Review
BibTex RIS Cite

Selüloz Nanokristaller: Sentez prosedürleri, karakterizasyon teknikleri

Year 2026, Volume: 32 Issue: 2
https://doi.org/10.5505/pajes.2025.37888

Abstract

Lignoselülozik materyallerden çeşitli proseslerle yenilenebilir malzemeler üretmek, bilim insanları için önemli bir araştırma alanı haline gelmiş ve bu süreç, selüloz nanokristal (SNK) ve selüloz nanofibril (SNF) gibi yeni malzemelerin ortaya çıkmasını sağlamıştır. Bahsi geçen biyo-bazlı malzemelerin geliştirilmesi, temel bilgi birikiminin artmasına ve yenilikçi proseslerin oluşturulmasına katkıda bulunurken, selülozik nano malzemelerin çeşitli mühendislik disiplinlerinde yaygın kullanımına da zemin hazırlamıştır. Biyobozunur ve biyouyumlu olmalarının yanı sıra, tarımsal ve endüstriyel atıklardan dahi üretilebilmeleri, selülozik nanomalzemeleri çevresel açıdan sürdürülebilir hale getirmekte ve bu nedenle araştırmacıların konuya ilişkin ilgisi giderek artırmaktadır. Bu derleme makalesi, selüloz nanokristaller (SNK) başta olmak üzere selülozik nanomalzemelerin (SNF) üretim süreçleri, elde edildikleri kaynaklar, karakterizasyon yöntemleri ilişkin güncel gelişmeleri ayrıntılı bir şekilde incelemeyi amaçlamaktadır.

