 7, 2025, doi:10.5505/pajes.2025.05673.
Vancouver Öztürk M. Tek anahtarlı kısmi rezonanslı inverterde güvenli çalışma bölgesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(7).

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif