Research Article
BibTex RIS Cite

Kafes geometriye sahip sandviç bir yapının mekanik özelliklerinin deneysel ve sayısal analizi

Year 2026, Volume: 32 Issue: 1

Abstract

Bu çalışmada polilaktik asit malzemesinden katmanlı üretim yöntemiyle imal edilen sandviç bir kafes yapının basma yükü altındaki mekanik davranışı incelenmiştir. Bu kapsamda yarı-statik basma testleriyle deneysel olarak ve sonlu elemanlar analizleriyle teorik olarak yapının yer değiştirme karakteristiği, yük taşıma kapasitesi ve enerji absorpsiyonu gibi özellikleri değerlendirilmiştir. Ardından deneysel ve teorik sonuçlar karşılaştırılmış ve yapının mekanik özelliklerinin belirlenmesi için gerçekleştirilen sonlu elemanlar analizlerinin etkinliği değerlendirilmiştir. Çalışma, katmanlı üretim teknolojisi ile kafes yapı geometrileri tasarlayacak ve imalatını gerçekleştirecek araştırmacılar için bir rehber niteliğindedir. Deneysel çalışmaların yüksek maliyetli ve zaman alıcı olması nedeniyle, sayısal analizlerin uygun biçimde kullanılması, kapsamlı deneysel çalışmalar öncesinde tasarım süreçlerinin bilgisayar ortamında sistematik ve verimli bir şekilde yürütülmesine olanak tanımaktadır. Böylece, yapısal performansın ön değerlendirmesi sağlanarak, üretim sürecinde zaman ve maliyet açısından optimizasyon yapılmasına katkı sunulması amaçlanmaktadır.

References

  • [1] Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. 2nd ed. Cambridge, UK, Cambridge University Press, 1997.
  • [2] Ren X, Das R, Tran P, Ngo TD, Xie YM. “Auxetic metamaterials and structures: A review”. Smart Materials and Structures, 27, 023001, 2018.
  • [3] Lianto F, Trisno R, Teh S. “The truss structure system”. International Journal of Civil Engineering and Technology, 9, 2460–2469, 2018.
  • [4] Xu S. “Research on topology optimization design of truss structure”. Highlights in Science, Engineering and Technology, 86, 162–171, 2024
  • [5] Mallikarjuna B, Bhargav P, Hiremath S, et al. “A review on the melt extrusion-based fused deposition modeling (FDM): Background, materials, process parameters and military applications”. International Journal of Interactive Design and Manufacturing, 19, 651–665, 2023.
  • [6] Turner N, Strong B, Gold SA. “A review of melt extrusion additive manufacturing processes: I. Process design and modeling”. Rapid Prototyping Journal, 20, 192–204, 2013.
  • [7] Ahn S, Montero M, Odell D, Roundy S, Wright PK. “Anisotropic material properties of fused deposition modeling ABS”. Rapid Prototyping Journal, 8, 248–257, 2002.
  • [8] Eryildiz M. “Effect of build orientation on mechanical behaviour and build time of FDM 3D-printed PLA parts: An experimental investigation”. European Mechanical Science, 5, 116–120, 2021.
  • [9] Antoniac I, Popescu D, Zapciu A, Antoniac A, Miculescu F, Moldovan H. “Magnesium filled polylactic acid (PLA) material for filament based 3D printing”. Materials, 12, 719, 2019.
  • [10] Kristiawan RB, Imaduddin F, Ariawan D, Ubaidillah, Arifin Z. “A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters”. Open Engineering, 11, 639–649, 2021.
  • [11] eSUN Filament. “ePLA-HS Technical Data Sheet”. https://www.esun3d.com/tr/epla-hf-product/ (20.01.2024).
  • [12] Structures Centre. “Common errors in finite element analysis and how to avoid them”. https://structurescentre.com/common-errors-in-finite-element-analysis-and-how-to-avoid-them (13.02.2025).
  • [13] Chandrupatla T, Belegundu A. Introduction to Finite Elements in Engineering. 5th ed. Cambridge, UK, Cambridge University Press, 2021.
  • [14] Fish J, Belytschko T. A First Course in Finite Elements. West Sussex, UK, Wiley, 2007.
  • [15] Bruson D, Iuliano L, Galati M. “Experimental and numerical mechanical characterisation of additively manufactured polymeric lattice structures under uniaxial tensile load”. Meccanica, 2024.
  • [16] Aziz AR, Zhou J, Thorne D, Cantwell WJ. “Geometrical scaling effects in the mechanical properties of 3D-printed body-centered cubic (BCC) lattice structures”. Polymers, 13, 3967, 2021.
  • [17] Dong Z, Li Y, Zhao T, Wu W, Xiao D, Liang J. “Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb”. Materials & Design, 182, 108036, 2019.
  • [18] Alomarah A, Masood SH, Sbarski I, Faisal B, Gao Z, Ruan D. “Compressive properties of 3D printed auxetic structures: Experimental and numerical studies”. Virtual and Physical Prototyping, 15, 1–21, 2019.
  • [19] Ali MH, Batai S, Karim D. “Material minimization in 3D printing with novel hybrid cellular structures”. Materials Today: Proceedings, 42, 1800–1809, 2021.
  • [20] Guo S, Ma Y, Liu P, Chen Y. “Mechanical properties of lattice structures with a central cube: Experiments and simulations”. Materials, 17, 1329, 2024.
  • [21] Zhang Y, Jing X, Wu Z, Zhang M, Wang L. “Compression behavior of 3D printed polymer TPU cubic lattice structure”. Materials Research, 25, 2022.
  • [22] Carlson RL, Kardomateas GA, Craig JI. Mechanics of Failure Mechanisms in Structures. 1st ed. Atlanta, USA, Springer, 2012.
  • [23] Özen M, Kenan H, Azeloğlu CO. “Design and finite element assessment of functionally graded auxetic structures”. International Journal of 3D Printing Technologies and Digital Industry, 8, 303–315, 2024.
  • [24] ASTM D638. “Standard Test Method for Tensile Properties of Plastics”. ASTM International, West Conshohocken, PA, USA, 2014.
  • [25] Petryk H. Material Instabilities in Elastic and Plastic Solids. 1st ed. Vienna, AUT, Springer, 2014.
  • [26] Dassault Systèmes. ABAQUS® CAE User's Manual. Vélizy-Villacoublay, FR, 2016.
  • [27] Yeter İB, Kenan H, Azeloğlu CO. “Experimental and numerical investigation of the mechanical properties of PLA specimens manufactured by FDM method depending on part orientation”. IV. International Bandırma Scientific Studies Congress, ASES Publications, 2025.
  • [28] Hibbeler RC. Mechanics of Materials. 10th ed. Upper Saddle River, NJ, USA, Pearson Education, 2017.
  • [29] Meyers MA, Chawla KK. Mechanical Behavior of Materials. 2nd ed. Cambridge, UK, Cambridge University Press, 2008.
  • [30] Okereke M, Keates S. Finite Element Applications: A Practical Guide to the FEM Process. Cham, Switzerland, Springer, 2018.
  • [31] Peng J, Wang Y, Dai Q, Liu X, Liu L, Zhang Z. “Effect of stress triaxiality on plastic damage evolution and failure mode for 316L notched specimen”. Materials, 12(19), 3198, 2019.
  • [32] Neukamm F, Feucht M, Haufe A, Roll K. “A generalized incremental stress state dependent damage model for forming and crashworthiness simulations”. Proc. Numisheet 2008 – International Conference on Numerical Simulation of 3D Sheet Metal Forming Processes, Interlaken, Switzerland, 1–5 September, 2008.
  • [33] Palaniandy L, Abdullah MMAB, Asyraf MRM, Nik Him NR, Noriman NZ, Radzi R. “Tribological behaviour of 3D printed polylactic acid (PLA) sliding against steel at different sliding speed”. Journal of Physics: Conference Series, 2542(1), 012003, 2023.
  • [34] Shil’ko SV. “The role of friction in mechanical tests of materials”. Journal of Friction and Wear, 23(3), 98–102, 2002.
  • [35] Gosztola D, Szép J, Rad MM. “The effect of the friction coefficient between the steel-concrete connection on the horizontal load capacity”. Material Strength and Applied Mechanics, October 2024.
  • [36] Yu W, Jin L, Du X. “Experiment and meso-scale modelling on combined effects of strain rate and specimen size on uniaxial-compressive failures of concrete”. Materials Strength and Applied Mechanics, 32(5), 2023.
  • [37] Qing J, Wang Z, Wang Y. “Study on the compression energy absorption characteristics of 3D printed PLA and PLA-Cu materials”. Journal of Physics: Conference Series, 2478(3), 032086, 2023.
  • [38] Vyavahare S, Kumar S. “Numerical and experimental investigation of FDM fabricated re-entrant auxetic structures of ABS and PLA materials under compressive loading”. Rapid Prototyping Journal, 27(2), 223–244, 2021.

Experimental and numerical analysis of the mechanical properties of a sandwich structure with lattice geometry

Year 2026, Volume: 32 Issue: 1

Abstract

In this study, the mechanical behavior of a sandwich lattice structure manufactured using additive manufacturing from polylactic acid material under compressive loading was investigated. For this purpose, the displacement characteristics, load-bearing capacity, and energy absorption properties of the structure were evaluated both experimentally through quasi-static compression tests and theoretically using finite element analyses. Subsequently, the experimental and theoretical results were compared, and the effectiveness of finite element analyses in determining the mechanical properties of the structure was assessed. This study serves as a guide for researchers who aim to design lattice structure geometries and manufacture them using additive manufacturing technology. Due to the high cost and timeconsuming nature of experimental studies, the appropriate use of numerical analyses enables the systematic and efficient execution of design processes in a virtual environment before extensive experimental investigations. In this way, the preliminary evaluation of structural performance is ensured, contributing to time and cost optimization in the manufacturing process.

References

  • [1] Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. 2nd ed. Cambridge, UK, Cambridge University Press, 1997.
  • [2] Ren X, Das R, Tran P, Ngo TD, Xie YM. “Auxetic metamaterials and structures: A review”. Smart Materials and Structures, 27, 023001, 2018.
  • [3] Lianto F, Trisno R, Teh S. “The truss structure system”. International Journal of Civil Engineering and Technology, 9, 2460–2469, 2018.
  • [4] Xu S. “Research on topology optimization design of truss structure”. Highlights in Science, Engineering and Technology, 86, 162–171, 2024
  • [5] Mallikarjuna B, Bhargav P, Hiremath S, et al. “A review on the melt extrusion-based fused deposition modeling (FDM): Background, materials, process parameters and military applications”. International Journal of Interactive Design and Manufacturing, 19, 651–665, 2023.
  • [6] Turner N, Strong B, Gold SA. “A review of melt extrusion additive manufacturing processes: I. Process design and modeling”. Rapid Prototyping Journal, 20, 192–204, 2013.
  • [7] Ahn S, Montero M, Odell D, Roundy S, Wright PK. “Anisotropic material properties of fused deposition modeling ABS”. Rapid Prototyping Journal, 8, 248–257, 2002.
  • [8] Eryildiz M. “Effect of build orientation on mechanical behaviour and build time of FDM 3D-printed PLA parts: An experimental investigation”. European Mechanical Science, 5, 116–120, 2021.
  • [9] Antoniac I, Popescu D, Zapciu A, Antoniac A, Miculescu F, Moldovan H. “Magnesium filled polylactic acid (PLA) material for filament based 3D printing”. Materials, 12, 719, 2019.
  • [10] Kristiawan RB, Imaduddin F, Ariawan D, Ubaidillah, Arifin Z. “A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters”. Open Engineering, 11, 639–649, 2021.
  • [11] eSUN Filament. “ePLA-HS Technical Data Sheet”. https://www.esun3d.com/tr/epla-hf-product/ (20.01.2024).
  • [12] Structures Centre. “Common errors in finite element analysis and how to avoid them”. https://structurescentre.com/common-errors-in-finite-element-analysis-and-how-to-avoid-them (13.02.2025).
  • [13] Chandrupatla T, Belegundu A. Introduction to Finite Elements in Engineering. 5th ed. Cambridge, UK, Cambridge University Press, 2021.
  • [14] Fish J, Belytschko T. A First Course in Finite Elements. West Sussex, UK, Wiley, 2007.
  • [15] Bruson D, Iuliano L, Galati M. “Experimental and numerical mechanical characterisation of additively manufactured polymeric lattice structures under uniaxial tensile load”. Meccanica, 2024.
  • [16] Aziz AR, Zhou J, Thorne D, Cantwell WJ. “Geometrical scaling effects in the mechanical properties of 3D-printed body-centered cubic (BCC) lattice structures”. Polymers, 13, 3967, 2021.
  • [17] Dong Z, Li Y, Zhao T, Wu W, Xiao D, Liang J. “Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb”. Materials & Design, 182, 108036, 2019.
  • [18] Alomarah A, Masood SH, Sbarski I, Faisal B, Gao Z, Ruan D. “Compressive properties of 3D printed auxetic structures: Experimental and numerical studies”. Virtual and Physical Prototyping, 15, 1–21, 2019.
  • [19] Ali MH, Batai S, Karim D. “Material minimization in 3D printing with novel hybrid cellular structures”. Materials Today: Proceedings, 42, 1800–1809, 2021.
  • [20] Guo S, Ma Y, Liu P, Chen Y. “Mechanical properties of lattice structures with a central cube: Experiments and simulations”. Materials, 17, 1329, 2024.
  • [21] Zhang Y, Jing X, Wu Z, Zhang M, Wang L. “Compression behavior of 3D printed polymer TPU cubic lattice structure”. Materials Research, 25, 2022.
  • [22] Carlson RL, Kardomateas GA, Craig JI. Mechanics of Failure Mechanisms in Structures. 1st ed. Atlanta, USA, Springer, 2012.
  • [23] Özen M, Kenan H, Azeloğlu CO. “Design and finite element assessment of functionally graded auxetic structures”. International Journal of 3D Printing Technologies and Digital Industry, 8, 303–315, 2024.
  • [24] ASTM D638. “Standard Test Method for Tensile Properties of Plastics”. ASTM International, West Conshohocken, PA, USA, 2014.
  • [25] Petryk H. Material Instabilities in Elastic and Plastic Solids. 1st ed. Vienna, AUT, Springer, 2014.
  • [26] Dassault Systèmes. ABAQUS® CAE User's Manual. Vélizy-Villacoublay, FR, 2016.
  • [27] Yeter İB, Kenan H, Azeloğlu CO. “Experimental and numerical investigation of the mechanical properties of PLA specimens manufactured by FDM method depending on part orientation”. IV. International Bandırma Scientific Studies Congress, ASES Publications, 2025.
  • [28] Hibbeler RC. Mechanics of Materials. 10th ed. Upper Saddle River, NJ, USA, Pearson Education, 2017.
  • [29] Meyers MA, Chawla KK. Mechanical Behavior of Materials. 2nd ed. Cambridge, UK, Cambridge University Press, 2008.
  • [30] Okereke M, Keates S. Finite Element Applications: A Practical Guide to the FEM Process. Cham, Switzerland, Springer, 2018.
  • [31] Peng J, Wang Y, Dai Q, Liu X, Liu L, Zhang Z. “Effect of stress triaxiality on plastic damage evolution and failure mode for 316L notched specimen”. Materials, 12(19), 3198, 2019.
  • [32] Neukamm F, Feucht M, Haufe A, Roll K. “A generalized incremental stress state dependent damage model for forming and crashworthiness simulations”. Proc. Numisheet 2008 – International Conference on Numerical Simulation of 3D Sheet Metal Forming Processes, Interlaken, Switzerland, 1–5 September, 2008.
  • [33] Palaniandy L, Abdullah MMAB, Asyraf MRM, Nik Him NR, Noriman NZ, Radzi R. “Tribological behaviour of 3D printed polylactic acid (PLA) sliding against steel at different sliding speed”. Journal of Physics: Conference Series, 2542(1), 012003, 2023.
  • [34] Shil’ko SV. “The role of friction in mechanical tests of materials”. Journal of Friction and Wear, 23(3), 98–102, 2002.
  • [35] Gosztola D, Szép J, Rad MM. “The effect of the friction coefficient between the steel-concrete connection on the horizontal load capacity”. Material Strength and Applied Mechanics, October 2024.
  • [36] Yu W, Jin L, Du X. “Experiment and meso-scale modelling on combined effects of strain rate and specimen size on uniaxial-compressive failures of concrete”. Materials Strength and Applied Mechanics, 32(5), 2023.
  • [37] Qing J, Wang Z, Wang Y. “Study on the compression energy absorption characteristics of 3D printed PLA and PLA-Cu materials”. Journal of Physics: Conference Series, 2478(3), 032086, 2023.
  • [38] Vyavahare S, Kumar S. “Numerical and experimental investigation of FDM fabricated re-entrant auxetic structures of ABS and PLA materials under compressive loading”. Rapid Prototyping Journal, 27(2), 223–244, 2021.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Material Design and Behaviors, Numerical Modelling and Mechanical Characterisation
Journal Section Research Article
Authors

İhsan Burak Yeter 0009-0006-4445-8728

Hamit Kenan 0000-0001-8615-5406

C. Oktay Azeloğlu 0000-0001-5283-9447

Early Pub Date November 2, 2025
Publication Date November 20, 2025
Submission Date March 18, 2025
Acceptance Date June 10, 2025
Published in Issue Year 2026 Volume: 32 Issue: 1

Cite

APA Yeter, İ. B., Kenan, H., & Azeloğlu, C. O. (2025). Kafes geometriye sahip sandviç bir yapının mekanik özelliklerinin deneysel ve sayısal analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 32(1). https://doi.org/10.5505/pajes.2025.69607
AMA Yeter İB, Kenan H, Azeloğlu CO. Kafes geometriye sahip sandviç bir yapının mekanik özelliklerinin deneysel ve sayısal analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2025;32(1). doi:10.5505/pajes.2025.69607
Chicago Yeter, İhsan Burak, Hamit Kenan, and C. Oktay Azeloğlu. “Kafes Geometriye Sahip Sandviç Bir Yapının Mekanik özelliklerinin Deneysel Ve Sayısal Analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32, no. 1 (November 2025). https://doi.org/10.5505/pajes.2025.69607.
EndNote Yeter İB, Kenan H, Azeloğlu CO (November 1, 2025) Kafes geometriye sahip sandviç bir yapının mekanik özelliklerinin deneysel ve sayısal analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32 1
IEEE İ. B. Yeter, H. Kenan, and C. O. Azeloğlu, “Kafes geometriye sahip sandviç bir yapının mekanik özelliklerinin deneysel ve sayısal analizi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 1, 2025, doi: 10.5505/pajes.2025.69607.
ISNAD Yeter, İhsan Burak et al. “Kafes Geometriye Sahip Sandviç Bir Yapının Mekanik özelliklerinin Deneysel Ve Sayısal Analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32/1 (November2025). https://doi.org/10.5505/pajes.2025.69607.
JAMA Yeter İB, Kenan H, Azeloğlu CO. Kafes geometriye sahip sandviç bir yapının mekanik özelliklerinin deneysel ve sayısal analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32. doi:10.5505/pajes.2025.69607.
MLA Yeter, İhsan Burak et al. “Kafes Geometriye Sahip Sandviç Bir Yapının Mekanik özelliklerinin Deneysel Ve Sayısal Analizi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 1, 2025, doi:10.5505/pajes.2025.69607.
Vancouver Yeter İB, Kenan H, Azeloğlu CO. Kafes geometriye sahip sandviç bir yapının mekanik özelliklerinin deneysel ve sayısal analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32(1).

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif