Research Article
BibTex RIS Cite

İlkokulda Yavaş Geçişli Animasyon ve Dijital Kavram Haritası Kullanımı: Fen Bilimleri Tutumu ve Üst Bilişsel Farkındalık Açısından Bir Değerlendirme

Year 2023, , 177 - 200, 02.05.2023
https://doi.org/10.9779/pauefd.1085078

Abstract

Bu çalışmanın amacı, fen bilimleri dersinde kullanılan yavaş geçişli animasyon ile dijital kavram haritalarının ilkokul 3. sınıf öğrencilerinin fen tutumlarına ve üst bilişsel farkındalık düzeylerine etkisini incelemektir. Çalışmada ön test- son test kontrol gruplu yarı deneysel desen kullanılmıştır. Çalışma kapsamında yansız atama yoluyla belirlenen üç gruptan ikisi deney grubunu, biri ise kontrol grubunu oluşturmuştur. Deney gruplarından birinde (DG-1) fen bilimleri dersi yavaş geçişli animasyon tekniği kullanılarak yürütülürken diğer deney grubunda (DG-2) dijital kavram haritası kullanılmıştır. Kontrol grubunda (KG) ise fen bilimleri dersi müfredatına uygun olarak ders kitapları takip edilmiştir. DG-1 grubunda 21, DG-2 grubunda 25 ve KG’de 21 öğrenci olmak üzere çalışma grubunda toplam 67 öğrenci yer almıştır. Veriler fen tutum ölçeği ile üstbilişsel farkındalık ölçeği yardımıyla toplanmıştır. Verilerin analizinde ANOVA ve ANCOVA kullanılmıştır. Elde edilen bulgulara göre DG-1 ve DG-2 gruplarının, son testlerde hem tutum hem de üstbilişsel farkındalık puanları artmıştır. Ayrıca gruplar arası kıyaslamalar, dijital kavram haritasının yavaş geçişli animasyondan daha etkili olduğunu göstermiştir. Elde edilen sonuçlara dayanarak fen bilimlerinin farklı ünitelerinde çalışmalar yapılması ve yavaş geçişli animasyonun sınırlılıklarının değerlendirilmesi önerilmiştir.

References

  • Ahmed, A. & Abdelraheem, A. (2016). Investigating the effectiveness of digital-based concept mapping on teaching educational technology for undergraduate students. Journal of Educational and Psychological Studies, 10(4), 737-749.
  • Akçay, S., Ayadoğdu, M., Yıldırım, H. İ. ve Şensoy, Ö. (2005). Fen eğitiminde ilköğretim 6. sınıflarda çiçekli bitkiler konusunun öğretiminde bilgisayar destekli öğretimin öğrenci başarısına etkisi. Gazi Üniversitesi Kastamonu Eğitim Dergisi, 13(1), 103–116. Akpınar, E., Aktamış, H ve Ergin, Ö. (2005). Fen bilgisi dersinde eğitim teknolojisi kullanılmasına ilişkin öğrenci görüşleri. The Turkish Online Journal of Educational Technology, 4(1), 93-100.
  • Akpınar, Y. (2003). Öğretmenlerin yeni bilgi teknolojileri kullanımında yükseköğretimin etkisi: İstanbul okulları örneği. The Turkish Online Journal of Educational Technology, 2(2), 79-96.
  • Akpunar, B. (2011). The effect of webblog based instruction on the metacognition levels of preservice teachers. International Journal of Education and Development Using Information and Communication Technology, 7(2), 38-45.
  • Akyol, G., Sungur, S., & Tekkaya, C. (2010). The contribution of cognitive and metacognitive strategy use to students' science achievement. Educational Research and Evaluation, 16(1), 1-21.
  • Alt, D., & Kapshuk, Y. (2021). Argumentation-based learning with digital concept mapping and college students’ epistemic beliefs. Learning Environments Research, 1–20.
  • Altınel, Z. T. (2018). Fen bilimleri dersinde yavaş geçişli animasyon tekniğinin öğrencilerin akademik başarılarına ve öğrendikleri bilgilerin kalıcılığına etkisi. Yayımlanmamış yüksek lisans tezi. Niğde Ömer Halis Demir Üniversitesi, Niğde.
  • Arslan, A. (2006). Bilgisayar destekli eğitim yapmaya ilişkin tutum ölçeği. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 2(1), 24-33.
  • Atalay, N. (2015). Fen bilimleri dersinde öğrencilerin öğrenme ve yenilenme becerilerinin gelişiminde yavaş geçişli animasyon (slowmation) uygulaması. Yayımlanmamış doktora tezi. Anadolu Üniversitesi, Eskişehir.
  • Atalay, N., & Belet Boyacı, D. (2019). Slowmation application in development of learning and innovation skills of students in science course. International Electronic Journal of Elementary Education, 11(5), 507–518.
  • Atalay, N., Anagün, Ş. S. ve Kumtepe, E. G. (2016). Fen öğretiminde teknoloji entegrasyonunun 21. yüzyıl beceri boyutunda değerlendirilmesi: Yavaş geçişli animasyon uygulaması. Bartın Üni̇versi̇tesi Eği̇ti̇m Fakültesi Dergi̇si̇, 5(2), 405–424.
  • Aykanat, F., Doğru, M. ve Kalender, S. (2005). Bilgisayar destekli kavram haritaları yöntemiyle fen öğretiminin öğrenci başarısına etkisi. Gazi Üniversitesi Kastamonu Eğitim Dergisi, 13(2), 391–400.
  • Babkie, A. M., & Provost, M. C. (2002). Select, write, and use metacognitive strategies in the classroom. Intervention in School and Clinic, 37(3), 173–176.
  • Bağçeci, B., Döş, B., & Sarıca, R. (2013). An analysis of metacognitive awareness levels and academic achievement of primary school students. Mustafa Kemal University Journal of Social Sciences Institute, 8(16), 551–566.
  • Bajaj, M. & Devi, S. (2021). Attitude of secondary school students towards science in relation to academic achievement, gender and type of school. Mier Journal of Educational Studies Trends & Practies, 11 (1), 82-92.
  • Baki, A. ve Şahin, S. M. (2004). Bilgisayar destekli kavram haritası yöntemiyle öğretmen adaylarının matematiksel öğrenmelerinin değerlendirilmesi. The Turkish Online Journal of Educational Technology, 3(2), 14.
  • Brooker, A., Lawrence, J. & Dodds, A. (2017). Using digital concept maps to distinguish between young refugees’ challenges. Journal of Interactive Media in Education, 1(4),1-11.
  • Brown, A.L. (1977). Knowing when, where, and how to remember: a problem of metacognition. Technical Report No. 47. Lawrence Erlbaum Associates.
  • Brown, J. (2011). The impact of students created slowmation on the teaching and learning of primary science. Unpublished master dissertation. Edith Cowan University, Perth, Western Australia.
  • Brown, J., Murcia, K. & Hackling, M. (2013). Slowmation: a multimodal strategy for engaging children with primary science. Teaching Science, 59(4), 14–20.
  • Bruning, R. H., Schraw, G. J., Norby, M. M. & Ronning, R. R. (2003). Cognitive psychology and instruction (4th ed.). Columbus, OH: Prentice-Hall.
  • Büyüköztürk, Ş. (2010). Veri analizi el kitabı. Ankara: Pegem Akademi.
  • Büyüköztürk, Ş., Kılıç, E., Akgün, Ö., Karadeniz, Ş., & Demirel, F. (2018). Bilimsel araştırma yöntemleri. Ankara: Pegem Akademi.
  • Canas, A. J., Carff, R., Hill G., Carvalho M., Arguedas M., Eskridge, T. C., Lott J. & Carvajal R. (2005). Concept maps: Integrating knowledge and information visualization. In S. O. Tergan & T. Keller (Eds.), Knowledge and ınformation visualization searching for synergies (pp. 205-219). Germany, Verlag Berlin Heidelberg: Springer.
  • Chang, C.C., Yeh, T.K. & Shih, C.-M. (2016). The effects of integrating computer-based concept mapping for physics learning in junior high school. Eurasia Journal of Mathematics, Science and Technology Education, 12(9), 2531-2542.
  • Chang, K., Sung, Y. & Chen, S., (2001). Learning through computer based concept mapping with scaffolding aid. Journal of Computer Assisted Learning, 17(1), 21-33.
  • Chen, C.-H., & Howard, B. (2010). Effect of live simulation on middle school students’ attitudes and learning toward science-web of science core collection. Educational Technology & Society, 13(1), 133-139.
  • Cifuentes, L., & Hsieh, Y. J. (2003). Visualization for construction of meaning during study time: a quantitative analysis. International Journal of Instructional Media, 30(3), 263-274.
  • Çepni, S., Taş, E. & Köse, S. (2006). The effects of computer-assisted material on students’ cognitive levels, misconceptions and attitudes towards science. Computers and Education, 46(2), 192–205.
  • Dağdalan, G. (2019). Sanal gerçeklik uygulaması destekli fen bilimleri öğretiminin öğrencilerin bilişsel düzeylerine, üst bilişsel farkındalıklarına ve sanal gerçeklik uygulamalarına ilişkin tutumlarına etkisi. Yayımlanmamış yüksek lisans tezi, Ordu Üniversitesi, Ordu.
  • Daley, B., Canas, A. & Schweitzer, T. (2007). CmapTools: Integrating teaching, learning, and evaluation in online courses. New Directions for Adult and Continuing Education, 113, 37-47.
  • Demirci, N. (2015). Fen bilimleri dersinde üst bilişsel araştırmaya dayalı öğrenmenin dördüncü sınıf öğrencilerinin bilimsel süreç becerilerine, akademik başarılarına ve üst bilişsel süreçlerine etkisi. Yayımlanmamış yüksek lisans tezi. Adnan Menderes Üniversitesi, Aydın.
  • Desoete, A. & Roeyers, H. (2002). Off-line metacognition - a domain-specific retardation in young children with learning disabilities? Learning Disability Quarterly, 25(2), 123-139.
  • Devadason, R.-P., Toh, S.-C. & Abbas, M. (2012). Student construction activity for improved learning: Effectiveness of Slowmation in the learning of moon phases. Global Journal on Technology, 1, 496-501.
  • Engelmann, T. & Hesse, F. W. (2010). How digital concept maps about the collaborators’ knowledge and information influence computer-supported collaborative problem solving. Computer-Supported Collaborative Learning, 5(3), 299–319.
  • Erdogan, Y. (2009). Paper-based and computer-based concept mappings: the effects on computer achievement, computer anxiety and computer attitude. British Journal of Educational Technology, 40(5), 821–836.
  • Erdoğdu, F. ve Şengül, Ö. A. (2021). Akran dönütü desteği ile tasarımlanan dijital öğretim materyallerinin problem çözmeye ve bilgi-iletişim teknolojileri yeterlilik algılarına etkisi. Eğitim Teknolojisi Kuram ve Uygulama, 11(1), 129–159.
  • Fan, C. Y., Liyanawatta, M., Yang, S. H. & Chen, G. D. (2019). Using digital map tools to assist learning of argumentative essay writing. Innovative Technologies and Learning, Second International Conference, 794–801.
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: a new area of cognitive-developmental ınquiry. Undefined, 34(10), 906–911.
  • Fleer, M. (2013). Affective imagination in science education: Determining the emotional nature of scientific and technological learning of young children. Research in Science Education, 43(5), 2085–2106.
  • Fraenkel, J. R. & Wallen, N. E. (2006). How to design and evaluate research in education. Boston: McGrawHill.
  • Garner, R. (1987). Metacognition and reading comprehension. Norwood, NJ: Ablex.
  • Geban, Ö., Ertepınar, H., Yılmaz, G., Altın, A. ve Şahbaz, F. (1994, Eylül). Bilgisayar destekli eğitimin öğrencilerin fen bilgisi başarılarına ve fen bilgisi ilgilerine etkisi. I. Ulusal Fen Bilimleri Eğitimi Sempozyumu Bildiri Özetleri Kitabı, Dokuz Eylül Üniversitesi, İzmir.
  • Genç, M. (2019). Views of teacher candidates about slowmation: Biology units sample. Education and Information Technologies, 24(2), 1015–1034.
  • George, R. (2006). A Cross-domain analysis of change in students’ attitudes toward science and attitudes about the utility of science. International Journal of Science Education, 28 (6), 571–589.
  • Gil Quintana, J. & Marfil-Carmona, R. (2018). The empowerment of students throug the tric. Narrative creations through stop motion in primary education. Index Comunicacion, 8(2), 189–210.
  • Hager, C. (2013). Modeling DNA structure and processes through animation and kinesthetic visualizations. Published master dissertation, Michigan State University.
  • Hanewald, R. (2012). Cultivating life-long learning skills in undergraduate students through the collaborative creation of digital knowledge maps. Procedia - Social and Behavioral Sciences, 69, 847 – 853.
  • Hilbert, T. & Renkl, A. (2009). Learning how to use a computer-based concept-mapping tool: Self-explaining examples helps. Computer in Human Behavior, 25(2), 267–274.
  • Hoban, G. (2005). From claymation to slowmation: a teaching procedure to develop students’ science understandings. Teaching Science,51(2), 26-30.
  • Hoban, G. (2007). Using slowmation to engage preservice elementary teachers in understanding science content knowledge. Contemporary Issues in Technology and Teacher Education, 7(2), 75–91.
  • Hoban, G. (2010). The 5Rs: a new teaching approach to encourage slowmations (student-generated animations) of science concepts. Teaching Science, 56(3), 33–38.
  • Hoban, G. ve Nielsen, W. (2012). Learning science through creating a “slowmation”: a case study of preservice primary teachers. International Journal of Science Education, 35(1), 119-146.
  • Hung, P.-H., Hwang, G.-J., Su, I.-H. & Lin, I.-H. (2012). A concept-map ıntegrated dynamic assessment system for ımproving ecology observation competences in mobile learning activities. Turkish Online Journal of Educational Technology, 11(1), 10–19.
  • Hwang, G.-J., Wu, C.-H. & Kuo, F.-R. (2013). Effect of touch technology- based concept mapping on students learning attitudes and perceptions. Educational Technology & Society, 16 (3), 274–285.
  • Jagals, D. & Van der Walt, M. (2018). Metacognitive awareness and visualisation in the imagination: The case of the invisible circles. Pythagoras, 39(1), 1–10.
  • Javed, S., Wenlan, Z., Ghaffari, A. S. & Bhuttah, T. M. (2020). The mediating role of technology between students' attitudes and engagement towards science: a quantitative study of students' perception. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 11(3), 1-10.
  • Jebson, S. R. & Hena, A. Z. (2015). Students’ attitude towards science subjects in senior secondary schools in Adamawa state. International Journal of Research in Applied, Natural and Social Sciences, 3(3), 117-124.
  • Kao, C. P. & Mou, T. Y. (2020). The practice of moving image education in preschool: Children’s attitudes toward and impressions of slowmation. Interactive Learning Environments, 1-11.
  • Kara, Y. (2009). Eğlenceli eğitim yazılımının öğrenci başarısına, kavram yanılgılarına ve biyolojiye karşı tutumlarına etkisi. Marmara Üniversitesi Atatürk Eğitim Bilimleri Dergisi, 25, 129-138.
  • Karakelle, S. ve Saraç, S. (2007). Çocuklar için farkındalık ölçeği üstbilişsel (ÜBFÖ-Ç) A ve B formları: Geçerlik ve güvenirlik çalışması. Türk Psikoloji Yazıları, 10(20), 87-103.
  • Keast, S. ve Cooper, R. (2011). Developing the knowledge base of preservice science teachers: Starting the path towards expertise using slowmation. The Professional Knowledge Base of Science Teaching, 259–277.
  • Keast, S., Cooper, R., Berry, A., Loughran, J. & Hoban, G. (2010). Slowmation as a pedagogical scaffold for improving science teaching and learning. Brunei International Journal of Science and Mathematics Education, 2(1), 1–15.
  • Kervin, K. (2007). Exploring the use of slow motion animation (slowmation) as a teaching strategy to develop year 4 students’ understandings of equivalent fractions. Contemporary Issues in Technology and Teacher Education, 7(2), 100–106.
  • Kırılmazkaya, G., Keçeci, G. & Zengin, F. (2014). Bilgisayar destekli öğretimin fen ve teknoloji dersi öğretmen ve öğrencilerinin tutum ve başarılarına etkisi. The Journal of Academic Social Science Studies, 30, 453–466.
  • Kiboss, J. K., Kiboss, J. K., Ndirangu, M. & Wekesa, E. W. (2004). Effectiveness of a computer-mediated simulations program in school biology on pupils' learning outcomes in cell theory. Journal of Science Education and Technology, 13(2), 207–213.
  • Kidman, G., Keast, S. & Cooper, R. (2012). Responding to the 5Rs: an alternate perspective of slowmation. Teaching Science, 58(2), 26–32.
  • Klenk, K. E. (2011). Computer animation in teaching science: Effectiveness in teaching retrograde motion to 9th graders. Unpublished doctoral dissertation, Rhode Island University United States.
  • Koufou, A. & Tsilichristou, E. (2014, July). Digital concept mapping in cultural education. In IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications (pp. 238-241). IEEE.
  • Krajcik, J. S. & Haney, R. E. (1987). Proportional reasoning and achievement in high school chemistry. School Science and Mathematics, 87(1), 25–32.
  • Kurt, A. İ. (2006). Anlamlı öğrenme yaklaşımına dayalı bilgisayar destekli 7. sınıf fen bilgisi dersi için hazırlanan bir ders yazılımının öğrencilerin akademik başarılarına ve kalıcılığa etkisi. Yayımlanmamış yüksek lisans tezi. Çukurova Üniversitesi, Adana.
  • Lim, K. Y., Lee, H. W. & Grabowski, B. (2009). Does concept‐mapping strategy work for everyone? The levels of generativity and learners' self‐regulated learning skills. British Journal of Educational Technology, 40(4), 606-618.
  • Lin, S. W. (2004). Development and application of a two-tier diagnostic test for high school students’ understanding of flowering plant growth and development. International Journal of Science and Mathematics Education, 2(2), 175–199.
  • Lukow, J.E. (2002). Learning style as predictors of student attitudes toward the use of technology in recreation courses. Unpublished doctoral dissertation, Indiana University.
  • Malone, D. G. & Decker, J. L. (1984). The concept map as an aid to instruction in science and mathematics. Scholl Science and Mathematics, 84(3), 220-232.
  • Maqsud, M. (1998). Effects of metacognitive instruction on mathematics achievement and attitude towards mathematics of low mathematics achievers. Educational Research, 40(2), 237–243.
  • Mattern, N. & Schau, C. (2001). Gender difference in attitude-achievement relationships over time among white middle school students. Journal of Research in Science Teaching, 39 (4), 324-340.
  • Mayers, A. (2013). Introduction to statistics and SPSS in psychology. London: Pearson
  • Milam, H. J., Santo, S. A. & Heaton, L.A. (2000). Concept maps for web-based applications, ERIC Technical Report. Washington.
  • Milli Eğitim Bakanlığı (2018). Fen bilimleri dersi öğretim programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara: Devlet Basımevi.
  • Mills, R., Tomas, L. & Lewthwaite, B. (2019). The impact of student-constructed animation on middle school students’ learning about plate tectonics. Journal of Science Education and Technology, 28(2), 165–177.
  • Mills, R., Tomas, L., Whiteford, C. & Lewthwaite, B. (2018). Developing middle school students’ interest in learning science and geology through slowmation. Research in Science Education, 50(4), 1501–1520.
  • Mou, T. Y., Kao, C. P., Lin, H. H. & Yin, Z. X. (2021). From action to slowmation: enhancing preschoolers’ story comprehension ability and learning intention. Interactive Learning Environments, 29(8), 1231–1243.
  • Occelli, M., Romano, L. G., Valeiras, N. & Willging, P. A. (2017). Animating cell division (mitosis): A didactic proposal with the slowmation technique. Revista Eureka, 14(2), 398–409.
  • Ochsner, K. (2010). Lights, camera, action research: The effects of didactic digital movie making on students’ twenty-first century learning skills and science content in the middle school classroom. Unpublished doctoral dissertation, Arizona State University, USA.
  • Okur, N. ve Ünal, İ. (2010). Fen öğretiminde bilgisayar destekli öğretimin önemi. Eğitim Teknolojileri Araştırmaları Dergisi, 1(3), 1-10.
  • Özabacı, N. ve Olgun, A. (2011). Bilgisayar destekli fen bilgisi öğretiminin fen bilgisi dersine ilişkin tutum, bilişüstü beceriler ve fen bilgisi başarısı üzerine bir çalışma. Elektronik Sosyal Bilimler Dergisi, 10(37), 93–107.
  • Özkaya, A., Aydoğdu, M. ve Çağıran, İ. (2016). Üstbilişsel ve internet tabanlı üstbilişsel öğretim yöntemlerinin öğrencilerin hücre bölünmesi ve kalıtım konusundaki tutumlarına ve üstbilişsel düşünme düzeylerine etkisi. 21. Yüzyılda Eğitim ve Toplum Eğitim Bilimleri ve Sosyal Araştırmalar Dergisi, 5(13), 133-159.
  • Özmen, H. (2004). Fen öğretiminde öğrenme teorileri ve teknoloji destekli yapılandırmacı (constructivist) öğrenme. The Turkish Online Journal of Educational Technology, 3(1), 100-111.
  • Paige, K., Bentley, B. & Dobson, S. (2016). Slowmation: a twenty-first century educational tool for science and mathematics pre-service teachers. Australian Journal of Teacher Education, 41(2), 1–15.
  • Poitras, E., Lajoie, S. & Hong, Y. J. (2012). The design of technology-rich learning environments as metacognitive tools in history education. Instructional Science, 40(6), 1033–1061.
  • Ramatu, N. A. (2020). Computer-based concept mapping: a cognitive tool for enhancing academic performance among secondary school biology students in Zarıa, Nigeria. Journal of the Nigerian Academy of Education, 16(2), 194–208.
  • Schaal, S. (2010). Cognitive and motivational effects of digital concept maps in pre-service science teacher training. Procedia Social and Behavioral Sciences, 2, 640-647.
  • Schanze, S. & Grüß-Niehaus, T. (2008, September). Supporting comprehension in chemistry education –The effect of computer generated and progressive concept mapping. In Proceedings of The Third International Conference on Concept Mapping, (Vol 2, pp. 595–602). Tallin, Estonia & Helsinki, Finland.
  • Schraw, G. & Dennison, R. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19, 460-475.
  • Schraw, G. & Dennison, R. S. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19(4), 460–475.
  • Shepherd, A., Hoban, G. & Dixon, R. (2013). Using slowmation to develop the social skills of primary school students with mild intellectual disabilities: Four case studies. Australasian Journal of Special Education, 38(2), 150–168.
  • Shrigley, R. L., Koballa, T.R. & Simpson, R.D. (1988). Defıning attitude for science educators. Journal of Research in Science Teaclıing, 25 (8), 659-678.
  • Sperling, R. A., Howard, B. C. Miller, L. A., ve Murphy, C. (2002). Measures of children’s knowledge and regulation of cognition. Contemporary Educational Psychology, 27, 51-79.
  • Swift, G. W. (1993). Effects of a childrens’ book and a traditional texbook on thirdgrade students’ achievement and attitudes toward social studies. Unpublished doctoral thesis, Oklahoma University.
  • Teng, M. F. (2021). Interactive-whiteboard-technology-supported collaborative writing: Writing achievement, metacognitive activities, and co-regulation patterns. System, 97.
  • Thompson, B. (1993). The use of statistical significance tests in research: Bootstrap and other alternatives. Journal of Experimental Education, 61, 361-377.
  • Wagner, T. (2008). Rigor redefined. Educational Leadership, 66(2), 20–25.
  • Wishart, J. (2017). Exploring how creating stop-motion animations supports student teachers in learning to teach science. Journal of Research on Technology in Education, 49(1–2), 88–101.
  • Wolfe, S. & Flewitt, R. (2010). New technologies, new multimodal literacy practices and young children’s metacognitive development. Cambridge Journal of Education, 40(4), 387–399.
  • Yaseen, Z. & Aubusson, P. (2020). Exploring student-generated animations, combined with a representational pedagogy, as a tool for learning in chemistry. Research in Science Education, 50(2), 529–548.
  • Yen, A. C. & Yang, P. Y. (2013). Integrating a digital concept mapping into a PPT slide writing project. Turkish Online Journal of Educational Technology, 12(3), 117–133.
  • Yıldırım, S. (2010). Üniversite öğrencilerinin bilişötesi farkındalıkları ile benzer matematiksel problem türlerini çözmeleri arasındaki ilişki. Yayımlanmamış yüksek lisans tezi, Gaziosmanpaşa Üniversitesi, Tokat.

The Use of Slow Motion and Digital Concept Maps in Primary School: An Evaluation in Terms of Science Attitudes and Metacognitive Awareness

Year 2023, , 177 - 200, 02.05.2023
https://doi.org/10.9779/pauefd.1085078

Abstract

The aim of this study was to examine the effects of slow motion and digital concept maps used in science lessons on primary school 3rd-grade students’ science attitudes and metacognitive awareness levels. A quasi-experimental design with a pretest-posttest control group was used. Within the scope of the study, two of the three groups determined by unbiased assignment were experimental groups and one was the control group. In one of the experimental groups (EG-1), science lessons were carried out using the slow motion technique, while digital concept mapping was applied for the other experimental group (EG-2). In the control group (CG), textbooks were followed in accordance with the science course curriculum. A total of 67 students participated in the study, with 21 students in EG-1, 25 students in EG-2, and 21 students in CG. Data were collected with the help of the Science Attitude Scale and Metacognitive Awareness Scale. ANOVA and ANCOVA were used in the analysis of data. According to the findings, both the attitude and metacognitive awareness scores of students in the EG-1 and EG-2 groups increased in the posttests. In addition, comparisons between the groups showed that digital concept maps were more effective than slow motion. Based on the results obtained, it can be suggested that further studies be carried out in different science units to evaluate the limitations of slow motion.

References

  • Ahmed, A. & Abdelraheem, A. (2016). Investigating the effectiveness of digital-based concept mapping on teaching educational technology for undergraduate students. Journal of Educational and Psychological Studies, 10(4), 737-749.
  • Akçay, S., Ayadoğdu, M., Yıldırım, H. İ. ve Şensoy, Ö. (2005). Fen eğitiminde ilköğretim 6. sınıflarda çiçekli bitkiler konusunun öğretiminde bilgisayar destekli öğretimin öğrenci başarısına etkisi. Gazi Üniversitesi Kastamonu Eğitim Dergisi, 13(1), 103–116. Akpınar, E., Aktamış, H ve Ergin, Ö. (2005). Fen bilgisi dersinde eğitim teknolojisi kullanılmasına ilişkin öğrenci görüşleri. The Turkish Online Journal of Educational Technology, 4(1), 93-100.
  • Akpınar, Y. (2003). Öğretmenlerin yeni bilgi teknolojileri kullanımında yükseköğretimin etkisi: İstanbul okulları örneği. The Turkish Online Journal of Educational Technology, 2(2), 79-96.
  • Akpunar, B. (2011). The effect of webblog based instruction on the metacognition levels of preservice teachers. International Journal of Education and Development Using Information and Communication Technology, 7(2), 38-45.
  • Akyol, G., Sungur, S., & Tekkaya, C. (2010). The contribution of cognitive and metacognitive strategy use to students' science achievement. Educational Research and Evaluation, 16(1), 1-21.
  • Alt, D., & Kapshuk, Y. (2021). Argumentation-based learning with digital concept mapping and college students’ epistemic beliefs. Learning Environments Research, 1–20.
  • Altınel, Z. T. (2018). Fen bilimleri dersinde yavaş geçişli animasyon tekniğinin öğrencilerin akademik başarılarına ve öğrendikleri bilgilerin kalıcılığına etkisi. Yayımlanmamış yüksek lisans tezi. Niğde Ömer Halis Demir Üniversitesi, Niğde.
  • Arslan, A. (2006). Bilgisayar destekli eğitim yapmaya ilişkin tutum ölçeği. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 2(1), 24-33.
  • Atalay, N. (2015). Fen bilimleri dersinde öğrencilerin öğrenme ve yenilenme becerilerinin gelişiminde yavaş geçişli animasyon (slowmation) uygulaması. Yayımlanmamış doktora tezi. Anadolu Üniversitesi, Eskişehir.
  • Atalay, N., & Belet Boyacı, D. (2019). Slowmation application in development of learning and innovation skills of students in science course. International Electronic Journal of Elementary Education, 11(5), 507–518.
  • Atalay, N., Anagün, Ş. S. ve Kumtepe, E. G. (2016). Fen öğretiminde teknoloji entegrasyonunun 21. yüzyıl beceri boyutunda değerlendirilmesi: Yavaş geçişli animasyon uygulaması. Bartın Üni̇versi̇tesi Eği̇ti̇m Fakültesi Dergi̇si̇, 5(2), 405–424.
  • Aykanat, F., Doğru, M. ve Kalender, S. (2005). Bilgisayar destekli kavram haritaları yöntemiyle fen öğretiminin öğrenci başarısına etkisi. Gazi Üniversitesi Kastamonu Eğitim Dergisi, 13(2), 391–400.
  • Babkie, A. M., & Provost, M. C. (2002). Select, write, and use metacognitive strategies in the classroom. Intervention in School and Clinic, 37(3), 173–176.
  • Bağçeci, B., Döş, B., & Sarıca, R. (2013). An analysis of metacognitive awareness levels and academic achievement of primary school students. Mustafa Kemal University Journal of Social Sciences Institute, 8(16), 551–566.
  • Bajaj, M. & Devi, S. (2021). Attitude of secondary school students towards science in relation to academic achievement, gender and type of school. Mier Journal of Educational Studies Trends & Practies, 11 (1), 82-92.
  • Baki, A. ve Şahin, S. M. (2004). Bilgisayar destekli kavram haritası yöntemiyle öğretmen adaylarının matematiksel öğrenmelerinin değerlendirilmesi. The Turkish Online Journal of Educational Technology, 3(2), 14.
  • Brooker, A., Lawrence, J. & Dodds, A. (2017). Using digital concept maps to distinguish between young refugees’ challenges. Journal of Interactive Media in Education, 1(4),1-11.
  • Brown, A.L. (1977). Knowing when, where, and how to remember: a problem of metacognition. Technical Report No. 47. Lawrence Erlbaum Associates.
  • Brown, J. (2011). The impact of students created slowmation on the teaching and learning of primary science. Unpublished master dissertation. Edith Cowan University, Perth, Western Australia.
  • Brown, J., Murcia, K. & Hackling, M. (2013). Slowmation: a multimodal strategy for engaging children with primary science. Teaching Science, 59(4), 14–20.
  • Bruning, R. H., Schraw, G. J., Norby, M. M. & Ronning, R. R. (2003). Cognitive psychology and instruction (4th ed.). Columbus, OH: Prentice-Hall.
  • Büyüköztürk, Ş. (2010). Veri analizi el kitabı. Ankara: Pegem Akademi.
  • Büyüköztürk, Ş., Kılıç, E., Akgün, Ö., Karadeniz, Ş., & Demirel, F. (2018). Bilimsel araştırma yöntemleri. Ankara: Pegem Akademi.
  • Canas, A. J., Carff, R., Hill G., Carvalho M., Arguedas M., Eskridge, T. C., Lott J. & Carvajal R. (2005). Concept maps: Integrating knowledge and information visualization. In S. O. Tergan & T. Keller (Eds.), Knowledge and ınformation visualization searching for synergies (pp. 205-219). Germany, Verlag Berlin Heidelberg: Springer.
  • Chang, C.C., Yeh, T.K. & Shih, C.-M. (2016). The effects of integrating computer-based concept mapping for physics learning in junior high school. Eurasia Journal of Mathematics, Science and Technology Education, 12(9), 2531-2542.
  • Chang, K., Sung, Y. & Chen, S., (2001). Learning through computer based concept mapping with scaffolding aid. Journal of Computer Assisted Learning, 17(1), 21-33.
  • Chen, C.-H., & Howard, B. (2010). Effect of live simulation on middle school students’ attitudes and learning toward science-web of science core collection. Educational Technology & Society, 13(1), 133-139.
  • Cifuentes, L., & Hsieh, Y. J. (2003). Visualization for construction of meaning during study time: a quantitative analysis. International Journal of Instructional Media, 30(3), 263-274.
  • Çepni, S., Taş, E. & Köse, S. (2006). The effects of computer-assisted material on students’ cognitive levels, misconceptions and attitudes towards science. Computers and Education, 46(2), 192–205.
  • Dağdalan, G. (2019). Sanal gerçeklik uygulaması destekli fen bilimleri öğretiminin öğrencilerin bilişsel düzeylerine, üst bilişsel farkındalıklarına ve sanal gerçeklik uygulamalarına ilişkin tutumlarına etkisi. Yayımlanmamış yüksek lisans tezi, Ordu Üniversitesi, Ordu.
  • Daley, B., Canas, A. & Schweitzer, T. (2007). CmapTools: Integrating teaching, learning, and evaluation in online courses. New Directions for Adult and Continuing Education, 113, 37-47.
  • Demirci, N. (2015). Fen bilimleri dersinde üst bilişsel araştırmaya dayalı öğrenmenin dördüncü sınıf öğrencilerinin bilimsel süreç becerilerine, akademik başarılarına ve üst bilişsel süreçlerine etkisi. Yayımlanmamış yüksek lisans tezi. Adnan Menderes Üniversitesi, Aydın.
  • Desoete, A. & Roeyers, H. (2002). Off-line metacognition - a domain-specific retardation in young children with learning disabilities? Learning Disability Quarterly, 25(2), 123-139.
  • Devadason, R.-P., Toh, S.-C. & Abbas, M. (2012). Student construction activity for improved learning: Effectiveness of Slowmation in the learning of moon phases. Global Journal on Technology, 1, 496-501.
  • Engelmann, T. & Hesse, F. W. (2010). How digital concept maps about the collaborators’ knowledge and information influence computer-supported collaborative problem solving. Computer-Supported Collaborative Learning, 5(3), 299–319.
  • Erdogan, Y. (2009). Paper-based and computer-based concept mappings: the effects on computer achievement, computer anxiety and computer attitude. British Journal of Educational Technology, 40(5), 821–836.
  • Erdoğdu, F. ve Şengül, Ö. A. (2021). Akran dönütü desteği ile tasarımlanan dijital öğretim materyallerinin problem çözmeye ve bilgi-iletişim teknolojileri yeterlilik algılarına etkisi. Eğitim Teknolojisi Kuram ve Uygulama, 11(1), 129–159.
  • Fan, C. Y., Liyanawatta, M., Yang, S. H. & Chen, G. D. (2019). Using digital map tools to assist learning of argumentative essay writing. Innovative Technologies and Learning, Second International Conference, 794–801.
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: a new area of cognitive-developmental ınquiry. Undefined, 34(10), 906–911.
  • Fleer, M. (2013). Affective imagination in science education: Determining the emotional nature of scientific and technological learning of young children. Research in Science Education, 43(5), 2085–2106.
  • Fraenkel, J. R. & Wallen, N. E. (2006). How to design and evaluate research in education. Boston: McGrawHill.
  • Garner, R. (1987). Metacognition and reading comprehension. Norwood, NJ: Ablex.
  • Geban, Ö., Ertepınar, H., Yılmaz, G., Altın, A. ve Şahbaz, F. (1994, Eylül). Bilgisayar destekli eğitimin öğrencilerin fen bilgisi başarılarına ve fen bilgisi ilgilerine etkisi. I. Ulusal Fen Bilimleri Eğitimi Sempozyumu Bildiri Özetleri Kitabı, Dokuz Eylül Üniversitesi, İzmir.
  • Genç, M. (2019). Views of teacher candidates about slowmation: Biology units sample. Education and Information Technologies, 24(2), 1015–1034.
  • George, R. (2006). A Cross-domain analysis of change in students’ attitudes toward science and attitudes about the utility of science. International Journal of Science Education, 28 (6), 571–589.
  • Gil Quintana, J. & Marfil-Carmona, R. (2018). The empowerment of students throug the tric. Narrative creations through stop motion in primary education. Index Comunicacion, 8(2), 189–210.
  • Hager, C. (2013). Modeling DNA structure and processes through animation and kinesthetic visualizations. Published master dissertation, Michigan State University.
  • Hanewald, R. (2012). Cultivating life-long learning skills in undergraduate students through the collaborative creation of digital knowledge maps. Procedia - Social and Behavioral Sciences, 69, 847 – 853.
  • Hilbert, T. & Renkl, A. (2009). Learning how to use a computer-based concept-mapping tool: Self-explaining examples helps. Computer in Human Behavior, 25(2), 267–274.
  • Hoban, G. (2005). From claymation to slowmation: a teaching procedure to develop students’ science understandings. Teaching Science,51(2), 26-30.
  • Hoban, G. (2007). Using slowmation to engage preservice elementary teachers in understanding science content knowledge. Contemporary Issues in Technology and Teacher Education, 7(2), 75–91.
  • Hoban, G. (2010). The 5Rs: a new teaching approach to encourage slowmations (student-generated animations) of science concepts. Teaching Science, 56(3), 33–38.
  • Hoban, G. ve Nielsen, W. (2012). Learning science through creating a “slowmation”: a case study of preservice primary teachers. International Journal of Science Education, 35(1), 119-146.
  • Hung, P.-H., Hwang, G.-J., Su, I.-H. & Lin, I.-H. (2012). A concept-map ıntegrated dynamic assessment system for ımproving ecology observation competences in mobile learning activities. Turkish Online Journal of Educational Technology, 11(1), 10–19.
  • Hwang, G.-J., Wu, C.-H. & Kuo, F.-R. (2013). Effect of touch technology- based concept mapping on students learning attitudes and perceptions. Educational Technology & Society, 16 (3), 274–285.
  • Jagals, D. & Van der Walt, M. (2018). Metacognitive awareness and visualisation in the imagination: The case of the invisible circles. Pythagoras, 39(1), 1–10.
  • Javed, S., Wenlan, Z., Ghaffari, A. S. & Bhuttah, T. M. (2020). The mediating role of technology between students' attitudes and engagement towards science: a quantitative study of students' perception. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 11(3), 1-10.
  • Jebson, S. R. & Hena, A. Z. (2015). Students’ attitude towards science subjects in senior secondary schools in Adamawa state. International Journal of Research in Applied, Natural and Social Sciences, 3(3), 117-124.
  • Kao, C. P. & Mou, T. Y. (2020). The practice of moving image education in preschool: Children’s attitudes toward and impressions of slowmation. Interactive Learning Environments, 1-11.
  • Kara, Y. (2009). Eğlenceli eğitim yazılımının öğrenci başarısına, kavram yanılgılarına ve biyolojiye karşı tutumlarına etkisi. Marmara Üniversitesi Atatürk Eğitim Bilimleri Dergisi, 25, 129-138.
  • Karakelle, S. ve Saraç, S. (2007). Çocuklar için farkındalık ölçeği üstbilişsel (ÜBFÖ-Ç) A ve B formları: Geçerlik ve güvenirlik çalışması. Türk Psikoloji Yazıları, 10(20), 87-103.
  • Keast, S. ve Cooper, R. (2011). Developing the knowledge base of preservice science teachers: Starting the path towards expertise using slowmation. The Professional Knowledge Base of Science Teaching, 259–277.
  • Keast, S., Cooper, R., Berry, A., Loughran, J. & Hoban, G. (2010). Slowmation as a pedagogical scaffold for improving science teaching and learning. Brunei International Journal of Science and Mathematics Education, 2(1), 1–15.
  • Kervin, K. (2007). Exploring the use of slow motion animation (slowmation) as a teaching strategy to develop year 4 students’ understandings of equivalent fractions. Contemporary Issues in Technology and Teacher Education, 7(2), 100–106.
  • Kırılmazkaya, G., Keçeci, G. & Zengin, F. (2014). Bilgisayar destekli öğretimin fen ve teknoloji dersi öğretmen ve öğrencilerinin tutum ve başarılarına etkisi. The Journal of Academic Social Science Studies, 30, 453–466.
  • Kiboss, J. K., Kiboss, J. K., Ndirangu, M. & Wekesa, E. W. (2004). Effectiveness of a computer-mediated simulations program in school biology on pupils' learning outcomes in cell theory. Journal of Science Education and Technology, 13(2), 207–213.
  • Kidman, G., Keast, S. & Cooper, R. (2012). Responding to the 5Rs: an alternate perspective of slowmation. Teaching Science, 58(2), 26–32.
  • Klenk, K. E. (2011). Computer animation in teaching science: Effectiveness in teaching retrograde motion to 9th graders. Unpublished doctoral dissertation, Rhode Island University United States.
  • Koufou, A. & Tsilichristou, E. (2014, July). Digital concept mapping in cultural education. In IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications (pp. 238-241). IEEE.
  • Krajcik, J. S. & Haney, R. E. (1987). Proportional reasoning and achievement in high school chemistry. School Science and Mathematics, 87(1), 25–32.
  • Kurt, A. İ. (2006). Anlamlı öğrenme yaklaşımına dayalı bilgisayar destekli 7. sınıf fen bilgisi dersi için hazırlanan bir ders yazılımının öğrencilerin akademik başarılarına ve kalıcılığa etkisi. Yayımlanmamış yüksek lisans tezi. Çukurova Üniversitesi, Adana.
  • Lim, K. Y., Lee, H. W. & Grabowski, B. (2009). Does concept‐mapping strategy work for everyone? The levels of generativity and learners' self‐regulated learning skills. British Journal of Educational Technology, 40(4), 606-618.
  • Lin, S. W. (2004). Development and application of a two-tier diagnostic test for high school students’ understanding of flowering plant growth and development. International Journal of Science and Mathematics Education, 2(2), 175–199.
  • Lukow, J.E. (2002). Learning style as predictors of student attitudes toward the use of technology in recreation courses. Unpublished doctoral dissertation, Indiana University.
  • Malone, D. G. & Decker, J. L. (1984). The concept map as an aid to instruction in science and mathematics. Scholl Science and Mathematics, 84(3), 220-232.
  • Maqsud, M. (1998). Effects of metacognitive instruction on mathematics achievement and attitude towards mathematics of low mathematics achievers. Educational Research, 40(2), 237–243.
  • Mattern, N. & Schau, C. (2001). Gender difference in attitude-achievement relationships over time among white middle school students. Journal of Research in Science Teaching, 39 (4), 324-340.
  • Mayers, A. (2013). Introduction to statistics and SPSS in psychology. London: Pearson
  • Milam, H. J., Santo, S. A. & Heaton, L.A. (2000). Concept maps for web-based applications, ERIC Technical Report. Washington.
  • Milli Eğitim Bakanlığı (2018). Fen bilimleri dersi öğretim programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara: Devlet Basımevi.
  • Mills, R., Tomas, L. & Lewthwaite, B. (2019). The impact of student-constructed animation on middle school students’ learning about plate tectonics. Journal of Science Education and Technology, 28(2), 165–177.
  • Mills, R., Tomas, L., Whiteford, C. & Lewthwaite, B. (2018). Developing middle school students’ interest in learning science and geology through slowmation. Research in Science Education, 50(4), 1501–1520.
  • Mou, T. Y., Kao, C. P., Lin, H. H. & Yin, Z. X. (2021). From action to slowmation: enhancing preschoolers’ story comprehension ability and learning intention. Interactive Learning Environments, 29(8), 1231–1243.
  • Occelli, M., Romano, L. G., Valeiras, N. & Willging, P. A. (2017). Animating cell division (mitosis): A didactic proposal with the slowmation technique. Revista Eureka, 14(2), 398–409.
  • Ochsner, K. (2010). Lights, camera, action research: The effects of didactic digital movie making on students’ twenty-first century learning skills and science content in the middle school classroom. Unpublished doctoral dissertation, Arizona State University, USA.
  • Okur, N. ve Ünal, İ. (2010). Fen öğretiminde bilgisayar destekli öğretimin önemi. Eğitim Teknolojileri Araştırmaları Dergisi, 1(3), 1-10.
  • Özabacı, N. ve Olgun, A. (2011). Bilgisayar destekli fen bilgisi öğretiminin fen bilgisi dersine ilişkin tutum, bilişüstü beceriler ve fen bilgisi başarısı üzerine bir çalışma. Elektronik Sosyal Bilimler Dergisi, 10(37), 93–107.
  • Özkaya, A., Aydoğdu, M. ve Çağıran, İ. (2016). Üstbilişsel ve internet tabanlı üstbilişsel öğretim yöntemlerinin öğrencilerin hücre bölünmesi ve kalıtım konusundaki tutumlarına ve üstbilişsel düşünme düzeylerine etkisi. 21. Yüzyılda Eğitim ve Toplum Eğitim Bilimleri ve Sosyal Araştırmalar Dergisi, 5(13), 133-159.
  • Özmen, H. (2004). Fen öğretiminde öğrenme teorileri ve teknoloji destekli yapılandırmacı (constructivist) öğrenme. The Turkish Online Journal of Educational Technology, 3(1), 100-111.
  • Paige, K., Bentley, B. & Dobson, S. (2016). Slowmation: a twenty-first century educational tool for science and mathematics pre-service teachers. Australian Journal of Teacher Education, 41(2), 1–15.
  • Poitras, E., Lajoie, S. & Hong, Y. J. (2012). The design of technology-rich learning environments as metacognitive tools in history education. Instructional Science, 40(6), 1033–1061.
  • Ramatu, N. A. (2020). Computer-based concept mapping: a cognitive tool for enhancing academic performance among secondary school biology students in Zarıa, Nigeria. Journal of the Nigerian Academy of Education, 16(2), 194–208.
  • Schaal, S. (2010). Cognitive and motivational effects of digital concept maps in pre-service science teacher training. Procedia Social and Behavioral Sciences, 2, 640-647.
  • Schanze, S. & Grüß-Niehaus, T. (2008, September). Supporting comprehension in chemistry education –The effect of computer generated and progressive concept mapping. In Proceedings of The Third International Conference on Concept Mapping, (Vol 2, pp. 595–602). Tallin, Estonia & Helsinki, Finland.
  • Schraw, G. & Dennison, R. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19, 460-475.
  • Schraw, G. & Dennison, R. S. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19(4), 460–475.
  • Shepherd, A., Hoban, G. & Dixon, R. (2013). Using slowmation to develop the social skills of primary school students with mild intellectual disabilities: Four case studies. Australasian Journal of Special Education, 38(2), 150–168.
  • Shrigley, R. L., Koballa, T.R. & Simpson, R.D. (1988). Defıning attitude for science educators. Journal of Research in Science Teaclıing, 25 (8), 659-678.
  • Sperling, R. A., Howard, B. C. Miller, L. A., ve Murphy, C. (2002). Measures of children’s knowledge and regulation of cognition. Contemporary Educational Psychology, 27, 51-79.
  • Swift, G. W. (1993). Effects of a childrens’ book and a traditional texbook on thirdgrade students’ achievement and attitudes toward social studies. Unpublished doctoral thesis, Oklahoma University.
  • Teng, M. F. (2021). Interactive-whiteboard-technology-supported collaborative writing: Writing achievement, metacognitive activities, and co-regulation patterns. System, 97.
  • Thompson, B. (1993). The use of statistical significance tests in research: Bootstrap and other alternatives. Journal of Experimental Education, 61, 361-377.
  • Wagner, T. (2008). Rigor redefined. Educational Leadership, 66(2), 20–25.
  • Wishart, J. (2017). Exploring how creating stop-motion animations supports student teachers in learning to teach science. Journal of Research on Technology in Education, 49(1–2), 88–101.
  • Wolfe, S. & Flewitt, R. (2010). New technologies, new multimodal literacy practices and young children’s metacognitive development. Cambridge Journal of Education, 40(4), 387–399.
  • Yaseen, Z. & Aubusson, P. (2020). Exploring student-generated animations, combined with a representational pedagogy, as a tool for learning in chemistry. Research in Science Education, 50(2), 529–548.
  • Yen, A. C. & Yang, P. Y. (2013). Integrating a digital concept mapping into a PPT slide writing project. Turkish Online Journal of Educational Technology, 12(3), 117–133.
  • Yıldırım, S. (2010). Üniversite öğrencilerinin bilişötesi farkındalıkları ile benzer matematiksel problem türlerini çözmeleri arasındaki ilişki. Yayımlanmamış yüksek lisans tezi, Gaziosmanpaşa Üniversitesi, Tokat.
There are 108 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hakan Çite 0000-0002-1224-9570

Sümeyra Gürbüzer 0000-0003-4932-0008

Menşure Alkış Küçükaydın 0000-0003-4410-1279

Publication Date May 2, 2023
Submission Date March 9, 2022
Acceptance Date September 3, 2022
Published in Issue Year 2023

Cite

APA Çite, H., Gürbüzer, S., & Alkış Küçükaydın, M. (2023). İlkokulda Yavaş Geçişli Animasyon ve Dijital Kavram Haritası Kullanımı: Fen Bilimleri Tutumu ve Üst Bilişsel Farkındalık Açısından Bir Değerlendirme. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi(58), 177-200. https://doi.org/10.9779/pauefd.1085078