Research Article
BibTex RIS Cite

Estimation of newmark displacement according to critical acceleration categories

Year 2026, Volume: 32 Issue: 2
https://doi.org/10.5505/pajes.2025.29499

Abstract

Newmark Method is a useful approximation for the prediction of the amount of earthquake-induced ground movement. According to equations produced depending on this Model, critical acceleration is one of the most significant parameters. In literature, the critical acceleration values of 0.02g, 0.05g, 0.1g, 0.2g, 0.3g and 0.4g have been used to calculate the Newmark Displacement. The equations used as general solutions to calculate ground displacement are independent of these acceleration categories. However, it has been obtaained that the regression fits of the analyses have changed according to these categories. In practice, to obtain the Newmark Displacement of any slope, the critical acceleration of this ground should be firstly calculated. Therefore, because the critical acceleration is known, the displacement can be calculated more accurately using the equation with the most appropriate regression fit in that category. Using 2519 records belonging to 35 significant worldwide earthquakes, the new equations with suitable results in terms of the regression parameters have been acquired and the new and previous regression formulas have been re-obtained according to the acceleration categories and the regression results have been compared. In addition, it has been determined that Newmark approximation gives less suitable regression results when the ground is stronger.

References

  • [1] Borfecchia F, Canio GD, Cecco LD. “Mapping the earthquake- induced landslide hazard around the main oil pipeline network of the Agri Valley (Basilicata, southern Italy) by means of two GIS-based modelling approaches”. Natural Hazards, 81, 759–777, 2016.
  • [2] Durmaz S, Ülgen D. “Prediction of earthquake-induced permanent deformations for concrete-faced rockfill dams”. Natural Hazards, 105, 587–610, 2021.
  • [3] Rajabi AM, Khodaparast M, Mohammadi M. “Earthquake-induced landslide prediction using back-propagation type artificial neural network: case study in northern Iran”. Natural Hazards,110, 679-694, 2022. [4] Haneberg WC, Johnson SE, Gurung N. “Response of the Laprak, Nepal, landslide to the 2015 Mw 7.8 Gorkha earthquake”. Natural Hazards, 111, 567-584, 2022.
  • [5] Jin KP, Yao LK, Cheng QG. “Seismic landslides hazard zoning based on the modified Newmark model: a case study from the Lushan earthquake, China”. Natural Hazards, 99, 493–509, 2019.
  • [6] Ma S, Xu C. “Assessment of co-seismic landslide hazard using the Newmark model and statistical analyses: a case study of the 2013 Lushan, China, Mw6.6 earthquake”. Natural Hazards, 96, 389–412, 2019.
  • [7] Xi C, Han M, Hu X. “Effectiveness of Newmark-based sampling strategy for coseismic landslide susceptibility mapping using deep learning, support vector machine, and logistic regression”. Bulletin of Engineering Geology and the Environment, 81, 174, 2022.
  • [8] Yang Q, Zhu B, Hiraishi T. “Probabilistic evaluation of the seismic stability of infinite submarine slopes integrating the enhanced Newmark method and random field”. Bulletin of Engineering Geology and the Environment, 80, 2025–2043, 2021.
  • [9] Gade M, Nayek PS, Dhanya J. “A new neural network–based prediction model for Newmark’s sliding displacements”. Bulletin of Engineering Geology and the Environment, 80, 385–397, 2021.
  • [10] Papathanassiou G. “Estimating slope failure potential in an earthquake prone area: a case study at Skolis Mountain, NW Peloponnesus, Greece”. Bulletin of Engineering Geology and the Environment, 71, 187–194, 2012.
  • [11] Kumar S, Gupta V, Kumar P. “Coseismic landslide hazard assessment for the future scenario earthquakes in the Kumaun Himalaya, India”. Bulletin of Engineering Geology and the Environment, 80, 5219–5235, 2021.
  • [12] Garakani AA, Birgani MM, Sadeghi H. “An effective stress-based parametric study on the seismic stability of unsaturated slopes with implications for preliminary microzonation”. Bulletin of Engineering Geology and the Environment, 80, 7525–7549, 2021.
  • [13] Nazari RAM, Ghanbari A. “A new formula for predicting probabilistic seismic displacement of reinforced slope with one row of piles”. Bulletin of Engineering Geology and the Environment, 81, 112, 2022.
  • [14] Tao L, Jia Z, Bian J. “Analytical solution of seismic analysis of piled-reinforced slopes”. Bulletin of Engineering Geology and the Environment, 81, 17, 2022.
  • [15] Liu J, Shi J, Wang T. “Seismic landslide hazard assessment in the Tianshui area, China, based on scenario earthquakes”. Bulletin of Engineering Geology and the Environment, 77, 1263–1272, 2018.
  • [16] Vessia G, Pisano L, Tromba G, Parise M. “Seismically induced slope instability maps validated at an urban scale by site numerical simulations”. Bulletin of Engineering Geology and the Environment, 76, 457–476, 2017.
  • [17] Hata Y, Ichii K, Tsuchida T, Kano S, Yamashita N. “A practical method for identifying parameters in the seismic design of embankments”. Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 2(1), 28-40, 2008.
  • [18] Pareek N, Pal S, Kaynia AM, Sharma ML. “Empirical-based seismically induced slope displacements in a geographic information system environment: a case study”. Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 8(4), 258-268, 2014.
  • [19] Rodríguez-Ochoa R, Nadim F, Cepeda JM, Hicks MA, Liu Z. “Hazard analysis of seismic submarine slope instability”, Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 9(3), 128-147, 2015.
  • [20] Sadrekarimi A. “An alternative mechanism for the earthquake-induced displacement of the Lower San Fernando Dam”. Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 5(3-4), 229-240, 2011.
  • [21] Zhang J, Xian JT, Wu CG, Zheng WT, Zheng JG. “Performance-based assessment of permanent displacement of soil slopes using two-dimensional dynamic analysis”. Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 16(1), 178-195, 2022.
  • [22] Hata Y, Ichii K, Tokida K. "A probabilistic evaluation of the size of earthquake induced slope failure for an embankment”, Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 6(2), 73-88, 2012.
  • [23] Newmark NM. “Effects of earthquakes on dams and embankments”. Geotechnique 15, 139–159, 1965.
  • [24] Siyahi B, Erdik M, Sesetyan K, Demircioglu MB, Akman H. “Sıvılasma ve sev stabilitesi hassaslığı ve potansiyeli haritaları: istanbul örneği”. Besinci Ulusal Deprem Muhendisligi Konferansı, İstanbul, Türkiye, 26-30 Mayıs 2003.
  • [25] Ambraseys NN, Menu JM. “Earthquake-induced ground displacements”. Earthquake Engineering and Structural Dynamics, 16, 985–1006, 1988.
  • [26] Jibson RW. “Regression models for estimating coseismic landslide displacement”. Engineering Geology, 91, 209-218, 2007.
  • [27] Jibson RW. “Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis”. Transportation Research Record, 1411, 9–17, 1993.
  • [28] Arias A. “A measure of earthquake intensity Seismic Design for Nuclear Power Plants”. Massachusetts Institute of Technology Press, 438-483,1970.
  • [29] Wilson RC, Keefer DK. “Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California earthquake”. Bulletin of the Seismological Society of America, 73, 863–877, 1983.
  • [30] Jibson RW, Harp EL, Michael JM. “A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California area”. US Geological Survey Open-File Report, 98-113, 17, 1988.
  • [31] Hsieh S, Chyi-Tyi Lee. “Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration”. Engineering Geology, 122, 34–42, 2011.
  • [32] Yiğit A. “Prediction of Amount of Earthquake-Induced Slope Displacement by Using Newmark Method”. Engineering Geology, 264, 2020.
  • [33] Yi̇ği̇t A. “Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi”. Politeknik Dergisi, 24(3), 943-952, 2021.
  • [34] T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı. “AFAD Son Depremler”. https://deprem.afad.gov.tr/ (23.01.2017)
  • [35] UC Berkeley. “Pacific Eathquake Engineering Research Center”. http://peer.berkeley.edu/ (23.01.2017)

Kritik ivme sınıflarına göre newmark deplasmanının tahmin edilmesi

Year 2026, Volume: 32 Issue: 2
https://doi.org/10.5505/pajes.2025.29499

Abstract

Deprem kaynaklı zemin deplasman miktarının tahmini için Newmark Yöntemi kullanışlı bir yaklaşımdır. Kritik ivme değeri bu yönteme bağlı üretilen denklemler için en önemli parametrelerden biridir. Literatürde kritik ivmenin 0,02g; 0,05g; 0,1g; 0,2g; 0,3g ve 0,4g değerleri kullanılarak Newmark Deplasmanı hesaplanmaktadır. Zemin deplasmanının hesabında genel çözüm olarak kullanılan denklemler bu ivme sınıflandırmasından bağımsızdır. Ancak bu sınıflandırmaya bağlı olarak analizlerin regresyon uyumlarının değiştiği tespit edilmiştir. Pratikte herhangi bir şevin Newmark deplasmanını elde etmek için bu zeminin öncelikle kritik ivmesi hesaplanmalıdır. Bu nedenle, kritik ivme bilindiğinden, o kategorideki en uygun regresyon uyumuna sahip denklem kullanılarak yer değiştirme daha doğru hesaplanabilir. Dünya çapındaki 35 önemli depreme ait 2519 kayıt kullanılarak regresyon parametreleri açısından uygun sonuçlara sahip yeni denklemler elde edilmiş, ivme kategorilerine göre yeni ve önceki regresyon formülleri yeniden elde edilerek regresyon sonuçları karşılaştırılmıştır. Ayrıca zeminin daha sağlam olduğu durumlarda Newmark yaklaşımının daha düşük regresyon sonuçları verdiği tespit edilmiştir

References

  • [1] Borfecchia F, Canio GD, Cecco LD. “Mapping the earthquake- induced landslide hazard around the main oil pipeline network of the Agri Valley (Basilicata, southern Italy) by means of two GIS-based modelling approaches”. Natural Hazards, 81, 759–777, 2016.
  • [2] Durmaz S, Ülgen D. “Prediction of earthquake-induced permanent deformations for concrete-faced rockfill dams”. Natural Hazards, 105, 587–610, 2021.
  • [3] Rajabi AM, Khodaparast M, Mohammadi M. “Earthquake-induced landslide prediction using back-propagation type artificial neural network: case study in northern Iran”. Natural Hazards,110, 679-694, 2022. [4] Haneberg WC, Johnson SE, Gurung N. “Response of the Laprak, Nepal, landslide to the 2015 Mw 7.8 Gorkha earthquake”. Natural Hazards, 111, 567-584, 2022.
  • [5] Jin KP, Yao LK, Cheng QG. “Seismic landslides hazard zoning based on the modified Newmark model: a case study from the Lushan earthquake, China”. Natural Hazards, 99, 493–509, 2019.
  • [6] Ma S, Xu C. “Assessment of co-seismic landslide hazard using the Newmark model and statistical analyses: a case study of the 2013 Lushan, China, Mw6.6 earthquake”. Natural Hazards, 96, 389–412, 2019.
  • [7] Xi C, Han M, Hu X. “Effectiveness of Newmark-based sampling strategy for coseismic landslide susceptibility mapping using deep learning, support vector machine, and logistic regression”. Bulletin of Engineering Geology and the Environment, 81, 174, 2022.
  • [8] Yang Q, Zhu B, Hiraishi T. “Probabilistic evaluation of the seismic stability of infinite submarine slopes integrating the enhanced Newmark method and random field”. Bulletin of Engineering Geology and the Environment, 80, 2025–2043, 2021.
  • [9] Gade M, Nayek PS, Dhanya J. “A new neural network–based prediction model for Newmark’s sliding displacements”. Bulletin of Engineering Geology and the Environment, 80, 385–397, 2021.
  • [10] Papathanassiou G. “Estimating slope failure potential in an earthquake prone area: a case study at Skolis Mountain, NW Peloponnesus, Greece”. Bulletin of Engineering Geology and the Environment, 71, 187–194, 2012.
  • [11] Kumar S, Gupta V, Kumar P. “Coseismic landslide hazard assessment for the future scenario earthquakes in the Kumaun Himalaya, India”. Bulletin of Engineering Geology and the Environment, 80, 5219–5235, 2021.
  • [12] Garakani AA, Birgani MM, Sadeghi H. “An effective stress-based parametric study on the seismic stability of unsaturated slopes with implications for preliminary microzonation”. Bulletin of Engineering Geology and the Environment, 80, 7525–7549, 2021.
  • [13] Nazari RAM, Ghanbari A. “A new formula for predicting probabilistic seismic displacement of reinforced slope with one row of piles”. Bulletin of Engineering Geology and the Environment, 81, 112, 2022.
  • [14] Tao L, Jia Z, Bian J. “Analytical solution of seismic analysis of piled-reinforced slopes”. Bulletin of Engineering Geology and the Environment, 81, 17, 2022.
  • [15] Liu J, Shi J, Wang T. “Seismic landslide hazard assessment in the Tianshui area, China, based on scenario earthquakes”. Bulletin of Engineering Geology and the Environment, 77, 1263–1272, 2018.
  • [16] Vessia G, Pisano L, Tromba G, Parise M. “Seismically induced slope instability maps validated at an urban scale by site numerical simulations”. Bulletin of Engineering Geology and the Environment, 76, 457–476, 2017.
  • [17] Hata Y, Ichii K, Tsuchida T, Kano S, Yamashita N. “A practical method for identifying parameters in the seismic design of embankments”. Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 2(1), 28-40, 2008.
  • [18] Pareek N, Pal S, Kaynia AM, Sharma ML. “Empirical-based seismically induced slope displacements in a geographic information system environment: a case study”. Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 8(4), 258-268, 2014.
  • [19] Rodríguez-Ochoa R, Nadim F, Cepeda JM, Hicks MA, Liu Z. “Hazard analysis of seismic submarine slope instability”, Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 9(3), 128-147, 2015.
  • [20] Sadrekarimi A. “An alternative mechanism for the earthquake-induced displacement of the Lower San Fernando Dam”. Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 5(3-4), 229-240, 2011.
  • [21] Zhang J, Xian JT, Wu CG, Zheng WT, Zheng JG. “Performance-based assessment of permanent displacement of soil slopes using two-dimensional dynamic analysis”. Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 16(1), 178-195, 2022.
  • [22] Hata Y, Ichii K, Tokida K. "A probabilistic evaluation of the size of earthquake induced slope failure for an embankment”, Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 6(2), 73-88, 2012.
  • [23] Newmark NM. “Effects of earthquakes on dams and embankments”. Geotechnique 15, 139–159, 1965.
  • [24] Siyahi B, Erdik M, Sesetyan K, Demircioglu MB, Akman H. “Sıvılasma ve sev stabilitesi hassaslığı ve potansiyeli haritaları: istanbul örneği”. Besinci Ulusal Deprem Muhendisligi Konferansı, İstanbul, Türkiye, 26-30 Mayıs 2003.
  • [25] Ambraseys NN, Menu JM. “Earthquake-induced ground displacements”. Earthquake Engineering and Structural Dynamics, 16, 985–1006, 1988.
  • [26] Jibson RW. “Regression models for estimating coseismic landslide displacement”. Engineering Geology, 91, 209-218, 2007.
  • [27] Jibson RW. “Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis”. Transportation Research Record, 1411, 9–17, 1993.
  • [28] Arias A. “A measure of earthquake intensity Seismic Design for Nuclear Power Plants”. Massachusetts Institute of Technology Press, 438-483,1970.
  • [29] Wilson RC, Keefer DK. “Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California earthquake”. Bulletin of the Seismological Society of America, 73, 863–877, 1983.
  • [30] Jibson RW, Harp EL, Michael JM. “A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California area”. US Geological Survey Open-File Report, 98-113, 17, 1988.
  • [31] Hsieh S, Chyi-Tyi Lee. “Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration”. Engineering Geology, 122, 34–42, 2011.
  • [32] Yiğit A. “Prediction of Amount of Earthquake-Induced Slope Displacement by Using Newmark Method”. Engineering Geology, 264, 2020.
  • [33] Yi̇ği̇t A. “Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi”. Politeknik Dergisi, 24(3), 943-952, 2021.
  • [34] T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı. “AFAD Son Depremler”. https://deprem.afad.gov.tr/ (23.01.2017)
  • [35] UC Berkeley. “Pacific Eathquake Engineering Research Center”. http://peer.berkeley.edu/ (23.01.2017)
There are 34 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering
Journal Section Research Article
Authors

Adil Yiğit

Early Pub Date November 2, 2025
Publication Date November 19, 2025
Submission Date February 25, 2024
Acceptance Date July 9, 2025
Published in Issue Year 2026 Volume: 32 Issue: 2

Cite

APA Yiğit, A. (2025). Estimation of newmark displacement according to critical acceleration categories. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 32(2). https://doi.org/10.5505/pajes.2025.29499
AMA Yiğit A. Estimation of newmark displacement according to critical acceleration categories. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. November 2025;32(2). doi:10.5505/pajes.2025.29499
Chicago Yiğit, Adil. “Estimation of Newmark Displacement According to Critical Acceleration Categories”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32, no. 2 (November 2025). https://doi.org/10.5505/pajes.2025.29499.
EndNote Yiğit A (November 1, 2025) Estimation of newmark displacement according to critical acceleration categories. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32 2
IEEE A. Yiğit, “Estimation of newmark displacement according to critical acceleration categories”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 2, 2025, doi: 10.5505/pajes.2025.29499.
ISNAD Yiğit, Adil. “Estimation of Newmark Displacement According to Critical Acceleration Categories”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 32/2 (November2025). https://doi.org/10.5505/pajes.2025.29499.
JAMA Yiğit A. Estimation of newmark displacement according to critical acceleration categories. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32. doi:10.5505/pajes.2025.29499.
MLA Yiğit, Adil. “Estimation of Newmark Displacement According to Critical Acceleration Categories”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 2, 2025, doi:10.5505/pajes.2025.29499.
Vancouver Yiğit A. Estimation of newmark displacement according to critical acceleration categories. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;32(2).

ESCI_LOGO.png    image001.gif    image002.gif        image003.gif     image004.gif