Research Article
BibTex RIS Cite

Sabit ve Hareketli Kanatlar ile Güdümlü Havan Mermilerinin Performans Karşılaştırması

Year 2024, , 1101 - 1108, 25.07.2024
https://doi.org/10.2339/politeknik.1173585

Abstract

Gelişen ve değişen savunma konsepti kapsamında, güdümlü mühimmatlar, yüksek başarım ve düşük tali hasar özellikleri dolayısıyla son yıllarda oldukça popüler bir araştırma alanı haline gelmiş olup bu konuda birçok teorik ve uygulamalı çalışma yapılmıştır. Bilhassa küçük ve hafif güdümlü mühimmat kullanımı, etkinlikten taviz vermeksizin bahsedilen üstünlüklerin elde edilmesini olanaklı kılmaktadır. Bu çalışmada, hava platformlarından atıldığı varsayılan havan mermilerini güdümlü hale getirmek amacıyla kullanılan bir güdüm kitinin tasarımı ele alınmakta ve belirtilen çerçevede gerçekleştirilen bilgisayar benzetimlerinin sonuçları sunulmaktadır. Bu kapsamda, güdüm kiti üzerindeki dönel halkaya bütünlenen bir çift kanatçığın serbestlik derecesine bağlı olarak iki farklı konfigürasyon üzerinde durulmaktadır. Güdümlü havan mermisinin düşük seyir hızlı bir insansız hava aracından bırakılması durumunu göz önüne alan bilgisayar benzetimlerinde, kanatçık açısı, otopilot anahtarlama süresi ve yan rüzgâr parametrelerinin farklı değerleri, bahis konusu konfigürasyonların her ikisi için de uygulanmaktadır. Çalışmanın sonunda, nihai hedeften sapma miktarı ve uçuş süresi değerleri, oluşturulan eşleşme koşullarının tamamı için hesaplanarak karşılaştırılmaktadır.

References

  • [1] Özkan B. and Gökçe, H. “Guidance and control of a surface-to-surface projectile using a nose actuation kit”, European Journal of Science and Technology, 22, 282-292 (2021).
  • [2] Çantaş, Y. and Akbulut, A. “Design and simulation of autopilot for fixed wing aircraft”, Politeknik Dergisi, 25, 4, 1523-1534 (2022).
  • [3] Gürgöze, G. and Türkoğlu, İ. “Development of experimental setup for determining the parameters of DC motors used in mobile robots”, Politeknik Dergisi, 25, 1, 115-121, (2022).
  • [4] Yüksek, G., Mete, A. N., and Alkaya, A. “LQR and GA based PID parameter optimization: liquid level control application”, Politeknik Dergisi, 23, 4, 1111-1119 (2020).
  • [5] Baranowski, L. “Equations of motion of a spin-stabilized projectile for flight stability testing” Journal of Theoretical and Applied Mechanics, 51, 1, 235-246, (2013).
  • [6] Fresconi, F., Celmins, I., Silton, S., and Costello, M.. “High maneuverability projectile flight using low cost components”, Aerospace Science and Technology, 41, 175-188, (2015).
  • [7] Yin, J., Wu, X., Lei, J., Lu, T., and Liu, X. “Canard interference on the Magnus effect of a fin-stabilized spinning missile”, Advances in Mechanical Engineering, 10, 7, 1-16 (2018).
  • [8] Fresconi, F., Cooper, G., Celmins, I., DeSpirito, J., and Costello, M. “Flight mechanics of a novel guided spin-stabilized projectile concept”, Proc. ImechE, Part G: Journal of Aerospace Engineering, 226, 327-340 (2011).
  • [9] Ilg, M. D. “Guidance, navigation, and control for munitions” Thesis, Drexel University, (2008).
  • [10] Fresconi, F. and Plostins, P. “Control mechanism strategies for spin-stabilized projectiles”, Army Research Laboratory Report, USA, (2008).
  • [11] Eroğlu, M. “Design and Control of Nose Actuation Kit for Position Correction of Spin Stabilized Munitions under Wind Effect” Thesis, Middle East Technical University, Ankara, Turkey, (2016).
  • [12] Habash, Y. “Roll controlled guided mortar”, NDIA Joint Armaments Conference, Seattle, WA, (2012).
  • [13] Fresconi, F. and I. Celmins. “Experimental flight characterization of spin-stabilized projectiles at high angle of attack”, Army Research Laboratory Report, USA, (2017).
  • [14] Rogers, J. and Costello, M. “Design of a roll-stabilized mortar projectile with reciprocating canards”, Journal of Guidance Control Dynamics, 33, 4, 1026-1034, (2010).
  • [15] Qing, Y. and Chunsheng, L. “A differential game-based guidance law for an accelerating exoatmospheric missile”, Asian Journal of Control, 19, 3, 1205-1216, (2017).
  • [16] Guo, J., Liu, L., and Sun, Y. “Design of attitude control system for guided projectile”, 3rd International Conference on Applied Machine Learning, Changsha, 482-486, (2021).
  • [17] Habash, Y. “Roll control guided mortar, NDIA Joint Armaments Conference”, Seattle Washington, USA, (2012).
  • [18] Shen, Y., Yu, J., Luo, G., Ai, X., Jia, Z., Chen, F. “Observer-based adaptive sliding mode backstepping output-feedback DSC for spin-stabilized canard-controlled projectiles”, Chinese Journal of Aeronautics, 30, 3, 1115-1126, (2017).
  • [19] Chen, Q., Wang, X., Yang, J., and Wang, Z. “Acceleration tracking control for a spinning glide guided projectile with multiple disturbances”, Chinese Journal of Aeronautics, 33, 12, 3405-3422, (2020). [20] http://pena-abad.blogspot.com/2010/04/ air-dropped-mortar-successfully.html, Erişim: 21 May 2021.
  • [21] Jiwei, G. and Yuan-Li Cai, C. “Three-dimensional impact angle constrained guidance laws with fixed-time convergence”, Asian Journal of Control, 19, 6, 2240-2254, (2017).
  • [22] Gkritzapis, D. N., Margaris, D. P., Panagiotopoulos, E. E., Kaimakamis, G., and Siassiakos, K. “Prediction of the impact point for a spin and fin-stabilized projectiles”, WSEAS Transactions on Information Science and Applications, 5, 12, 1667-1676, (2008).
  • [23] Cooper, G. R. and Costello, M. “Trajectory prediction of spin-stabilized projectiles with a liquid payload”, Journal of Spacecraft and Rockets, 48, 4, 664-670, (2011).
  • [24] Şahin, K. D. “A pursuit evasion game between an aircraft and a missile”, MSc Thesis, Middle East Technical University, Ankara, Turkey, (2002).
  • [25] Zhang, X., Yao, X., and Zheng, Q. “Impact point prediction guidance based on iterative process for dual-spin projectile with fixed canards”, Chinese Journal of Aeronautics, 32, 8, 1967-1981, (2019).
  • [26] Fresconi, F. “Guidance and control of a projectile with reduced sensor and actuator requirements”, Journal of Guidance Control and Dynamics, 34, 6, 2011.
  • [27] Jiang, S., Tian, F., Sun, S., and Liang, W. “Integrated guidance and control of guided projectile with multiple constraints based on fuzzy adaptive and dynamic surface”, Defence Technology, 16, 1130-1141, (2020).
  • [28] https://www.gd-ots.com/wp-content/uploads/2017/11/ 81mm-Air-Dropped-Guided-Mortar-ADM.pdf, Date of Access: 21.05.2021.
  • [29] https://www.joongang.co.kr/article/23447397#home, Date of Access: 14.02.2023.
  • [30] Özkan, B., Özgören, M. K., Mahmutyazıcıoğlu, G. “Performance comparison of the notable acceleration-and angle-based guidance laws for a short-range air-to-surface missile”, Turkish Journal of Electrical Engineering and Computer Sciences, 25, 3591-3606, (2017).
  • [31] Milinović, M., Jerković, D., Jeremić, O., and Kovač, M. “Experimental and simulation testing of flight spin stability for small calibre cannon projectile”, Journal of Mechanical Engineering, 58, 6, 394-402, (2012).

Performance Comparison of Guided Mortar Projectiles with Fixed and Moving Fins

Year 2024, , 1101 - 1108, 25.07.2024
https://doi.org/10.2339/politeknik.1173585

Abstract

Guidance munition has become one of the popular subjects in both the theoretical and applicable studies since they could find a wide field of use in recent years because of their high performance and lower collateral damage capabilities as per the improving defence concept. The use of smaller and lighter guided munition makes the stated advantages increase without relinquishing the effectiveness. In this study, the design of a guidance kit which makes the mortar projectiles become guided when released from aerial platforms and the relevant computer simulations performed upon a selected projectile model are investigated. Here, two different configurations are considered based on the rotational degree of freedom of a pair of fins mounted on a rotary ring. In the simulations in which it is assumed that the guided projectile is released from an unmanned aerial vehicle, the different values of the fin deflection, autopilot switching duration, and side wind are considered for both of the mentioned geometries. Finally, the final miss distance and time of flight values obtained for all the designated cases are compared.

References

  • [1] Özkan B. and Gökçe, H. “Guidance and control of a surface-to-surface projectile using a nose actuation kit”, European Journal of Science and Technology, 22, 282-292 (2021).
  • [2] Çantaş, Y. and Akbulut, A. “Design and simulation of autopilot for fixed wing aircraft”, Politeknik Dergisi, 25, 4, 1523-1534 (2022).
  • [3] Gürgöze, G. and Türkoğlu, İ. “Development of experimental setup for determining the parameters of DC motors used in mobile robots”, Politeknik Dergisi, 25, 1, 115-121, (2022).
  • [4] Yüksek, G., Mete, A. N., and Alkaya, A. “LQR and GA based PID parameter optimization: liquid level control application”, Politeknik Dergisi, 23, 4, 1111-1119 (2020).
  • [5] Baranowski, L. “Equations of motion of a spin-stabilized projectile for flight stability testing” Journal of Theoretical and Applied Mechanics, 51, 1, 235-246, (2013).
  • [6] Fresconi, F., Celmins, I., Silton, S., and Costello, M.. “High maneuverability projectile flight using low cost components”, Aerospace Science and Technology, 41, 175-188, (2015).
  • [7] Yin, J., Wu, X., Lei, J., Lu, T., and Liu, X. “Canard interference on the Magnus effect of a fin-stabilized spinning missile”, Advances in Mechanical Engineering, 10, 7, 1-16 (2018).
  • [8] Fresconi, F., Cooper, G., Celmins, I., DeSpirito, J., and Costello, M. “Flight mechanics of a novel guided spin-stabilized projectile concept”, Proc. ImechE, Part G: Journal of Aerospace Engineering, 226, 327-340 (2011).
  • [9] Ilg, M. D. “Guidance, navigation, and control for munitions” Thesis, Drexel University, (2008).
  • [10] Fresconi, F. and Plostins, P. “Control mechanism strategies for spin-stabilized projectiles”, Army Research Laboratory Report, USA, (2008).
  • [11] Eroğlu, M. “Design and Control of Nose Actuation Kit for Position Correction of Spin Stabilized Munitions under Wind Effect” Thesis, Middle East Technical University, Ankara, Turkey, (2016).
  • [12] Habash, Y. “Roll controlled guided mortar”, NDIA Joint Armaments Conference, Seattle, WA, (2012).
  • [13] Fresconi, F. and I. Celmins. “Experimental flight characterization of spin-stabilized projectiles at high angle of attack”, Army Research Laboratory Report, USA, (2017).
  • [14] Rogers, J. and Costello, M. “Design of a roll-stabilized mortar projectile with reciprocating canards”, Journal of Guidance Control Dynamics, 33, 4, 1026-1034, (2010).
  • [15] Qing, Y. and Chunsheng, L. “A differential game-based guidance law for an accelerating exoatmospheric missile”, Asian Journal of Control, 19, 3, 1205-1216, (2017).
  • [16] Guo, J., Liu, L., and Sun, Y. “Design of attitude control system for guided projectile”, 3rd International Conference on Applied Machine Learning, Changsha, 482-486, (2021).
  • [17] Habash, Y. “Roll control guided mortar, NDIA Joint Armaments Conference”, Seattle Washington, USA, (2012).
  • [18] Shen, Y., Yu, J., Luo, G., Ai, X., Jia, Z., Chen, F. “Observer-based adaptive sliding mode backstepping output-feedback DSC for spin-stabilized canard-controlled projectiles”, Chinese Journal of Aeronautics, 30, 3, 1115-1126, (2017).
  • [19] Chen, Q., Wang, X., Yang, J., and Wang, Z. “Acceleration tracking control for a spinning glide guided projectile with multiple disturbances”, Chinese Journal of Aeronautics, 33, 12, 3405-3422, (2020). [20] http://pena-abad.blogspot.com/2010/04/ air-dropped-mortar-successfully.html, Erişim: 21 May 2021.
  • [21] Jiwei, G. and Yuan-Li Cai, C. “Three-dimensional impact angle constrained guidance laws with fixed-time convergence”, Asian Journal of Control, 19, 6, 2240-2254, (2017).
  • [22] Gkritzapis, D. N., Margaris, D. P., Panagiotopoulos, E. E., Kaimakamis, G., and Siassiakos, K. “Prediction of the impact point for a spin and fin-stabilized projectiles”, WSEAS Transactions on Information Science and Applications, 5, 12, 1667-1676, (2008).
  • [23] Cooper, G. R. and Costello, M. “Trajectory prediction of spin-stabilized projectiles with a liquid payload”, Journal of Spacecraft and Rockets, 48, 4, 664-670, (2011).
  • [24] Şahin, K. D. “A pursuit evasion game between an aircraft and a missile”, MSc Thesis, Middle East Technical University, Ankara, Turkey, (2002).
  • [25] Zhang, X., Yao, X., and Zheng, Q. “Impact point prediction guidance based on iterative process for dual-spin projectile with fixed canards”, Chinese Journal of Aeronautics, 32, 8, 1967-1981, (2019).
  • [26] Fresconi, F. “Guidance and control of a projectile with reduced sensor and actuator requirements”, Journal of Guidance Control and Dynamics, 34, 6, 2011.
  • [27] Jiang, S., Tian, F., Sun, S., and Liang, W. “Integrated guidance and control of guided projectile with multiple constraints based on fuzzy adaptive and dynamic surface”, Defence Technology, 16, 1130-1141, (2020).
  • [28] https://www.gd-ots.com/wp-content/uploads/2017/11/ 81mm-Air-Dropped-Guided-Mortar-ADM.pdf, Date of Access: 21.05.2021.
  • [29] https://www.joongang.co.kr/article/23447397#home, Date of Access: 14.02.2023.
  • [30] Özkan, B., Özgören, M. K., Mahmutyazıcıoğlu, G. “Performance comparison of the notable acceleration-and angle-based guidance laws for a short-range air-to-surface missile”, Turkish Journal of Electrical Engineering and Computer Sciences, 25, 3591-3606, (2017).
  • [31] Milinović, M., Jerković, D., Jeremić, O., and Kovač, M. “Experimental and simulation testing of flight spin stability for small calibre cannon projectile”, Journal of Mechanical Engineering, 58, 6, 394-402, (2012).
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Bülent Özkan 0000-0003-3112-9723

Harun Gökçe 0000-0002-2702-0111

Early Pub Date January 31, 2024
Publication Date July 25, 2024
Submission Date September 10, 2022
Published in Issue Year 2024

Cite

APA Özkan, B., & Gökçe, H. (2024). Performance Comparison of Guided Mortar Projectiles with Fixed and Moving Fins. Politeknik Dergisi, 27(3), 1101-1108. https://doi.org/10.2339/politeknik.1173585
AMA Özkan B, Gökçe H. Performance Comparison of Guided Mortar Projectiles with Fixed and Moving Fins. Politeknik Dergisi. July 2024;27(3):1101-1108. doi:10.2339/politeknik.1173585
Chicago Özkan, Bülent, and Harun Gökçe. “Performance Comparison of Guided Mortar Projectiles With Fixed and Moving Fins”. Politeknik Dergisi 27, no. 3 (July 2024): 1101-8. https://doi.org/10.2339/politeknik.1173585.
EndNote Özkan B, Gökçe H (July 1, 2024) Performance Comparison of Guided Mortar Projectiles with Fixed and Moving Fins. Politeknik Dergisi 27 3 1101–1108.
IEEE B. Özkan and H. Gökçe, “Performance Comparison of Guided Mortar Projectiles with Fixed and Moving Fins”, Politeknik Dergisi, vol. 27, no. 3, pp. 1101–1108, 2024, doi: 10.2339/politeknik.1173585.
ISNAD Özkan, Bülent - Gökçe, Harun. “Performance Comparison of Guided Mortar Projectiles With Fixed and Moving Fins”. Politeknik Dergisi 27/3 (July 2024), 1101-1108. https://doi.org/10.2339/politeknik.1173585.
JAMA Özkan B, Gökçe H. Performance Comparison of Guided Mortar Projectiles with Fixed and Moving Fins. Politeknik Dergisi. 2024;27:1101–1108.
MLA Özkan, Bülent and Harun Gökçe. “Performance Comparison of Guided Mortar Projectiles With Fixed and Moving Fins”. Politeknik Dergisi, vol. 27, no. 3, 2024, pp. 1101-8, doi:10.2339/politeknik.1173585.
Vancouver Özkan B, Gökçe H. Performance Comparison of Guided Mortar Projectiles with Fixed and Moving Fins. Politeknik Dergisi. 2024;27(3):1101-8.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.