References

  • [1] Calisto Friant, M., Vermeulen, W. J. V., Salomone, R., “Analysing European Union circular economy policies: words versus actions,” Sustain Prod Consum, 27, 337–353, 2021.
  • [2] Ramchuran, S. O., O’Brien, F., Dube, N., Ramdas, V., “An overview of green processes and technologies, biobased chemicals and products for industrial applications,” Curr Opin Green Sustain Chem, 41, 100832, 2023.
  • [3] Nagarajan, K. J., Karthikeyan, S. M., Ramachandran, M. M., Rajan, K. S., “A comprehensive review on cellulose nanocrystals and cellulose nanofibers: Pretreatment, preparation, and characterization,” Polym Compos, 42(4), 1588–1630, 2021.
  • [4] Klemm, D., Heublein, A., Fink, H., Bohn, A., “Nanocelluloses: A New Family of Nature‐Based Materials,” Angewandte Chemie International Edition, 50(24), 5438–5466, 2011.
  • [5] Rajinipriya, M., Nagalakshmaiah, M., Robert, M., Elkoun, S., “Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review,” ACS Sustain Chem Eng, 6(3), 2807–2828, 2018.
  • [6] Rashid, M. M., Islam, S., Ali, A., Siddique, A. B., “RETRACTED: Extraction and characterization of cellulose from cotton flower burr: a noble cellulose source from agro-waste,” Jun. 24, 2024.
  • [7] Magalhães, S., Rodrigues, F., Gomes, L., Ferreira, P. “Eco-Friendly Methods for Extraction and Modification of Cellulose: An Overview.” Polymers (Basel), 15(14), 3138, 2023.
  • [8] Heise, K., Maleki, R. K., Ghadiri, S., Chen, Y. “Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications.” Advanced Materials, 33(3), 2021.
  • [9] Choudhury, R. R., Sahoo, S. K., Gohil, J. M. “Potential of bioinspired cellulose nanomaterials and nanocomposite membranes thereof for water treatment and fuel cell applications.” Cellulose, 27(12), 6719–6746, 2020.
  • [10] Bilek, S., Yalçın Melikoğlu, A., Cesur, S. “Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları.” Akademik Gıda, 17(1), 140–148, 2019.
  • [11] Fotie, G., Limbo, S., Piergiovanni, L. “Manufacturing of Food Packaging Based on Nanocellulose: Current Advances and Challenges.” Nanomaterials, 10(9), 1726, 2020.
  • [12] C. Ji, Y. Wang. “Nanocellulose-stabilized Pickering emulsions: fabrication, stabilization, and food applications.” Advances in Colloid and Interface Science, 318(2), 2023.
  • [13] J. Li, R. K. Li, Y. Wang. “Emerging Food Packaging Applications of Cellulose Nanocomposites: A Review.” Polymers (Basel), 14(19), 4025, 2022.
  • [14] V. Raj, C. J. Raorane, J.-H. Lee, J. Lee. “Appraisal of Chitosan-Gum Arabic-Coated Bipolymeric Nanocarriers for Efficient Dye Removal and Eradication of the Plant Pathogen Botrytis cinerea.” ACS Appl Mater Interfaces, 13(40), 47354–47370, 2021.
  • [15] K. Liu, Z. Chen, M. Zhang. “Recent advances in cellulose and its derivatives for oilfield applications.” Carbohydr Polym, 259, 117740, 2021.
  • [16] T. S. Franco, G. P. Rocha, M. M. Silva. “Nanocellulose and Its Application in the Food Industry.” in ENVABIO100, Basel Switzerland: MDPI, 2023.
  • [17] Xu, W., Zhang, R., Wu, X. “On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application.” ACS Appl Mater Interfaces, 11(9), 8838–8848, 2019.
  • [18] González-Domínguez, J. M., López-Villanueva, F., Martínez-Guerra, J. “Waterborne Graphene- and Nanocellulose-Based Inks for Functional Conductive Films and 3D Structures.” Nanomaterials, 11(6), 1435, 2021.
  • [19] Ong, X.-R., Chen, A. X., Li, N., Yang, Y. Y., Luo, H.-K. “Nanocellulose: Recent Advances Toward Biomedical Applications.” Small Science, 3(2), 2023.
  • [20] Garcia, K. R., Beck, R. C. R., Brandalise, R. N., dos Santos, V., Koester, L. S. “Nanocellulose, the Green Biopolymer Trending in Pharmaceuticals: A Patent Review.” Pharmaceutics, 16(1), 145, 2024.
  • [21] Varghese, R., Cherian, R., Chirayil, C., Antony, T., Kargarzadeh, H., Thomas, S. “Nanocellulose as an Avenue for Drug Delivery Applications: A Mini-Review.” Journal of Composites Science, 7(6), 210, 2023.
  • [22] Kulkarni, S. A., Feng, S.-S. “Effects of Particle Size and Surface Modification on Cellular Uptake and Biodistribution of Polymeric Nanoparticles for Drug Delivery.” Pharm Res, 30(10), 2512–2522, 2013.
  • [23] Kaur, P., Bansal, R., Ghosh, S. “Nanocellulose: Resources, Physio-Chemical Properties, Current Uses and Future Applications.” Frontiers in Nanotechnology, 3, 2021.
  • [24] Poulose, A., Kumar, P., Rajendran, M. “Nanocellulose: A Fundamental Material for Science and Technology Applications.” Molecules, 27(22), 8032, 2022.
  • [25] Jonoobi, M., Harun, M., Shakeri, R., Othman, A. I. “Different Preparation Methods and Properties of Nanostructured Cellulose from Various Natural Resources and Residues: A Review.” Cellulose, 22(2), 935–969, 2015.
  • [26] Klemm, D., Heublein, B., Fink, H., Bohn, A. “Cellulose: Fascinating Biopolymer and Sustainable Raw Material.” Angewandte Chemie International Edition, 44(22), 3358–3393, 2005.
  • [27] Calvo, V., Martínez-Barón, C., Fuentes, L., Maser, W. K., Benito, A. M., González-Domínguez, J. M. “Nanocellulose: The Ultimate Green Aqueous Dispersant for Nanomaterials.” Polymers (Basel), 16(12), 1664, 2024.
  • [28] Eyley, S., Thielemans, W. “Surface Modification of Cellulose Nanocrystals.” Nanoscale, 6(14), 7764–7779, 2014.M. Panahi‐Sarmad, N. Alikarami, T. Guo, M. Haji, F. Jiang, O. J. Rojas. “Aerogels Based on Bacterial Nanocellulose and Their Applications.” Small, 20(44), 2024.
  • [29] Panahi‐Sarmad, M., Alikarami, N., Guo, T., Haji, M., Jiang, F., Rojas, O. J. “Aerogels Based on Bacterial Nanocellulose and Their Applications.” Small, 20(44), 2024.
  • [30] Liu, D., Meng, Q., Hu, J. “Bacterial Nanocellulose Hydrogel: A Promising Alternative Material for the Fabrication of Engineered Vascular Grafts.” Polymers (Basel), 15(18), 3812, 2023.
  • [31] Verma, C., Chhajed, M., Gupta, P., Roy, S., Maji, P. K. “Isolation of Cellulose Nanocrystals from Different Waste Bio-Mass Collating Their Liquid Crystal Ordering with Morphological Exploration.” Int J Biol Macromol, 175, 242–253, 2021.
  • [32] Johar, N., Ahmad, I., Dufresne, A. “Extraction, Preparation and Characterization of Cellulose Fibres and Nanocrystals from Rice Husk.” Ind Crops Prod, 37(1), 93–99, 2012.
  • [33] Lu, S., Liu, L., Huang, C., Zhang, Y., Liu, X. “Facile Extraction and Characterization of Cellulose Nanocrystals from Agricultural Waste Sugarcane Straw.” J Sci Food Agric, 102(1), 312–321, 2022.
  • [34] Picot-Allain, M. C. N., Emmambux, M. N. “Isolation, Characterization, and Application of Nanocellulose from Agro-Industrial By-Products: A Review.” Food Reviews International, 39(2), 941–969, 2023.
  • [35] Huang, S., Zhou, L., Li, M.-C., Wu, Q., Zhou, D. “Cellulose Nanocrystals (CNCs) from Corn Stalk: Activation Energy Analysis.” Materials, 10(1), 80, 2017.
  • [36] Plianwong, S., Sirirak, T. “Cellulose nanocrystals from marine algae Cladophora glomerata by using microwave-assisted extraction.” International Journal of Biological Macromolecules, 260, 129422, 2024.
  • [37] Machado, B., Costa, S. M., Costa, I., Fangueiro, R., Ferreira, D. P. “The potential of algae as a source of cellulose and its derivatives for biomedical applications.” Cellulose, 31(6), 3353–3376, 2024.
  • [38] Samarawickrama, R., Wijayapala, U. G. S., Wanasekara, N. D., Fernando, C. A. N. “Improving Dyeing Properties of Cotton Fabrics to Natural Dyes with Cellulose Nanocrystals (CNCs) [Mejora de las propiedades de teñido de telas de algodón a tintes naturales con nanocristales de celulosa (CNC)].” Journal of Nanotechnology, 5(1), 1–8, 2021.
  • [39] Kalhori, F., Nikkhah, M., Ahmadzadeh, H., Aghdasi, A. H., Roozbehani, M. T. R., Omidi, M., “Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering,” Luminescence, 37(11), 1836–1845, 2022.
  • [40] R, R., Thakur, A. M., Tripathi, S. K., Varjani, S., “Bacterial nanocellulose: engineering, production, and applications,” Bioengineered, 12(2), 11463–11483, 2021.
  • [41] Halib, N., Ahmad, I., Grassi, M., Grassi, G., “The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications,” International Journal of Pharmaceutics, 566, 631–640, 2019.
  • [42] Khosravi-Darani, K., Koller, M., Akramzadeh, N., Mortazavian, A. M., “Bacterial nanocellulose: biosynthesis and medical application,” Biointerface Research, [Online]. Available: www.BiointerfaceResearch.com, 12.01.2025.
  • [43] Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., Claro, A. M., “Bacterial cellulose as a raw material for food and food packaging applications,” Frontiers in Sustainable Food Systems, 3, 2019.
  • [44] Trache, D., Hussin, M. H., Chuin, C. T. H., Sabar, S. S., Fazita, M. R. R., Ibrahim, O. H., Haafiz, N., Hiziroglu, A. K. M., “Nanocellulose: From fundamentals to advanced applications,” Frontiers in Chemistry, 8, 2020.
  • [45] Paunescu, C., Pitigoi, G., Cosma, G., Pituru, S. M., Grigore, V., Petrescu, S., Mircica, M. L., Radulescu, M., Cosma, A., Rezaee, R., “Increasing endurance in physical effort by administration of inosine,” Farmacia, 69(1), 148–154, 2021.
  • [46] Yu, S., Sun, J., Shi, Y., Wang, Q., Wu, J., Liu, J., “Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products,” Environmental Science and Ecotechnology, 5, 100077, 2021.
  • [47] Kontturi, E., Laaksonen, J., Linder, M. J., Ikkala, M. A., Nonappa, , Gröschel, A., Toivonen, T. T., “Advanced materials through assembly of nanocelluloses,” Advanced Materials, 30(24), 2018.
  • [48] Tanpichai, S., “Recent development of plant-derived nanocellulose in polymer nanocomposite foams and multifunctional applications: A mini-review,” Express Polymer Letters, 16(1), 52–74, 2022.
  • [49] Yapar, Ö., Piltonen, P., Hadela, A., Lobnik, A., “Sustainable all-cellulose biocomposites from renewable biomass resources fabricated in a water-based processing system by the vacuum-filtration-assisted impregnation method”, Polymers, 16(13), 1921, 2024.
  • [50] Abo, B. O., Gao, M., Wang, Y., Wu, C., Ma, H., Wang, Q., “Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes,” Reviews on Environmental Health, 34(1), 57–68, 2019.
  • [51] Adiguzel, A. O., “Pre-treatment and hydrolysis methods for bioethanol production from lignocellulosic material,” SAÜ Fen Bilimleri Enstitüsü Dergisi, 17(3), 381–397, 2013.
  • [52] Zimmermann, T., Bordeanu, N., Strub, E., “Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential,” Carbohydrate Polymers, 79(4), 1086–1093, 2010.
  • [53] Agu, O. S., Tabil, L. G., Meda, V., Dumonceaux, T., Mupondwa, E., “Pretreatment of crop residues by application of microwave heating and alkaline solution for biofuel processing: A review,” in Renewable Resources and Biorefineries, IntechOpen, 2019.
  • [54] Kucharska, K., Rybarczyk, P., Hołowacz, I., Łukajtis, R., Glinka, M., Kamiński, M., “Pretreatment of lignocellulosic materials as substrates for fermentation processes,” Molecules, 23(11), 2937, 2018.
  • [55] Kumar, A. K., Sharma, S., “Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review,” Bioresources and Bioprocessing, 4(1), 7, 2017.
  • [56] Ferreira, D. P., Cruz, J., Fangueiro, R., “Surface modification of natural fibers in polymer composites,” in Green Composites for Automotive Applications, Elsevier, pp. 3–41, 2019.
  • [57] Geng, W., Cao, J., Fan, Y., Chen, J., “The influence of lignin content and structure on hemicellulose alkaline extraction for non-wood and hardwood lignocellulosic biomass,” Cellulose, 26(5), 3219–3230, 2019.
  • [58] Wang, Q., Xiao, S., Shi, S. Q., “The effect of hemicellulose content on mechanical strength, thermal stability, and water resistance of cellulose-rich fiber material from poplar,” Bioresources, 14(3), 5288–5300, 2019.
  • [59] Vijay, R., Pavithran, N., Velmurugan, R., “Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens,” International Journal of Biological Macromolecules, 125, 99–108, 2019.
  • [60] Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., Waterhouse, G. I. N., “Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites,” Composites Part A: Applied Science and Manufacturing, 90, 589–597, 2016.
  • [61] M. Prithiviraj, R. Muralikannan, "Investigation of Optimal Alkali-treated Perotis indica Plant Fibers on Physical, Chemical, and Morphological Properties", Journal of Natural Fibers, 19(7), 2730–2743, 2022.
  • [62] K. Kaur, U. G. Phutela, "Morphological and structural changes in paddy straw influenced by alkali and microbial pretreatment", Detritus, In Press(1), 1, 2018.
  • [63] V. Oriez, J. Peydecastaing, P.-Y. Pontalier, "Lignocellulosic biomass mild alkaline fractionation and resulting extract purification processes: Conditions, yields, and purities", Clean Technologies, 2(1), 91–115, 2020.
  • [64] Baruah J., Nath T., Sharma R., Kumar S., Deka D, D. C. Barua, "Recent trends in the pretreatment of lignocellulosic biomass for value-added products", Front Energy Res, 6, 2018.
  • [65] Hassan M. M., Rahman M. M., Ghos B. C., Hossain M. I., Al Amin M., Al Zuhanee M. K., “Extraction, and characterization of CNC from waste sugarcane leaf sheath as a reinforcement of multifunctional bio-nanocomposite material: A waste to wealth approach,” Carbon Trends, vol. 17, p. 100400, 2024.
  • [66] Fathana H., Rahmi R., Lubis S., Adlim M., Muktaridha O., Iqhramullah M., “The effects of HCL concentration and ultrasound-assisted on the fabrication of cellulose nanocrystal derived from sugarcane bagasse,” 2022.
  • [67] Rahman M. M., Pk M. E. H., Waliullah M., Hossain M. I., Maniruzzaman M., Ghos B. C., “Production of cellulose nanocrystals from the waste banana (M. oranta) tree rachis fiber as a reinforcement to fabricate useful bionanocomposite,” Carbohydr Polym Technol Appl, 13(8), 200-207, 2024.
  • [68] Costa L. A. S., D. de J. Assis, G. V. P. Gomes, J. B. A. da Silva, A. F. Fonsêca, J. I. Druzian, "Extraction and characterization of nanocellulose from corn stover", Mater Today Proc, 2(1), 287–294, 2015.
  • [69] Dinçel Kasapoğlu E., Kahraman S., Tornuk F., "Extraction optimization and characterization of cellulose nanocrystals from apricot pomace", Foods, 12(4), 746, 2023.
  • [70] Hancock J.,Osei-Bonsu, R M. Hoque, L. Samuels, E. J. Foster, "Valorization of cannabis green waste to cellulose nanomaterials via phosphoric acid hydrolysis", Ind Crops Prod, 201, 116888, 2023.
  • [71] Tanis M. H., Wallberg O., Galbe M., Al-Rudainy B., "Lignin extraction by using two-step fractionation: A review", Molecules, 29(1), 98, 2023.
  • [72] D’Orsi R., Di Fidio N., Antonetti C.,. Raspolli A. M Galletti, A. Operamolla, "Isolation of pure lignin and highly digestible cellulose from defatted and steam-exploded Cynara cardunculus", ACS Sustain Chem Eng, 11(5), 1875–1887, 2023.
  • [73] Guimarães M., Botaro V. R., Novack K. M., Flauzino Neto W. P., Mendes L. M., Tonoli G. H. D., “Preparation of cellulose nanofibrils from bamboo pulp by mechanical defibrillation for their applications in biodegradable composites,” J Nanosci Nanotechnol 15(9), 6751–6768, 2015.
  • [74] Neenu K. V.,. George K. C,. Joseph M. K,. Ramesh M. C, "Effect of oxalic acid and sulphuric acid hydrolysis on the preparation and properties of pineapple pomace derived cellulose nanofibers and nanopapers", Int J Biol Macromol, 209, 1745–1759, 2022.
  • [75] Hubbell C. A, Ragauskas A. J., "Effect of acid-chlorite delignification on cellulose degree of polymerization". Bioresour Technol, 101(19), 7410–7415, 2010.
  • [76] Brugliera G. J, Mai H. T, Muthurajan R, Lee D. J,. Moulton B. A, "Comparative analysis of sulfuric acid and hydrochloric acid hydrolysis of wood pulp cellulose for the preparation of cellulose nanocrystals", Cellulose, 28(11), 7143–7155, 2021.
  • [77] He L Liu, Y, Mustapha S,. Li X,. Huang C. L, "Influence of acid hydrolysis conditions on the properties of cellulose nanocrystals extracted from switchgrass", Carbohydr Polym, 253, 117218, 2021.
  • [78] Silva A. P, Veloso M. M, Lima L. L., M. G. de Lima, F. S. de Oliveira, L. H. Carvalho, "Production and characterization of cellulose nanocrystals obtained from banana peel by acid hydrolysis", J Polym Environ, 30, 2616–2625, 2022.
  • [79] Jonoobi A, Mathew K, Niska M, Ehsanpour A, Agarwal U.P, Heidari A.A,, Bousfield A.K, I. Sain, "A review of cellulose nanocrystals (CNCs) production methods and their surface modification for multifunctional applications", Cellulose, 28(9), 5043–5071, 2021.
  • [80] Jonoobi A., Mathew K., Niska M., Ehsanpour A., Agarwal U. P., Heidari A. A., Bousfield A. K., Sain I., “A review of cellulose nanocrystals (CNCs) production methods and their surface modification for multifunctional applications”, Cellulose, 28(9), 5043–5071, 2021.
  • [81] Zhai Y., Zeng W., Wang Y., Mao Y., Wu J., “Cellulose nanocrystals as reinforcement in bioplastics: A review”, Compos Commun, 30, 100964, 2022.
  • [82] Yazdanpanah M. E., Yousefi M., Resalati R., “Surface modified CNCs as nanoreinforcement: A comprehensive review”, Polym Adv Technol, 34(1), 4–25, 2023.
  • [83] Tonoli G. H. D., Bras F. A., Ramires C., Otoni L. S., “Biodegradable composites reinforced with nanocellulose: A review”, Nanomaterials, 13(6), 944, 2023.
  • [84] George J., Sabapathi S. N., “Cellulose nanocrystals: Synthesis, functional properties, and applications”, Nanotechnol Sci Appl, 8, 45–54, 2015.
  • [85] Ahmad A. L., Mohamed S. N. Z., “A comprehensive review on nanocellulose production using acidic ionic liquids and potential applications”, Polymers, 15(3), 675, 2023.
  • [86] Trache D., Hussin M. H., Dufresne M. K. A. H., Halim S. K., Tahir S. M., “Nanocellulose: From fundamentals to advanced applications”, Front Chem, 6, 392, 2020.
  • [87] Muñoz-Bonilla A., Fernández-García M., “Polymeric materials with antimicrobial activity”, Prog Polym Sci, 37(2), 281–339, 2012.
  • [88] Roy L., Jha S., Choudhury S., Yadav M., Yadav A. K., Nandi S., “Antibacterial and insect-repellent properties of natural bio-based nanocomposite for packaging and medical applications”, J Environ Chem Eng, 10(6), 108317, 2022.
  • [89] Lai C. Y., Wu C. Y., Chuang Y. C., Chen Y. L., Lin C. T., “Preparation of antimicrobial electrospun polyvinyl alcohol nanofibers from plant essential oils”, Polymers, 15(1), 207, 2023.
  • [90] Fijoł N., Lewandowska W., “Essential oils loaded electrospun nanofibers for biomedical and cosmetic applications: A review”, Materials, 15(3), 899, 2022.
  • [91] Benli, H. B. M. İ. B. and Bahtiyari, M. İ., “Pamuklu Kumaşların Ozon-Hidrojen Peroksit Kombinasyonu ile Ağartılması ve Doğal Boyalar ile Renklendirilmesi,” Tekstil ve Mühendis, 15(3), 2016.
  • [92] Walawska, A., Olak-Kucharczyk, M., Kaczmarek, A., and Kudzin, M. H., “Environmentally Friendly Bleaching Process of the Cellulose Fibres Materials Using Ozone and Hydrogen Peroxide in the Gas Phase,” Materials, 15(3), 2024.
  • [93] Nagarajan, K. J., Balaji, A. N., and Ramanujam, N. R., “Extraction of cellulose nanofibers from cocos nucifera var aurantiaca peduncle by ball milling combined with chemical treatment,” Carbohydr Polym, 15(3), 2019.
  • [94] Camarero Espinosa, S., Kuhnt, T., Foster, E. J., and Weder, C., “Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis,” Biomacromolecules, 15(3), 2013.
  • [95] Sin Ng, H. M.,, Tee L. T.,, Bee T. T.,,., Hui S. T, Low D.,, Rahmat C. Y, “Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers,” Composites Part B: Engineering, 15(3), 2015.
  • [96] Jutakridsada, P., Theerakulpisut, S., Srivastava, V., Sillanpää, M., and Kamwilaisak, K., “Preparation and mechanism analysis of morphology-controlled cellulose nanocrystals by H2SO4 hydrolysis of Eucalyptus pulp,” Engineering and Applied Science Research, 15(3), 2022.
  • [97] Soleimani, S., Heydari, A., and Fattahi, M., “Isolation and Characterization of Cellulose Nanocrystals from Waste Cotton Fibers Using Sulfuric Acid Hydrolysis,” Starch - Stärke, 15(3), 2022.
  • [98] Wang, H., Xu, Z., Wang, X., Liu, Y., Zhan, X., Liu, Y., “Sustainable preparation of bifunctional cellulose nanocrystals via mixed H₂SO₄/formic acid hydrolysis,” Carbohydrate Polymers, 15(3), 2021.
  • [99] Rubleva, N. V., Voronova, M. I., Surov, O. V., Zakharov, A. G., Lebedeva, E. O., and Fineevskii, A. V., “Productıon Of Cellulose Nanocrystals By Hydrolysıs In Mıxture Of Hydrochlorıc And Nıtrıc Acıds,” Izvestıya Vysshıkh Uchebnykh Zavedenıı Khımıya Khımıcheskaya Tekhnologıya, 15(3), 2019.
  • [100] Surov, O. V., Afineevskii, A. V., and Voronova, M. I., “Sulfuric acid alcoholysis as a way to obtain cellulose nanocrystals,” Cellulose, 15(3), 2023
  • [101] Zulnazri, Z., Asrofi, M., Abral, H., Kasim, A., Pratoto, A., Sapuan, S. M., “Effect of Hydrochloric Acid Hydrolysis under Sonication and Hydrothermal Process to Produce Cellulose Nanocrystals from Oil Palm Empty Fruit Bunch (OPEFB),” Polymers (Basel), 15(3), 2024.
  • [102] Vaezi, K. and Asadpour, G., “Effects of HCl Hydrolyzed Cellulose Nanocrystals From Waste Papers on the Hydroxypropyl Methylcellulose/Cationic Starch Biofilms,” Waste Biomass Valorization, 13(4), 2022.
  • [103] Raza, M. and Abu-Jdayil, B., “Extraction of cellulose nanocrystals from date seeds using transition metal complex-assisted hydrochloric acid hydrolysis,” Int J Biol Macromol, 294, 2025.
  • [104] Al, G. and Aydemir, D., “Nanoselüloz: yapısı, çeşitleri ve kullanım alanları,” Bartın Orman Fakültesi Dergisi, 26(2), 2024.
  • [105] Zhang, Y., Zhao, Y., Li, S., Wang, R., Ma, X., “Preparation methods of cellulose nanocrystal and its application in treatment of environmental pollution: A mini-review,” Colloid Interface Sci Commun, 53, 2023.
  • [106] Chen, L., Zhu, J. Y., Baez, C., Kitin, P., and Elder, T., “Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids,” Green Chemistry, 18(13), 2016.
  • [106] Nasir, M., Hashim, R., Sulaiman, O., and Asim, M., “Nanocellulose,” Cellulose-Reinforced Nanofibre Composites, Elsevier, 2017.
  • [107] Hu, J., Tian, D., Renneckar, S., and Saddler, J. N., “Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase,” Sci Rep, 8(1), 2018.
  • [108] Islam, M. T., Alam, M. M., Patrucco, A., Montarsolo, A., and Zoccola, M., “Preparation of Nanocellulose: A Review,” AATCC Journal of Research, 1(5), 2014.
  • [109] Ribeiro, R. S. A., Pohlmann, B. C., Calado, V., Bojorge, N., and Pereira, N., “Production of nanocellulose by enzymatic hydrolysis: Trends and challenges,” Eng Life Sci, 19(4), 2019.
  • [110] Dias, I. K. R., Siqueira, G. A., and Arantes, V., “Xylanase increases the selectivity of the enzymatic hydrolysis with endoglucanase to produce cellulose nanocrystals with improved properties,” Int J Biol Macromol, 220, 2022.
  • [111] Zhang, Q., Lin, F., Wang, X., Zhang, Y., “High yielding, one-step mechano-enzymatic hydrolysis of cellulose to cellulose nanocrystals without bulk solvent,” Bioresour Technol, 331, 2021.
  • [112] Ren, R.-W., Chen, X.-Q., and Shen, W.-H., “Preparation and separation of pure spherical cellulose nanocrystals from microcrystalline cellulose by complex enzymatic hydrolysis,” Int J Biol Macromol, 202, 2022.
  • [113] Wulandari, W. T., Rochliadi, A., and Arcana, I. M., “Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse,” IOP Conf Ser Mater Sci Eng, 107, 2016.
  • [114] Batool, F., Iqbal, N., Adeel, S., Azeem, M., Hussaan, M., and Mia, R., “Sugar beet (Beta vulgaris L.) leaves as natural colorant for cotton dyeing using an ecofriendly approach toward industrial progress,” Sci Prog, 107(3), 2024.
  • [115] Du, L., Wang, J., Zhang, Y., Qi, C., Wolcott, M., and Yu, Z., “Preparation and Characterization of Cellulose Nanocrystals from the Bio-ethanol Residuals,” Nanomaterials, 7(3), 2017.
  • [116] Banerjee, M., Saraswatula, S., Williams, A., and Brettmann, B., “Effect of Purification Methods on Commercially Available Cellulose Nanocrystal Properties and TEMPO Oxidation,” Processes, 8(6), 2020.
  • [117] Jo, H. M., Lee, S. H., and Lee, J. Y., “Preparation and characterization of cellulose nanocrystals from paper mulberry fibers,” Bioresources, 18(2), 2023.
  • [118] Wang, W., Mozuch, M. D., Sabo, R. C., Kersten, P., Zhu, J. Y., and Jin, Y., “Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization,” Cellulose, 22(1), 2015.
  • [119] de Souza Lima, M. M. and Borsali, R., “Rodlike Cellulose Microcrystals: Structure, Properties, and Applications,” Macromol Rapid Commun, 25(7), 2004.
  • [120] Rodsamran, P. and Sothornvit, R., “Renewable cellulose source: isolation and characterisation of cellulose from rice stubble residues,” Int J Food Sci Technol, 50(9), 2015.
  • [121] Vanzetto, A. B., Beltrami, L. V. R., Zattera, A. J., “Textile waste as precursors in nanocrystalline cellulose synthesis,” Cellulose, 28(11), 6967–6981, 2021.
  • [122] Melikoğlu, A. Y., Bilek, S. E., Cesur, S., “Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace,” Carbohydr Polym, 215, 330–337, 2019.
  • [123] Dassanayake, R. S., Acharya, S., Abidi, N., “Characterization of cellulose nanocrystals by current spectroscopic techniques,” Appl Spectrosc Rev, 58(3), 180–205, 2023.
  • [124] Sparrman, T., Svenningsson, L., Sahlin-Sjövold, K., Nordstierna, L., Westman, G., Bernin, D., “A revised solid-state NMR method to assess the crystallinity of cellulose,” Cellulose, 26(17), 8993–9003, 2019.
  • [125] Shang, Q., Liu, C., Hu, Y., Jia, P., Hu, L., Zhou, Y., “Bio-inspired hydrophobic modification of cellulose nanocrystals with castor oil,” Carbohydr Polym, 191, 168–175, 2018.
  • [126] Nessi, V., Bayer, I. S., Bartoli, M., Athanassiou, A., “Cellulose nanocrystals-starch nanocomposites produced by extrusion: Structure and behavior in physiological conditions,” Carbohydr Polym, 225, 115123, 2019.
  • [127] Foster, E. J., Moon, R. J., Agarwal, U. P., Bortner, M. J., Bras, J., Camarero-Espinosa, S., Chan, K. J., Clift, M. J. D., Cranston, E. D., Eichhorn, S. J., Fox, D. M., Hamad, W. Y., Heux, L., Jean, B., Korey, M., Nieh, W., Ong, K. J., Reid, M. S., Renneckar, S., Roberts, R., Shatkin, J. A., Simonsen, J., Stinson-Bagby, K., Wanasekara, N. D., Youngblood, J., “Current characterization methods for cellulose nanomaterials,” Chem Soc Rev, 47(8), 2609–2679, 2018.
  • [128] Greczynski, G., Hultman, L., “X-ray photoelectron spectroscopy: Towards reliable binding energy referencing,” Prog Mater Sci, 107, 100591, 2020.
  • [129] Zhang, K., Shen, M., Liu, H., Shang, S., Wang, D., Liimatainen, H., “Facile synthesis of palladium and gold nanoparticles by using dialdehyde nanocellulose as template and reducing agent,” Carbohydr Polym, 186, 132–139, 2018.
  • [130] Baker, M. J., Hussain, S. R., Lovergne, L., Untereiner, V., Hughes, C., Lukaszewski, R. A., Thiéfin, G., Sockalingum, G. D., “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem Soc Rev, 45(7), 1803–1818, 2016.
  • [131] Maréchal, Y., Chanzy, H., “The hydrogen bond network in I β cellulose as observed by infrared spectrometry,” J Mol Struct, 523(1–3), 183–196, 2000.
  • [132] Dassanayake, R. S., Acharya, S., Abidi, N., “Biopolymer-Based Materials from Polysaccharides: Properties, Processing, Characterization and Sorption Applications,” in Advanced Sorption Process Applications, IntechOpen, 2019.
  • [133] Wei, J., Cai, J., Zhang, Y., Zhong, Y., Zhou, J., Zhu, P., “Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water,” J Mater Sci, 54(8), 6709–6718, 2019.
  • [134] Xiao, Y. T., Chin, W. L., Abd Hamid, S. B., “Facile Preparation of Highly Crystalline Nanocellulose by Using Ionic Liquid,” Adv Mat Res, 1087, 106–110, 2015.
  • [135] Geminiani, L., Martinelli, M., Palagini, F., D’Acunto, M., Narducci, D., “Differentiating between Natural and Modified Cellulosic Fibres Using ATR-FTIR Spectroscopy,” Heritage, 5(4), 4114–4139, 2022.
  • [136] Agarwal, U. P., Ralph, S. A., Reiner, R. S., Baez, C., “Probing crystallinity of never-dried wood cellulose with Raman spectroscopy,” Cellulose, 23(1), 125–144, 2016.
  • [137] Agarwal, U. P., “Raman Spectroscopy in the Analysis of Cellulose Nanomaterials,” in Characterization of Nanomaterials in Complex Environmental and Biological Media, pp. 75–90, 2017.
  • [138] Liu, Y., Wang, H., Yu, G., Yu, Q., Li, B., Mu, X., “A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid,” Carbohydr Polym, 110, 415–422, 2014.
  • [139] Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., Johnson, D. K., “Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance,” Biotechnol Biofuels, 3(1), 10, 2010.
  • [140] French, A., “How crystalline is my cellulose specimen? Probing the limits of X-ray diffraction,” Bioresources, 17(4), 5557–5561, 2022.
  • [141] Salem, K. S., Zoppe, J. O., Korhonen, J. T., Bras, J., Wang, X., Fraschini, C., Kim, Y., Isogai, A., Dufresne, A., “Comparison and assessment of methods for cellulose crystallinity determination,” Chem Soc Rev, 52(18), 6417–6446, 2023.
  • [142] Montoya-Escobar, N., Restrepo-Osorio, A., Buitrago-Sierra, R., Arboleda, J. C., "Use of Fourier Series in X-ray Diffraction (XRD) Analysis and Fourier-Transform Infrared Spectroscopy (FTIR) for Estimation of Crystallinity in Cellulose from Different Sources," Polymers (Basel), 14(23), 5199, 2022.
  • [143] Wu, G., "Characterization of the redispersibility of cellulose nanocrystals by particle size analysis using dynamic light scattering," TAPPI Journal, 2019.
  • [144] Rodriguez-Loya, J., Lerma, M., Gardea-Torresdey, J. L., "Dynamic Light Scattering and Its Application to Control Nanoparticle Aggregation in Colloidal Systems: A Review," Micromachines (Basel), 15(1), 24, 2023.
  • [145] Gallardo-Sánchez, M. A., Cuéllar-Cruz, M., González-Laredo, R. F., "Optimization of the Obtaining of Cellulose Nanocrystals from Agave tequilana Weber Var. Azul Bagasse by Acid Hydrolysis," Nanomaterials, 11(2), 520, 2021.
  • [146] Bolat, F., Ghitman, J., Necolau, M. I., Vasile, E., Iovu, H., "A Comparative Study of the Impact of the Bleaching Method on the Production and Characterization of Cotton-Origin Nanocrystalline Cellulose by Acid and Enzymatic Hydrolysis," Polymers (Basel), 15(16), 3446, 2023.
  • [147] Marway, H., "Investigation of nanocellulose mechanical properties and interactions in salt and surfactant solutions measured by atomic force microscopy," McMaster University, Hamilton, Canada, 2017.
  • [148] Kian, L. K., Jawaid, M., Ariffin, H., Karim, Z., "Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose," Int J Biol Macromol, 114, 54–63, 2018.
  • [149] Shazali, N., Shah, M. Z., Ariffin, H., Yusof, Y. A., "Characterization and Cellular Internalization of Spherical Cellulose Nanocrystals (CNC) into Normal and Cancerous Fibroblasts," Materials, 12(19), 3251, 2019.
  • [150] Mattos, B. D., Tardy, B. L., Rojas, O. J., "Accounting for Substrate Interactions in the Measurement of the Dimensions of Cellulose Nanofibrils," Biomacromolecules, 20(7), 2657–2665, 2019.
  • [151] Foster, E. J., Moon, R. J., Agarwal, U. P., "Current characterization methods for cellulose nanomaterials," Chem Soc Rev, 47(8), 2609–2679, 2018.
  • [152] Stinson-Bagby, K. L., Roberts, R., Foster, E. J., "Effective cellulose nanocrystal imaging using transmission electron microscopy," Carbohydr Polym, 186, 429–438, 2018.
  • [153] Ang, S., Narayanan, J. R., Kargupta, W., Haritos, V., Batchelor, W., "Cellulose nanofiber diameter distributions from microscopy image analysis: effect of measurement statistics and operator," Cellulose, 27(8), 4189–4208, 2020.
  • [154] Nagarajan, K. J., Balaji, A. N., Thanga Kasi Rajan, S., Sathick Basha, K., "Effect of sulfuric acid reaction time on the properties and behavior of cellulose nanocrystals from Cocos nucifera var-Aurantiaca peduncle’s cellulose microfibers," Mater Res Express, 6(12), 125333, 2019.
  • [155] Lichtenstein, K., Lavoine, N., "Toward a deeper understanding of the thermal degradation mechanism of nanocellulose," Polym Degrad Stab, 146, 53–60, 2017.
  • [156] Gan, P. G., Sam, S. T., Abdullah, M. F. B., Omar, M. F., "Thermal properties of nanocellulose‐reinforced composites: A review," J Appl Polym Sci, 137(11), 2020.
  • [157] Zhang, Y., Wang, X., Li, Y., Li, J., "Cellulose nanocrystals composites with excellent thermal stability and high tensile strength for preparing flexible resistance strain sensors," Carbohydrate Polymer Technologies and Applications, 3, 100214, 2022.
  • [158] Rasheed, M., Jawaid, M., Parveez, B., Zuriyati, A., Khan, A., "Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre," Int J Biol Macromol, 160, 183–191, 2020.
  • [159] Mandal, A., Chakrabarty, D., "Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization," Carbohydr Polym, 86(3), 1291–1299, 2011.
  • [160] Maiti, S., Kaith, B. S., Jana, S. C., "Preparation and characterization of nano-cellulose with new shape from different precursor," Carbohydr Polym, 98(1), 562–567, 2013.
  • [161] Rasheed, M., Jawaid, M., Parveez, B., Zuriyati, A., Khan, A., "Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre," Int J Biol Macromol, 160, 183–191, 2020.
  • [162] Zhao, Y. W., Tian, M. Z., Huang, P., “Starch/clay aerogel reinforced by cellulose nanofibrils for thermal insulation”, Cellulose, 28, 3505–3513, 2021.
  • [163] Arockiasamy, F. S., Ching, Y. C., Hissa, M. M., Abdullah, L. C., "Navigating the nano-world future: Harnessing cellulose nanocrystals from green sources for sustainable innovation," Heliyon, 11(1), e41188, 2025.

Cellulose nanocrystals: Synthesis procedures and characterization techniques

Year 2026, Volume: 32 Issue: 2
https://doi.org/10.5505/pajes.2025.37888

Abstract

The production of renewable materials from lignocellulosic materials through various processes has become a significant research area for scientists, leading to the emergence of novel materials such as cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). The development of these bio-based materials not only contributes to the expansion of fundamental knowledge and the creation of innovative processes but also facilitates the widespread application of cellulosic nanomaterials across various engineering disciplines. In addition to being biodegradable and biocompatible, their production from agricultural and industrial waste makes cellulosic nanomaterials environmentally sustainable, thereby increasing researchers' interest in the field. This review article aims to provide a comprehensive analysis of the latest developments in the production processes, raw material sources, and characterization methods of cellulosic nanomaterials, with a particular focus on cellulose nanocrystals (CNCs).

References

  • [1] Calisto Friant, M., Vermeulen, W. J. V., Salomone, R., “Analysing European Union circular economy policies: words versus actions,” Sustain Prod Consum, 27, 337–353, 2021.
  • [2] Ramchuran, S. O., O’Brien, F., Dube, N., Ramdas, V., “An overview of green processes and technologies, biobased chemicals and products for industrial applications,” Curr Opin Green Sustain Chem, 41, 100832, 2023.
  • [3] Nagarajan, K. J., Karthikeyan, S. M., Ramachandran, M. M., Rajan, K. S., “A comprehensive review on cellulose nanocrystals and cellulose nanofibers: Pretreatment, preparation, and characterization,” Polym Compos, 42(4), 1588–1630, 2021.
  • [4] Klemm, D., Heublein, A., Fink, H., Bohn, A., “Nanocelluloses: A New Family of Nature‐Based Materials,” Angewandte Chemie International Edition, 50(24), 5438–5466, 2011.
  • [5] Rajinipriya, M., Nagalakshmaiah, M., Robert, M., Elkoun, S., “Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review,” ACS Sustain Chem Eng, 6(3), 2807–2828, 2018.
  • [6] Rashid, M. M., Islam, S., Ali, A., Siddique, A. B., “RETRACTED: Extraction and characterization of cellulose from cotton flower burr: a noble cellulose source from agro-waste,” Jun. 24, 2024.
  • [7] Magalhães, S., Rodrigues, F., Gomes, L., Ferreira, P. “Eco-Friendly Methods for Extraction and Modification of Cellulose: An Overview.” Polymers (Basel), 15(14), 3138, 2023.
  • [8] Heise, K., Maleki, R. K., Ghadiri, S., Chen, Y. “Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications.” Advanced Materials, 33(3), 2021.
  • [9] Choudhury, R. R., Sahoo, S. K., Gohil, J. M. “Potential of bioinspired cellulose nanomaterials and nanocomposite membranes thereof for water treatment and fuel cell applications.” Cellulose, 27(12), 6719–6746, 2020.
  • [10] Bilek, S., Yalçın Melikoğlu, A., Cesur, S. “Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları.” Akademik Gıda, 17(1), 140–148, 2019.
  • [11] Fotie, G., Limbo, S., Piergiovanni, L. “Manufacturing of Food Packaging Based on Nanocellulose: Current Advances and Challenges.” Nanomaterials, 10(9), 1726, 2020.
  • [12] C. Ji, Y. Wang. “Nanocellulose-stabilized Pickering emulsions: fabrication, stabilization, and food applications.” Advances in Colloid and Interface Science, 318(2), 2023.
  • [13] J. Li, R. K. Li, Y. Wang. “Emerging Food Packaging Applications of Cellulose Nanocomposites: A Review.” Polymers (Basel), 14(19), 4025, 2022.
  • [14] V. Raj, C. J. Raorane, J.-H. Lee, J. Lee. “Appraisal of Chitosan-Gum Arabic-Coated Bipolymeric Nanocarriers for Efficient Dye Removal and Eradication of the Plant Pathogen Botrytis cinerea.” ACS Appl Mater Interfaces, 13(40), 47354–47370, 2021.
  • [15] K. Liu, Z. Chen, M. Zhang. “Recent advances in cellulose and its derivatives for oilfield applications.” Carbohydr Polym, 259, 117740, 2021.
  • [16] T. S. Franco, G. P. Rocha, M. M. Silva. “Nanocellulose and Its Application in the Food Industry.” in ENVABIO100, Basel Switzerland: MDPI, 2023.
  • [17] Xu, W., Zhang, R., Wu, X. “On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application.” ACS Appl Mater Interfaces, 11(9), 8838–8848, 2019.
  • [18] González-Domínguez, J. M., López-Villanueva, F., Martínez-Guerra, J. “Waterborne Graphene- and Nanocellulose-Based Inks for Functional Conductive Films and 3D Structures.” Nanomaterials, 11(6), 1435, 2021.
  • [19] Ong, X.-R., Chen, A. X., Li, N., Yang, Y. Y., Luo, H.-K. “Nanocellulose: Recent Advances Toward Biomedical Applications.” Small Science, 3(2), 2023.
  • [20] Garcia, K. R., Beck, R. C. R., Brandalise, R. N., dos Santos, V., Koester, L. S. “Nanocellulose, the Green Biopolymer Trending in Pharmaceuticals: A Patent Review.” Pharmaceutics, 16(1), 145, 2024.
  • [21] Varghese, R., Cherian, R., Chirayil, C., Antony, T., Kargarzadeh, H., Thomas, S. “Nanocellulose as an Avenue for Drug Delivery Applications: A Mini-Review.” Journal of Composites Science, 7(6), 210, 2023.
  • [22] Kulkarni, S. A., Feng, S.-S. “Effects of Particle Size and Surface Modification on Cellular Uptake and Biodistribution of Polymeric Nanoparticles for Drug Delivery.” Pharm Res, 30(10), 2512–2522, 2013.
  • [23] Kaur, P., Bansal, R., Ghosh, S. “Nanocellulose: Resources, Physio-Chemical Properties, Current Uses and Future Applications.” Frontiers in Nanotechnology, 3, 2021.
  • [24] Poulose, A., Kumar, P., Rajendran, M. “Nanocellulose: A Fundamental Material for Science and Technology Applications.” Molecules, 27(22), 8032, 2022.
  • [25] Jonoobi, M., Harun, M., Shakeri, R., Othman, A. I. “Different Preparation Methods and Properties of Nanostructured Cellulose from Various Natural Resources and Residues: A Review.” Cellulose, 22(2), 935–969, 2015.
  • [26] Klemm, D., Heublein, B., Fink, H., Bohn, A. “Cellulose: Fascinating Biopolymer and Sustainable Raw Material.” Angewandte Chemie International Edition, 44(22), 3358–3393, 2005.
  • [27] Calvo, V., Martínez-Barón, C., Fuentes, L., Maser, W. K., Benito, A. M., González-Domínguez, J. M. “Nanocellulose: The Ultimate Green Aqueous Dispersant for Nanomaterials.” Polymers (Basel), 16(12), 1664, 2024.
  • [28] Eyley, S., Thielemans, W. “Surface Modification of Cellulose Nanocrystals.” Nanoscale, 6(14), 7764–7779, 2014.M. Panahi‐Sarmad, N. Alikarami, T. Guo, M. Haji, F. Jiang, O. J. Rojas. “Aerogels Based on Bacterial Nanocellulose and Their Applications.” Small, 20(44), 2024.
  • [29] Panahi‐Sarmad, M., Alikarami, N., Guo, T., Haji, M., Jiang, F., Rojas, O. J. “Aerogels Based on Bacterial Nanocellulose and Their Applications.” Small, 20(44), 2024.
  • [30] Liu, D., Meng, Q., Hu, J. “Bacterial Nanocellulose Hydrogel: A Promising Alternative Material for the Fabrication of Engineered Vascular Grafts.” Polymers (Basel), 15(18), 3812, 2023.
  • [31] Verma, C., Chhajed, M., Gupta, P., Roy, S., Maji, P. K. “Isolation of Cellulose Nanocrystals from Different Waste Bio-Mass Collating Their Liquid Crystal Ordering with Morphological Exploration.” Int J Biol Macromol, 175, 242–253, 2021.
  • [32] Johar, N., Ahmad, I., Dufresne, A. “Extraction, Preparation and Characterization of Cellulose Fibres and Nanocrystals from Rice Husk.” Ind Crops Prod, 37(1), 93–99, 2012.
  • [33] Lu, S., Liu, L., Huang, C., Zhang, Y., Liu, X. “Facile Extraction and Characterization of Cellulose Nanocrystals from Agricultural Waste Sugarcane Straw.” J Sci Food Agric, 102(1), 312–321, 2022.
  • [34] Picot-Allain, M. C. N., Emmambux, M. N. “Isolation, Characterization, and Application of Nanocellulose from Agro-Industrial By-Products: A Review.” Food Reviews International, 39(2), 941–969, 2023.
  • [35] Huang, S., Zhou, L., Li, M.-C., Wu, Q., Zhou, D. “Cellulose Nanocrystals (CNCs) from Corn Stalk: Activation Energy Analysis.” Materials, 10(1), 80, 2017.
  • [36] Plianwong, S., Sirirak, T. “Cellulose nanocrystals from marine algae Cladophora glomerata by using microwave-assisted extraction.” International Journal of Biological Macromolecules, 260, 129422, 2024.
  • [37] Machado, B., Costa, S. M., Costa, I., Fangueiro, R., Ferreira, D. P. “The potential of algae as a source of cellulose and its derivatives for biomedical applications.” Cellulose, 31(6), 3353–3376, 2024.
  • [38] Samarawickrama, R., Wijayapala, U. G. S., Wanasekara, N. D., Fernando, C. A. N. “Improving Dyeing Properties of Cotton Fabrics to Natural Dyes with Cellulose Nanocrystals (CNCs) [Mejora de las propiedades de teñido de telas de algodón a tintes naturales con nanocristales de celulosa (CNC)].” Journal of Nanotechnology, 5(1), 1–8, 2021.
  • [39] Kalhori, F., Nikkhah, M., Ahmadzadeh, H., Aghdasi, A. H., Roozbehani, M. T. R., Omidi, M., “Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering,” Luminescence, 37(11), 1836–1845, 2022.
  • [40] R, R., Thakur, A. M., Tripathi, S. K., Varjani, S., “Bacterial nanocellulose: engineering, production, and applications,” Bioengineered, 12(2), 11463–11483, 2021.
  • [41] Halib, N., Ahmad, I., Grassi, M., Grassi, G., “The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications,” International Journal of Pharmaceutics, 566, 631–640, 2019.
  • [42] Khosravi-Darani, K., Koller, M., Akramzadeh, N., Mortazavian, A. M., “Bacterial nanocellulose: biosynthesis and medical application,” Biointerface Research, [Online]. Available: www.BiointerfaceResearch.com, 12.01.2025.
  • [43] Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., Claro, A. M., “Bacterial cellulose as a raw material for food and food packaging applications,” Frontiers in Sustainable Food Systems, 3, 2019.
  • [44] Trache, D., Hussin, M. H., Chuin, C. T. H., Sabar, S. S., Fazita, M. R. R., Ibrahim, O. H., Haafiz, N., Hiziroglu, A. K. M., “Nanocellulose: From fundamentals to advanced applications,” Frontiers in Chemistry, 8, 2020.
  • [45] Paunescu, C., Pitigoi, G., Cosma, G., Pituru, S. M., Grigore, V., Petrescu, S., Mircica, M. L., Radulescu, M., Cosma, A., Rezaee, R., “Increasing endurance in physical effort by administration of inosine,” Farmacia, 69(1), 148–154, 2021.
  • [46] Yu, S., Sun, J., Shi, Y., Wang, Q., Wu, J., Liu, J., “Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products,” Environmental Science and Ecotechnology, 5, 100077, 2021.
  • [47] Kontturi, E., Laaksonen, J., Linder, M. J., Ikkala, M. A., Nonappa, , Gröschel, A., Toivonen, T. T., “Advanced materials through assembly of nanocelluloses,” Advanced Materials, 30(24), 2018.
  • [48] Tanpichai, S., “Recent development of plant-derived nanocellulose in polymer nanocomposite foams and multifunctional applications: A mini-review,” Express Polymer Letters, 16(1), 52–74, 2022.
  • [49] Yapar, Ö., Piltonen, P., Hadela, A., Lobnik, A., “Sustainable all-cellulose biocomposites from renewable biomass resources fabricated in a water-based processing system by the vacuum-filtration-assisted impregnation method”, Polymers, 16(13), 1921, 2024.
  • [50] Abo, B. O., Gao, M., Wang, Y., Wu, C., Ma, H., Wang, Q., “Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes,” Reviews on Environmental Health, 34(1), 57–68, 2019.
  • [51] Adiguzel, A. O., “Pre-treatment and hydrolysis methods for bioethanol production from lignocellulosic material,” SAÜ Fen Bilimleri Enstitüsü Dergisi, 17(3), 381–397, 2013.
  • [52] Zimmermann, T., Bordeanu, N., Strub, E., “Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential,” Carbohydrate Polymers, 79(4), 1086–1093, 2010.
  • [53] Agu, O. S., Tabil, L. G., Meda, V., Dumonceaux, T., Mupondwa, E., “Pretreatment of crop residues by application of microwave heating and alkaline solution for biofuel processing: A review,” in Renewable Resources and Biorefineries, IntechOpen, 2019.
  • [54] Kucharska, K., Rybarczyk, P., Hołowacz, I., Łukajtis, R., Glinka, M., Kamiński, M., “Pretreatment of lignocellulosic materials as substrates for fermentation processes,” Molecules, 23(11), 2937, 2018.
  • [55] Kumar, A. K., Sharma, S., “Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review,” Bioresources and Bioprocessing, 4(1), 7, 2017.
  • [56] Ferreira, D. P., Cruz, J., Fangueiro, R., “Surface modification of natural fibers in polymer composites,” in Green Composites for Automotive Applications, Elsevier, pp. 3–41, 2019.
  • [57] Geng, W., Cao, J., Fan, Y., Chen, J., “The influence of lignin content and structure on hemicellulose alkaline extraction for non-wood and hardwood lignocellulosic biomass,” Cellulose, 26(5), 3219–3230, 2019.
  • [58] Wang, Q., Xiao, S., Shi, S. Q., “The effect of hemicellulose content on mechanical strength, thermal stability, and water resistance of cellulose-rich fiber material from poplar,” Bioresources, 14(3), 5288–5300, 2019.
  • [59] Vijay, R., Pavithran, N., Velmurugan, R., “Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens,” International Journal of Biological Macromolecules, 125, 99–108, 2019.
  • [60] Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., Waterhouse, G. I. N., “Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites,” Composites Part A: Applied Science and Manufacturing, 90, 589–597, 2016.
  • [61] M. Prithiviraj, R. Muralikannan, "Investigation of Optimal Alkali-treated Perotis indica Plant Fibers on Physical, Chemical, and Morphological Properties", Journal of Natural Fibers, 19(7), 2730–2743, 2022.
  • [62] K. Kaur, U. G. Phutela, "Morphological and structural changes in paddy straw influenced by alkali and microbial pretreatment", Detritus, In Press(1), 1, 2018.
  • [63] V. Oriez, J. Peydecastaing, P.-Y. Pontalier, "Lignocellulosic biomass mild alkaline fractionation and resulting extract purification processes: Conditions, yields, and purities", Clean Technologies, 2(1), 91–115, 2020.
  • [64] Baruah J., Nath T., Sharma R., Kumar S., Deka D, D. C. Barua, "Recent trends in the pretreatment of lignocellulosic biomass for value-added products", Front Energy Res, 6, 2018.
  • [65] Hassan M. M., Rahman M. M., Ghos B. C., Hossain M. I., Al Amin M., Al Zuhanee M. K., “Extraction, and characterization of CNC from waste sugarcane leaf sheath as a reinforcement of multifunctional bio-nanocomposite material: A waste to wealth approach,” Carbon Trends, vol. 17, p. 100400, 2024.
  • [66] Fathana H., Rahmi R., Lubis S., Adlim M., Muktaridha O., Iqhramullah M., “The effects of HCL concentration and ultrasound-assisted on the fabrication of cellulose nanocrystal derived from sugarcane bagasse,” 2022.
  • [67] Rahman M. M., Pk M. E. H., Waliullah M., Hossain M. I., Maniruzzaman M., Ghos B. C., “Production of cellulose nanocrystals from the waste banana (M. oranta) tree rachis fiber as a reinforcement to fabricate useful bionanocomposite,” Carbohydr Polym Technol Appl, 13(8), 200-207, 2024.
  • [68] Costa L. A. S., D. de J. Assis, G. V. P. Gomes, J. B. A. da Silva, A. F. Fonsêca, J. I. Druzian, "Extraction and characterization of nanocellulose from corn stover", Mater Today Proc, 2(1), 287–294, 2015.
  • [69] Dinçel Kasapoğlu E., Kahraman S., Tornuk F., "Extraction optimization and characterization of cellulose nanocrystals from apricot pomace", Foods, 12(4), 746, 2023.
  • [70] Hancock J.,Osei-Bonsu, R M. Hoque, L. Samuels, E. J. Foster, "Valorization of cannabis green waste to cellulose nanomaterials via phosphoric acid hydrolysis", Ind Crops Prod, 201, 116888, 2023.
  • [71] Tanis M. H., Wallberg O., Galbe M., Al-Rudainy B., "Lignin extraction by using two-step fractionation: A review", Molecules, 29(1), 98, 2023.
  • [72] D’Orsi R., Di Fidio N., Antonetti C.,. Raspolli A. M Galletti, A. Operamolla, "Isolation of pure lignin and highly digestible cellulose from defatted and steam-exploded Cynara cardunculus", ACS Sustain Chem Eng, 11(5), 1875–1887, 2023.
  • [73] Guimarães M., Botaro V. R., Novack K. M., Flauzino Neto W. P., Mendes L. M., Tonoli G. H. D., “Preparation of cellulose nanofibrils from bamboo pulp by mechanical defibrillation for their applications in biodegradable composites,” J Nanosci Nanotechnol 15(9), 6751–6768, 2015.
  • [74] Neenu K. V.,. George K. C,. Joseph M. K,. Ramesh M. C, "Effect of oxalic acid and sulphuric acid hydrolysis on the preparation and properties of pineapple pomace derived cellulose nanofibers and nanopapers", Int J Biol Macromol, 209, 1745–1759, 2022.
  • [75] Hubbell C. A, Ragauskas A. J., "Effect of acid-chlorite delignification on cellulose degree of polymerization". Bioresour Technol, 101(19), 7410–7415, 2010.
  • [76] Brugliera G. J, Mai H. T, Muthurajan R, Lee D. J,. Moulton B. A, "Comparative analysis of sulfuric acid and hydrochloric acid hydrolysis of wood pulp cellulose for the preparation of cellulose nanocrystals", Cellulose, 28(11), 7143–7155, 2021.
  • [77] He L Liu, Y, Mustapha S,. Li X,. Huang C. L, "Influence of acid hydrolysis conditions on the properties of cellulose nanocrystals extracted from switchgrass", Carbohydr Polym, 253, 117218, 2021.
  • [78] Silva A. P, Veloso M. M, Lima L. L., M. G. de Lima, F. S. de Oliveira, L. H. Carvalho, "Production and characterization of cellulose nanocrystals obtained from banana peel by acid hydrolysis", J Polym Environ, 30, 2616–2625, 2022.
  • [79] Jonoobi A, Mathew K, Niska M, Ehsanpour A, Agarwal U.P, Heidari A.A,, Bousfield A.K, I. Sain, "A review of cellulose nanocrystals (CNCs) production methods and their surface modification for multifunctional applications", Cellulose, 28(9), 5043–5071, 2021.
  • [80] Jonoobi A., Mathew K., Niska M., Ehsanpour A., Agarwal U. P., Heidari A. A., Bousfield A. K., Sain I., “A review of cellulose nanocrystals (CNCs) production methods and their surface modification for multifunctional applications”, Cellulose, 28(9), 5043–5071, 2021.
  • [81] Zhai Y., Zeng W., Wang Y., Mao Y., Wu J., “Cellulose nanocrystals as reinforcement in bioplastics: A review”, Compos Commun, 30, 100964, 2022.
  • [82] Yazdanpanah M. E., Yousefi M., Resalati R., “Surface modified CNCs as nanoreinforcement: A comprehensive review”, Polym Adv Technol, 34(1), 4–25, 2023.
  • [83] Tonoli G. H. D., Bras F. A., Ramires C., Otoni L. S., “Biodegradable composites reinforced with nanocellulose: A review”, Nanomaterials, 13(6), 944, 2023.
  • [84] George J., Sabapathi S. N., “Cellulose nanocrystals: Synthesis, functional properties, and applications”, Nanotechnol Sci Appl, 8, 45–54, 2015.
  • [85] Ahmad A. L., Mohamed S. N. Z., “A comprehensive review on nanocellulose production using acidic ionic liquids and potential applications”, Polymers, 15(3), 675, 2023.
  • [86] Trache D., Hussin M. H., Dufresne M. K. A. H., Halim S. K., Tahir S. M., “Nanocellulose: From fundamentals to advanced applications”, Front Chem, 6, 392, 2020.
  • [87] Muñoz-Bonilla A., Fernández-García M., “Polymeric materials with antimicrobial activity”, Prog Polym Sci, 37(2), 281–339, 2012.
  • [88] Roy L., Jha S., Choudhury S., Yadav M., Yadav A. K., Nandi S., “Antibacterial and insect-repellent properties of natural bio-based nanocomposite for packaging and medical applications”, J Environ Chem Eng, 10(6), 108317, 2022.
  • [89] Lai C. Y., Wu C. Y., Chuang Y. C., Chen Y. L., Lin C. T., “Preparation of antimicrobial electrospun polyvinyl alcohol nanofibers from plant essential oils”, Polymers, 15(1), 207, 2023.
  • [90] Fijoł N., Lewandowska W., “Essential oils loaded electrospun nanofibers for biomedical and cosmetic applications: A review”, Materials, 15(3), 899, 2022.
  • [91] Benli, H. B. M. İ. B. and Bahtiyari, M. İ., “Pamuklu Kumaşların Ozon-Hidrojen Peroksit Kombinasyonu ile Ağartılması ve Doğal Boyalar ile Renklendirilmesi,” Tekstil ve Mühendis, 15(3), 2016.
  • [92] Walawska, A., Olak-Kucharczyk, M., Kaczmarek, A., and Kudzin, M. H., “Environmentally Friendly Bleaching Process of the Cellulose Fibres Materials Using Ozone and Hydrogen Peroxide in the Gas Phase,” Materials, 15(3), 2024.
  • [93] Nagarajan, K. J., Balaji, A. N., and Ramanujam, N. R., “Extraction of cellulose nanofibers from cocos nucifera var aurantiaca peduncle by ball milling combined with chemical treatment,” Carbohydr Polym, 15(3), 2019.
  • [94] Camarero Espinosa, S., Kuhnt, T., Foster, E. J., and Weder, C., “Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis,” Biomacromolecules, 15(3), 2013.
  • [95] Sin Ng, H. M.,, Tee L. T.,, Bee T. T.,,., Hui S. T, Low D.,, Rahmat C. Y, “Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers,” Composites Part B: Engineering, 15(3), 2015.
  • [96] Jutakridsada, P., Theerakulpisut, S., Srivastava, V., Sillanpää, M., and Kamwilaisak, K., “Preparation and mechanism analysis of morphology-controlled cellulose nanocrystals by H2SO4 hydrolysis of Eucalyptus pulp,” Engineering and Applied Science Research, 15(3), 2022.
  • [97] Soleimani, S., Heydari, A., and Fattahi, M., “Isolation and Characterization of Cellulose Nanocrystals from Waste Cotton Fibers Using Sulfuric Acid Hydrolysis,” Starch - Stärke, 15(3), 2022.
  • [98] Wang, H., Xu, Z., Wang, X., Liu, Y., Zhan, X., Liu, Y., “Sustainable preparation of bifunctional cellulose nanocrystals via mixed H₂SO₄/formic acid hydrolysis,” Carbohydrate Polymers, 15(3), 2021.
  • [99] Rubleva, N. V., Voronova, M. I., Surov, O. V., Zakharov, A. G., Lebedeva, E. O., and Fineevskii, A. V., “Productıon Of Cellulose Nanocrystals By Hydrolysıs In Mıxture Of Hydrochlorıc And Nıtrıc Acıds,” Izvestıya Vysshıkh Uchebnykh Zavedenıı Khımıya Khımıcheskaya Tekhnologıya, 15(3), 2019.
  • [100] Surov, O. V., Afineevskii, A. V., and Voronova, M. I., “Sulfuric acid alcoholysis as a way to obtain cellulose nanocrystals,” Cellulose, 15(3), 2023
  • [101] Zulnazri, Z., Asrofi, M., Abral, H., Kasim, A., Pratoto, A., Sapuan, S. M., “Effect of Hydrochloric Acid Hydrolysis under Sonication and Hydrothermal Process to Produce Cellulose Nanocrystals from Oil Palm Empty Fruit Bunch (OPEFB),” Polymers (Basel), 15(3), 2024.
  • [102] Vaezi, K. and Asadpour, G., “Effects of HCl Hydrolyzed Cellulose Nanocrystals From Waste Papers on the Hydroxypropyl Methylcellulose/Cationic Starch Biofilms,” Waste Biomass Valorization, 13(4), 2022.
  • [103] Raza, M. and Abu-Jdayil, B., “Extraction of cellulose nanocrystals from date seeds using transition metal complex-assisted hydrochloric acid hydrolysis,” Int J Biol Macromol, 294, 2025.
  • [104] Al, G. and Aydemir, D., “Nanoselüloz: yapısı, çeşitleri ve kullanım alanları,” Bartın Orman Fakültesi Dergisi, 26(2), 2024.
  • [105] Zhang, Y., Zhao, Y., Li, S., Wang, R., Ma, X., “Preparation methods of cellulose nanocrystal and its application in treatment of environmental pollution: A mini-review,” Colloid Interface Sci Commun, 53, 2023.
  • [106] Chen, L., Zhu, J. Y., Baez, C., Kitin, P., and Elder, T., “Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids,” Green Chemistry, 18(13), 2016.
  • [106] Nasir, M., Hashim, R., Sulaiman, O., and Asim, M., “Nanocellulose,” Cellulose-Reinforced Nanofibre Composites, Elsevier, 2017.
  • [107] Hu, J., Tian, D., Renneckar, S., and Saddler, J. N., “Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase,” Sci Rep, 8(1), 2018.
  • [108] Islam, M. T., Alam, M. M., Patrucco, A., Montarsolo, A., and Zoccola, M., “Preparation of Nanocellulose: A Review,” AATCC Journal of Research, 1(5), 2014.
  • [109] Ribeiro, R. S. A., Pohlmann, B. C., Calado, V., Bojorge, N., and Pereira, N., “Production of nanocellulose by enzymatic hydrolysis: Trends and challenges,” Eng Life Sci, 19(4), 2019.
  • [110] Dias, I. K. R., Siqueira, G. A., and Arantes, V., “Xylanase increases the selectivity of the enzymatic hydrolysis with endoglucanase to produce cellulose nanocrystals with improved properties,” Int J Biol Macromol, 220, 2022.
  • [111] Zhang, Q., Lin, F., Wang, X., Zhang, Y., “High yielding, one-step mechano-enzymatic hydrolysis of cellulose to cellulose nanocrystals without bulk solvent,” Bioresour Technol, 331, 2021.
  • [112] Ren, R.-W., Chen, X.-Q., and Shen, W.-H., “Preparation and separation of pure spherical cellulose nanocrystals from microcrystalline cellulose by complex enzymatic hydrolysis,” Int J Biol Macromol, 202, 2022.
  • [113] Wulandari, W. T., Rochliadi, A., and Arcana, I. M., “Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse,” IOP Conf Ser Mater Sci Eng, 107, 2016.
  • [114] Batool, F., Iqbal, N., Adeel, S., Azeem, M., Hussaan, M., and Mia, R., “Sugar beet (Beta vulgaris L.) leaves as natural colorant for cotton dyeing using an ecofriendly approach toward industrial progress,” Sci Prog, 107(3), 2024.
  • [115] Du, L., Wang, J., Zhang, Y., Qi, C., Wolcott, M., and Yu, Z., “Preparation and Characterization of Cellulose Nanocrystals from the Bio-ethanol Residuals,” Nanomaterials, 7(3), 2017.
  • [116] Banerjee, M., Saraswatula, S., Williams, A., and Brettmann, B., “Effect of Purification Methods on Commercially Available Cellulose Nanocrystal Properties and TEMPO Oxidation,” Processes, 8(6), 2020.
  • [117] Jo, H. M., Lee, S. H., and Lee, J. Y., “Preparation and characterization of cellulose nanocrystals from paper mulberry fibers,” Bioresources, 18(2), 2023.
  • [118] Wang, W., Mozuch, M. D., Sabo, R. C., Kersten, P., Zhu, J. Y., and Jin, Y., “Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization,” Cellulose, 22(1), 2015.
  • [119] de Souza Lima, M. M. and Borsali, R., “Rodlike Cellulose Microcrystals: Structure, Properties, and Applications,” Macromol Rapid Commun, 25(7), 2004.
  • [120] Rodsamran, P. and Sothornvit, R., “Renewable cellulose source: isolation and characterisation of cellulose from rice stubble residues,” Int J Food Sci Technol, 50(9), 2015.
  • [121] Vanzetto, A. B., Beltrami, L. V. R., Zattera, A. J., “Textile waste as precursors in nanocrystalline cellulose synthesis,” Cellulose, 28(11), 6967–6981, 2021.
  • [122] Melikoğlu, A. Y., Bilek, S. E., Cesur, S., “Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace,” Carbohydr Polym, 215, 330–337, 2019.
  • [123] Dassanayake, R. S., Acharya, S., Abidi, N., “Characterization of cellulose nanocrystals by current spectroscopic techniques,” Appl Spectrosc Rev, 58(3), 180–205, 2023.
  • [124] Sparrman, T., Svenningsson, L., Sahlin-Sjövold, K., Nordstierna, L., Westman, G., Bernin, D., “A revised solid-state NMR method to assess the crystallinity of cellulose,” Cellulose, 26(17), 8993–9003, 2019.
  • [125] Shang, Q., Liu, C., Hu, Y., Jia, P., Hu, L., Zhou, Y., “Bio-inspired hydrophobic modification of cellulose nanocrystals with castor oil,” Carbohydr Polym, 191, 168–175, 2018.
  • [126] Nessi, V., Bayer, I. S., Bartoli, M., Athanassiou, A., “Cellulose nanocrystals-starch nanocomposites produced by extrusion: Structure and behavior in physiological conditions,” Carbohydr Polym, 225, 115123, 2019.
  • [127] Foster, E. J., Moon, R. J., Agarwal, U. P., Bortner, M. J., Bras, J., Camarero-Espinosa, S., Chan, K. J., Clift, M. J. D., Cranston, E. D., Eichhorn, S. J., Fox, D. M., Hamad, W. Y., Heux, L., Jean, B., Korey, M., Nieh, W., Ong, K. J., Reid, M. S., Renneckar, S., Roberts, R., Shatkin, J. A., Simonsen, J., Stinson-Bagby, K., Wanasekara, N. D., Youngblood, J., “Current characterization methods for cellulose nanomaterials,” Chem Soc Rev, 47(8), 2609–2679, 2018.
  • [128] Greczynski, G., Hultman, L., “X-ray photoelectron spectroscopy: Towards reliable binding energy referencing,” Prog Mater Sci, 107, 100591, 2020.
  • [129] Zhang, K., Shen, M., Liu, H., Shang, S., Wang, D., Liimatainen, H., “Facile synthesis of palladium and gold nanoparticles by using dialdehyde nanocellulose as template and reducing agent,” Carbohydr Polym, 186, 132–139, 2018.
  • [130] Baker, M. J., Hussain, S. R., Lovergne, L., Untereiner, V., Hughes, C., Lukaszewski, R. A., Thiéfin, G., Sockalingum, G. D., “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem Soc Rev, 45(7), 1803–1818, 2016.
  • [131] Maréchal, Y., Chanzy, H., “The hydrogen bond network in I β cellulose as observed by infrared spectrometry,” J Mol Struct, 523(1–3), 183–196, 2000.
  • [132] Dassanayake, R. S., Acharya, S., Abidi, N., “Biopolymer-Based Materials from Polysaccharides: Properties, Processing, Characterization and Sorption Applications,” in Advanced Sorption Process Applications, IntechOpen, 2019.
  • [133] Wei, J., Cai, J., Zhang, Y., Zhong, Y., Zhou, J., Zhu, P., “Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water,” J Mater Sci, 54(8), 6709–6718, 2019.
  • [134] Xiao, Y. T., Chin, W. L., Abd Hamid, S. B., “Facile Preparation of Highly Crystalline Nanocellulose by Using Ionic Liquid,” Adv Mat Res, 1087, 106–110, 2015.
  • [135] Geminiani, L., Martinelli, M., Palagini, F., D’Acunto, M., Narducci, D., “Differentiating between Natural and Modified Cellulosic Fibres Using ATR-FTIR Spectroscopy,” Heritage, 5(4), 4114–4139, 2022.
  • [136] Agarwal, U. P., Ralph, S. A., Reiner, R. S., Baez, C., “Probing crystallinity of never-dried wood cellulose with Raman spectroscopy,” Cellulose, 23(1), 125–144, 2016.
  • [137] Agarwal, U. P., “Raman Spectroscopy in the Analysis of Cellulose Nanomaterials,” in Characterization of Nanomaterials in Complex Environmental and Biological Media, pp. 75–90, 2017.
  • [138] Liu, Y., Wang, H., Yu, G., Yu, Q., Li, B., Mu, X., “A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid,” Carbohydr Polym, 110, 415–422, 2014.
  • [139] Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., Johnson, D. K., “Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance,” Biotechnol Biofuels, 3(1), 10, 2010.
  • [140] French, A., “How crystalline is my cellulose specimen? Probing the limits of X-ray diffraction,” Bioresources, 17(4), 5557–5561, 2022.
  • [141] Salem, K. S., Zoppe, J. O., Korhonen, J. T., Bras, J., Wang, X., Fraschini, C., Kim, Y., Isogai, A., Dufresne, A., “Comparison and assessment of methods for cellulose crystallinity determination,” Chem Soc Rev, 52(18), 6417–6446, 2023.
  • [142] Montoya-Escobar, N., Restrepo-Osorio, A., Buitrago-Sierra, R., Arboleda, J. C., "Use of Fourier Series in X-ray Diffraction (XRD) Analysis and Fourier-Transform Infrared Spectroscopy (FTIR) for Estimation of Crystallinity in Cellulose from Different Sources," Polymers (Basel), 14(23), 5199, 2022.
  • [143] Wu, G., "Characterization of the redispersibility of cellulose nanocrystals by particle size analysis using dynamic light scattering," TAPPI Journal, 2019.
  • [144] Rodriguez-Loya, J., Lerma, M., Gardea-Torresdey, J. L., "Dynamic Light Scattering and Its Application to Control Nanoparticle Aggregation in Colloidal Systems: A Review," Micromachines (Basel), 15(1), 24, 2023.
  • [145] Gallardo-Sánchez, M. A., Cuéllar-Cruz, M., González-Laredo, R. F., "Optimization of the Obtaining of Cellulose Nanocrystals from Agave tequilana Weber Var. Azul Bagasse by Acid Hydrolysis," Nanomaterials, 11(2), 520, 2021.
  • [146] Bolat, F., Ghitman, J., Necolau, M. I., Vasile, E., Iovu, H., "A Comparative Study of the Impact of the Bleaching Method on the Production and Characterization of Cotton-Origin Nanocrystalline Cellulose by Acid and Enzymatic Hydrolysis," Polymers (Basel), 15(16), 3446, 2023.
  • [147] Marway, H., "Investigation of nanocellulose mechanical properties and interactions in salt and surfactant solutions measured by atomic force microscopy," McMaster University, Hamilton, Canada, 2017.
  • [148] Kian, L. K., Jawaid, M., Ariffin, H., Karim, Z., "Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose," Int J Biol Macromol, 114, 54–63, 2018.
  • [149] Shazali, N., Shah, M. Z., Ariffin, H., Yusof, Y. A., "Characterization and Cellular Internalization of Spherical Cellulose Nanocrystals (CNC) into Normal and Cancerous Fibroblasts," Materials, 12(19), 3251, 2019.
  • [150] Mattos, B. D., Tardy, B. L., Rojas, O. J., "Accounting for Substrate Interactions in the Measurement of the Dimensions of Cellulose Nanofibrils," Biomacromolecules, 20(7), 2657–2665, 2019.
  • [151] Foster, E. J., Moon, R. J., Agarwal, U. P., "Current characterization methods for cellulose nanomaterials," Chem Soc Rev, 47(8), 2609–2679, 2018.
  • [152] Stinson-Bagby, K. L., Roberts, R., Foster, E. J., "Effective cellulose nanocrystal imaging using transmission electron microscopy," Carbohydr Polym, 186, 429–438, 2018.
  • [153] Ang, S., Narayanan, J. R., Kargupta, W., Haritos, V., Batchelor, W., "Cellulose nanofiber diameter distributions from microscopy image analysis: effect of measurement statistics and operator," Cellulose, 27(8), 4189–4208, 2020.
  • [154] Nagarajan, K. J., Balaji, A. N., Thanga Kasi Rajan, S., Sathick Basha, K., "Effect of sulfuric acid reaction time on the properties and behavior of cellulose nanocrystals from Cocos nucifera var-Aurantiaca peduncle’s cellulose microfibers," Mater Res Express, 6(12), 125333, 2019.
  • [155] Lichtenstein, K., Lavoine, N., "Toward a deeper understanding of the thermal degradation mechanism of nanocellulose," Polym Degrad Stab, 146, 53–60, 2017.
  • [156] Gan, P. G., Sam, S. T., Abdullah, M. F. B., Omar, M. F., "Thermal properties of nanocellulose‐reinforced composites: A review," J Appl Polym Sci, 137(11), 2020.
  • [157] Zhang, Y., Wang, X., Li, Y., Li, J., "Cellulose nanocrystals composites with excellent thermal stability and high tensile strength for preparing flexible resistance strain sensors," Carbohydrate Polymer Technologies and Applications, 3, 100214, 2022.
  • [158] Rasheed, M., Jawaid, M., Parveez, B., Zuriyati, A., Khan, A., "Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre," Int J Biol Macromol, 160, 183–191, 2020.
  • [159] Mandal, A., Chakrabarty, D., "Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization," Carbohydr Polym, 86(3), 1291–1299, 2011.
  • [160] Maiti, S., Kaith, B. S., Jana, S. C., "Preparation and characterization of nano-cellulose with new shape from different precursor," Carbohydr Polym, 98(1), 562–567, 2013.
  • [161] Rasheed, M., Jawaid, M., Parveez, B., Zuriyati, A., Khan, A., "Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre," Int J Biol Macromol, 160, 183–191, 2020.
  • [162] Zhao, Y. W., Tian, M. Z., Huang, P., “Starch/clay aerogel reinforced by cellulose nanofibrils for thermal insulation”, Cellulose, 28, 3505–3513, 2021.
  • [163] Arockiasamy, F. S., Ching, Y. C., Hissa, M. M., Abdullah, L. C., "Navigating the nano-world future: Harnessing cellulose nanocrystals from green sources for sustainable innovation," Heliyon, 11(1), e41188, 2025.
There are 164 citations in total.

Details

Primary Language English
Subjects Textile Sciences and Engineering (Other)
Journal Section Research Article
Authors

Enfal Kayahan

Early Pub Date November 2, 2025
Publication Date November 17, 2025
Submission Date February 27, 2025
Acceptance Date July 23, 2025
Published in Issue Year 2026 Volume: 32 Issue: 2

Cite

APA Kayahan, E. (2025). Cellulose nanocrystals: Synthesis procedures and characterization techniques. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 32(2). https://doi.org/10.5505/pajes.2025.37888
AMA Kayahan E. Cellulose nanocrystals: Synthesis procedures and characterization techniques. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2025;32(2). doi:10.5505/pajes.2025.37888
Chicago Kayahan, Enfal. “Cellulose Nanocrystals: Synthesis Procedures and Characterization Techniques”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32, no. 2 (November 2025). https://doi.org/10.5505/pajes.2025.37888.
EndNote Kayahan E (November 1, 2025) Cellulose nanocrystals: Synthesis procedures and characterization techniques. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32 2
IEEE E. Kayahan, “Cellulose nanocrystals: Synthesis procedures and characterization techniques”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 2, 2025, doi: 10.5505/pajes.2025.37888.
ISNAD Kayahan, Enfal. “Cellulose Nanocrystals: Synthesis Procedures and Characterization Techniques”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32/2 (November2025). https://doi.org/10.5505/pajes.2025.37888.
JAMA Kayahan E. Cellulose nanocrystals: Synthesis procedures and characterization techniques. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32. doi:10.5505/pajes.2025.37888.
MLA Kayahan, Enfal. “Cellulose Nanocrystals: Synthesis Procedures and Characterization Techniques”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 2, 2025, doi:10.5505/pajes.2025.37888.
Vancouver Kayahan E. Cellulose nanocrystals: Synthesis procedures and characterization techniques. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32(2).

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif