Research Article
BibTex RIS Cite

Students’ Ability to Use and Understand Mathematical Language with Their Teacher’s Ability to Notice the Ways of How Students Use Mathematical Language?

Year 2017, Volume: 42 Issue: 42, 87 - 107, 01.07.2017

Abstract

This study not only focused on investigating
seventh grade estudents’ use of mathematical language correctly, but it also
focused on teacher noticing, which includes 
being able to make sense of students’ thinking and the ways of how they
used mathematical languages to convey their thinking.For this purpose, we
worked with three seventh-grade students who demonstrated different achievement
levels in mathematics and their math teacher. We used student journals and
student interviews in order to investigate students’ use of mathematical
language; while we used teacher logs and teacher interview to investigate the
process of teacher noticing. Grounded-theory approach guided the analysis of
the data collected. Each interview was transcribed and  interesting issues regarding students’ use of
mathematical language and teacher noticing were summarized. This study
demonstrated that students tended to use mathematical language; however, how
often they used mathematical language and how accurate they used it to convey
their thinking varied based on their academic achievements. Additionally, participant
teacher’s level of noticing of the students’ use of mathematical language
differed based on students’ academic achievements. 

References

  • Barcelos, A., M., F. (2000). Understanding teachers' and students' language learning beliefs in experience: A Deweyan approach (John Dewey). (Yayınlanmamış doktora tezi). University of Alabama, Tuscaloosa.
  • Baselli, A., G. (1789). An essay on mathematical language, or, an introduction to the mathematical sciences. London: Authors.
  • Brendefur, J., & Frykholm, J. (2000). Promoting mathematical communication in the classroom: Two preservice teachers' conceptions and practices. Journal of Mathematics Teacher Education, 3(2), 125-153.
  • Chirume, S. (2012). How does the Use of Mathematical Symbols Influence Understanding of Mathematical Concepts by Secondary School Students?, International Journal of Social Science & Education, 3(1), 35-46.
  • Cuban, L. (1995). The hidden variable: How organizations influence teacher responses to secondary science curriculum reform, Theory into Practice, Reforming Science Education, 34(1), pp. 4-11.
  • Çalıkoğlu Bali, G. (2002). Matematik öğretiminde dil ölçeği. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 23, 57-61.
  • Dubinsky, E. (2000). Meaning and formalism in mathematics, International Journal of Computers for Mathematical Learning, 5(3), 211-240.
  • Ernest, P. (1999). Forms of knowledge in mathematics and mathematics education: Philosophical and rhetorical perspectives, Educational Studies in Mathematics, 38(1–3), 67–83.
  • Ferrari, L., P. (2004). Matematical language and advanced mathematics learning, Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 2, 383–390.
  • Gardner, H. (1993). Multiple intelligences: Theory into practice. New York: Basic books.
  • Harel,G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics education III (pp. 234-283). Providence, RI: American Mathematical Society.
  • Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students‘ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (371-404). Charlotte, NC: Information Age Publishers.
  • Holgersson, I. (2009). Teachers’ awareness of student learning. Paper presented at Norsma 5, Reykjavik, October 2009. In Norsma 5, Reykjavik, okt 2009.
  • Jacops, R., V., Lamb, C., L., L., & Philipp, A., R. (2010). Professional Noticing of Children's Mathematical Thinking, Journal for Research in Mathematics Education, 41(2), 169-202.
  • Kafonogo, M., F., & Bali, A., L., T. (2013). Exploring Classroom Teachers' Awareness of Pupils with Learning Disabilities: Focusing on Public Primary Schools in Tanzania. Journal of Education and Practice, 4(24), 58-66.
  • Mason, J. (2002). Researching your own practice: The discipline of noticing. London: Routledge Falmer.
  • Moralı, S., Köroğlu, H., & Çelik, A. (2004). Buca Eğitim Fakültesi Matematik Öğretmen Adaylarının Soyut Matematik Dersine Yönelik Tutumları ve Rastlanan Kavram Yanılgıları, Gazi Eğitim Fakültesi Dergisi, 24(1), 161-175.
  • Nasibov, F. H., & Yetim, S. (2008). Elemanter matematik ve yüksek matematik kavramları hakkında, Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(3), 423-431.
  • National Council of Teachers of Mathematics (2000).Principles and Standarts for School Mathematics. Reston, VA: Commission on Standarts for School Mathematics.
  • National Governors Assiciation Center for Best Practices & Council of Chief State School Officers (2010). Common Core State Standars for Mathematics, Washington, DC: Authors. [Online]: http://www.corestandards.org/about-the-standards/branding-guidelines/ adresinden 15 Aralık 2015 tarihinde indirilmiştir.
  • Orton, A., & Frobisher, L. (1996). Insights into Teaching Mathematics. New York, NY: Continuum.
  • Otterburn, M. K., & Nicholson, A. R. (1976). The language of mathematics. Mathematics in School, 5(5), 18-20.
  • Payne, G., & Payne, J. (2004). Key concept in social research. Great Britain: Sage Publications.
  • Tirosh, D. (2000). Enhancing prospective teachers’ knowledge of children’s conceptions: The case of division of fractions. Journal for Research in Mathematics Education, 31(1), 5-25.
  • Rubenstein, R.N. & Thompson, D.R., (2001). Learning Mathematical Symbolism: Challenges and Instructional Strategies. Mathematics Teacher (94), 4, Reston, VA: NCTM.
  • Rudd, C., L., Lambert, C., M., Satterwhite, M., & Zaier, A. (2008). Mathematical language in early childhood settings: what really counts?, Early Childhood Education Journal, 36, 75–80.
  • Schütz, R. (2014). Vygotsky and language acquisition. [Online]:http://sk.com.br/sk-vygot.html adresinden 12 Ocak 2016 tarihinde alınmıştır.
  • Sfard, A. (2001). There is more to discourse than meets the ears: looking at thinking as communicating to learn more about mathematical learning, Educational Studies inMathematics, 46, 13-57.
  • Sherin, M., Jacobs, V., & Philipp, R. (Eds.) (2011). Mathematics teacher noticing: Seeing through teachers' eyes. New York, NY: Routledge.
  • Steele, D. F., (2001). Using Sociocultural Theory to Teach Mathematics: A Vygotskian Perspective. School Science and Mathematics. 101(8), 404-416.
  • Strauss, A. & Corbin, J. (1990). Basics of qualitative research: grounded theory procedures and techniques. Newbury Park, CA: Sage.
  • Warren, E. (2006). Comparative mathematical language in the elementary school: a longitudinal study. Educational Studies in Mathematics, 62, 169–189.
  • Ünal, Z. (2013). 7. sınıf öğrencilerinin geometri öğrenme alanında matematiksel dil kullanımlarının incelenmesi. (Yayınlanmamış yüksek lisans tezi). Dokuz Eylül Üniversitesi, İzmir.
  • Van Es, E. A.,& Sherin, M. G. (2009). The influence of video clubs on teachers’ thinking and practice, Journal of Mathematics Teacher Educator, DOI 10.1007/s10857-009-9130-3. [Online]: http://education.uci.edu/docs/JMTE-vanEs_Sherin.pdf adresinden 12 Şubat 2016 tarihinde indirilmiştir.
  • Yeşildere, S. (2007). İlköğretim matematik öğretmen adaylarının matematiksel alan dilini kullanma yeterlikleri, Boğaziçi Üniversitesi Eğitim Dergisi, 24(2), 61-70.
  • Yin, R., K. (2011). Oualitative research from start to finish, New York: A Division of Guilford Publications.
  • Yıldırım, A. & Şimşek, H. (2011). Nitel Araştırma Yöntemleri, Ankara: SeçkinYayıncılık.
  • Zack, V. (1999). Everyday and mathematical language in children's argumentation about proof. Educational Review, 51(2), 129-146.

Öğrencilerin Matematiksel Dili Kullanma ve Anlama Becerisi ile Öğretmenlerinin Öğrencilerin Matematiksel Dili Nasıl Kullandıklarını Fark Edebilme Yeteneği

Year 2017, Volume: 42 Issue: 42, 87 - 107, 01.07.2017

Abstract

Bu çalışmada 7. sınıf öğrencilerinin
matematiksel dili kullanabilme becerilerinin incelenmesi ve matematik
öğretmeninin öğrencilerin bu becerilerini fark edebilme yeteneğinin incelenmesi
amaçlanmıştır. Bunun için farklı matematiksel başarı düzeyine sahip üç 7. sınıf
öğrencisi ve bu öğrencilerin bulunduğu sınıfta öğretime devam eden bir
matematik öğretmeni ile çalışılmıştır. Geometri öğrenme alanında yapılan
uygulama 7 hafta süresince devam etmiştir. Uygulama süresince her ders kazanımı
sonunda öğrenciler tarafından doldurulan öğrenci günlükleri, her ders öncesi ve
sonrasında öğretmen tarafından doldurulan ders formları ve uygulama sonunda hem
öğrencilerle hem de öğretmenle gerçekleştirilen bireysel görüşmeler veri toplama
aracı olarak kullanılmıştır. Elde edilen veriler gömülü teori veri kodlama
yöntemlerinden açık ve eksensel kodlama yöntemlerine göre analiz edilmiştir.
Elde edilen bulgular, öğrencilerin matematiksel dili kullanma sıklıkları ve
matematiksel dili doğru kullanabilme becerilerinin akademik başarıları ile
ilişki olduğunu göstermektedir.
Ders öğretmeninin öğrencilerin
matematiksel dili kullanma becerileri hakkındaki farkındalık seviyesinin de
öğrencilerin akademik başarıları ile uyumlu olduğu bulunmuştur.

References

  • Barcelos, A., M., F. (2000). Understanding teachers' and students' language learning beliefs in experience: A Deweyan approach (John Dewey). (Yayınlanmamış doktora tezi). University of Alabama, Tuscaloosa.
  • Baselli, A., G. (1789). An essay on mathematical language, or, an introduction to the mathematical sciences. London: Authors.
  • Brendefur, J., & Frykholm, J. (2000). Promoting mathematical communication in the classroom: Two preservice teachers' conceptions and practices. Journal of Mathematics Teacher Education, 3(2), 125-153.
  • Chirume, S. (2012). How does the Use of Mathematical Symbols Influence Understanding of Mathematical Concepts by Secondary School Students?, International Journal of Social Science & Education, 3(1), 35-46.
  • Cuban, L. (1995). The hidden variable: How organizations influence teacher responses to secondary science curriculum reform, Theory into Practice, Reforming Science Education, 34(1), pp. 4-11.
  • Çalıkoğlu Bali, G. (2002). Matematik öğretiminde dil ölçeği. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 23, 57-61.
  • Dubinsky, E. (2000). Meaning and formalism in mathematics, International Journal of Computers for Mathematical Learning, 5(3), 211-240.
  • Ernest, P. (1999). Forms of knowledge in mathematics and mathematics education: Philosophical and rhetorical perspectives, Educational Studies in Mathematics, 38(1–3), 67–83.
  • Ferrari, L., P. (2004). Matematical language and advanced mathematics learning, Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 2, 383–390.
  • Gardner, H. (1993). Multiple intelligences: Theory into practice. New York: Basic books.
  • Harel,G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics education III (pp. 234-283). Providence, RI: American Mathematical Society.
  • Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students‘ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (371-404). Charlotte, NC: Information Age Publishers.
  • Holgersson, I. (2009). Teachers’ awareness of student learning. Paper presented at Norsma 5, Reykjavik, October 2009. In Norsma 5, Reykjavik, okt 2009.
  • Jacops, R., V., Lamb, C., L., L., & Philipp, A., R. (2010). Professional Noticing of Children's Mathematical Thinking, Journal for Research in Mathematics Education, 41(2), 169-202.
  • Kafonogo, M., F., & Bali, A., L., T. (2013). Exploring Classroom Teachers' Awareness of Pupils with Learning Disabilities: Focusing on Public Primary Schools in Tanzania. Journal of Education and Practice, 4(24), 58-66.
  • Mason, J. (2002). Researching your own practice: The discipline of noticing. London: Routledge Falmer.
  • Moralı, S., Köroğlu, H., & Çelik, A. (2004). Buca Eğitim Fakültesi Matematik Öğretmen Adaylarının Soyut Matematik Dersine Yönelik Tutumları ve Rastlanan Kavram Yanılgıları, Gazi Eğitim Fakültesi Dergisi, 24(1), 161-175.
  • Nasibov, F. H., & Yetim, S. (2008). Elemanter matematik ve yüksek matematik kavramları hakkında, Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(3), 423-431.
  • National Council of Teachers of Mathematics (2000).Principles and Standarts for School Mathematics. Reston, VA: Commission on Standarts for School Mathematics.
  • National Governors Assiciation Center for Best Practices & Council of Chief State School Officers (2010). Common Core State Standars for Mathematics, Washington, DC: Authors. [Online]: http://www.corestandards.org/about-the-standards/branding-guidelines/ adresinden 15 Aralık 2015 tarihinde indirilmiştir.
  • Orton, A., & Frobisher, L. (1996). Insights into Teaching Mathematics. New York, NY: Continuum.
  • Otterburn, M. K., & Nicholson, A. R. (1976). The language of mathematics. Mathematics in School, 5(5), 18-20.
  • Payne, G., & Payne, J. (2004). Key concept in social research. Great Britain: Sage Publications.
  • Tirosh, D. (2000). Enhancing prospective teachers’ knowledge of children’s conceptions: The case of division of fractions. Journal for Research in Mathematics Education, 31(1), 5-25.
  • Rubenstein, R.N. & Thompson, D.R., (2001). Learning Mathematical Symbolism: Challenges and Instructional Strategies. Mathematics Teacher (94), 4, Reston, VA: NCTM.
  • Rudd, C., L., Lambert, C., M., Satterwhite, M., & Zaier, A. (2008). Mathematical language in early childhood settings: what really counts?, Early Childhood Education Journal, 36, 75–80.
  • Schütz, R. (2014). Vygotsky and language acquisition. [Online]:http://sk.com.br/sk-vygot.html adresinden 12 Ocak 2016 tarihinde alınmıştır.
  • Sfard, A. (2001). There is more to discourse than meets the ears: looking at thinking as communicating to learn more about mathematical learning, Educational Studies inMathematics, 46, 13-57.
  • Sherin, M., Jacobs, V., & Philipp, R. (Eds.) (2011). Mathematics teacher noticing: Seeing through teachers' eyes. New York, NY: Routledge.
  • Steele, D. F., (2001). Using Sociocultural Theory to Teach Mathematics: A Vygotskian Perspective. School Science and Mathematics. 101(8), 404-416.
  • Strauss, A. & Corbin, J. (1990). Basics of qualitative research: grounded theory procedures and techniques. Newbury Park, CA: Sage.
  • Warren, E. (2006). Comparative mathematical language in the elementary school: a longitudinal study. Educational Studies in Mathematics, 62, 169–189.
  • Ünal, Z. (2013). 7. sınıf öğrencilerinin geometri öğrenme alanında matematiksel dil kullanımlarının incelenmesi. (Yayınlanmamış yüksek lisans tezi). Dokuz Eylül Üniversitesi, İzmir.
  • Van Es, E. A.,& Sherin, M. G. (2009). The influence of video clubs on teachers’ thinking and practice, Journal of Mathematics Teacher Educator, DOI 10.1007/s10857-009-9130-3. [Online]: http://education.uci.edu/docs/JMTE-vanEs_Sherin.pdf adresinden 12 Şubat 2016 tarihinde indirilmiştir.
  • Yeşildere, S. (2007). İlköğretim matematik öğretmen adaylarının matematiksel alan dilini kullanma yeterlikleri, Boğaziçi Üniversitesi Eğitim Dergisi, 24(2), 61-70.
  • Yin, R., K. (2011). Oualitative research from start to finish, New York: A Division of Guilford Publications.
  • Yıldırım, A. & Şimşek, H. (2011). Nitel Araştırma Yöntemleri, Ankara: SeçkinYayıncılık.
  • Zack, V. (1999). Everyday and mathematical language in children's argumentation about proof. Educational Review, 51(2), 129-146.
There are 38 citations in total.

Details

Journal Section Articles
Authors

Elif Açıl This is me

Zülfiye Zeybek This is me

Publication Date July 1, 2017
Submission Date November 22, 2016
Acceptance Date March 12, 2017
Published in Issue Year 2017 Volume: 42 Issue: 42

Cite

APA Açıl, E., & Zeybek, Z. (2017). Öğrencilerin Matematiksel Dili Kullanma ve Anlama Becerisi ile Öğretmenlerinin Öğrencilerin Matematiksel Dili Nasıl Kullandıklarını Fark Edebilme Yeteneği. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 42(42), 87-107.