Design and Production of Belt Drive Elevator Traction Machine: Modelling of Double Side Belt System
Year 2024,
, 1069 - 1080, 25.07.2024
Mücahit Soyaslan
,
Yusuf Avşar
,
Ahmet Fenercioglu
,
Feyyaz Sarıhan
Abstract
Elevator traction motors are critical components of elevator systems. After the structural analysis of the traction motor, it is necessary to proceed to the production processes for the comfortable and safe use of elevator systems. In this study, the static load values for bearing lifetime calculation, belt selection, and finite element analyses (FEA) were determined. According to calculated loads; materials, bearings, belt, pulley, brake, and encoder were selected. In order to obtain a design in accordance with elevator standards, motor parts were examined for structural analysis. Finite element analyses were carried out according to the determined maximum static load values, and a new belt elevator traction motor design that provides the safety coefficients has emerged. When the FEA analysis results of bending moments are examined; the maximum Von Mises stress acting on the motor frame and shaft was obtained 17.1 MPa and 27.62 MPa respectively. The maximum Von Mises stress was obtained under the torsional moment as 71.4 MPa and the shaft is 6.1 times safe against a torsional moment. This value is the minimum safety factor of the designed system and safety factors of bending moments are higher than this value. The designed elevator machine has got 12.9 kW rated power, 1.6 m/s cabin speed, and 1175 kg carrying capacity. The advantage of the proposed design is to eliminate the casting process with modular structure via double side belt system. The prototype of the designed motor was produced and it was observed that the motor provided the desired constraints as a result of the loading experiments.
Supporting Institution
Tübitak
Thanks
This work was supported by The Scientific and Technological Research Council of Türkiye (TUBITAK) 1512 Entrepreneurship Support Program with the project number of 2210394. In addition, this project was carried out by Emlak Konut Elevator Systems Industry and Trade Inc. and Nermag Research, Development and Engineering Co. Ltd.
References
- [1] S. Ahmed, M. Shekha, S. Skran, and A. Bassyouny, “Investigation of Optimization Techniques on the Elevator Dispatching Problem,” Computer Science & Information Technology, 37–49, (2022).
- [2] M. Soyaslan, “Design of an External Rotor Permanent Magnet Synchronous Motor for Elevator Traction Systems,” PhD Thesis, Sakarya University, Institue of Naturel Sciences, Sakarya, Turkey, (2020).
- [3] R. Demiröz, H. Yaprak, S. Saroğlu, and H. T. Durmaz, “Kayış Tahrikli Asansör Sisteminin Tasarım ve Uygulaması,” 6. Enerji Verimliliği, Kalitesi Sempozyum ve Sergisi, Kocaeli, 1-8, (2015).
- [4] Akış Asansör, Dişlisiz Makine Grubu, AK Serisi-AK2, Available: https://www.akisasansor.com.tr/tr/urun/ak-2, (2022).
- [5] EMF Motor, SQML Gearless Lift Motor, SQML 132-100, Available: https://www.emfmotor.com/uploads/7/0/4/2/70426609/sqml_gearless_lift_ing22.pdf, (2022).
- [6] M. Soyaslan, Y. Avşar, A. Fenercioğlu, and O. Eldoğan, “Asansörlerde Kullanılan Dıştan Rotorlu Bir Tahrik Motoru,” Turk Patent No. 2021/004176. (2021).
- [7] Y. Avsar, A. Fenercioglu and M. Soyaslan, “Design Optimization of PM Synchronous Motor Used in Belt Drive Elevator Systems,” 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur, Malaysia, 1-5, (2021).
- [8] Dursun, M., & Özden, S., “Değişken hızlı sürücülü ve bulanık mantık denetimli bir anahtarlamalı relüktans motorun asansör tahrikinde benzetimi ve uygulanması”, Politeknik Dergisi, 11(2), 129-137, (2008).
- [9] Masoudi, S., Mehrjerdi, H., & Ghorbani, A., “New elevator system constructed by multi‐translator linear switched reluctance motor with enhanced motion quality”, IET Electric Power Applications, 14(9), 1692-1701, (2020).
- [10] Li, J. C., Xin, M., Fan, Z. N., & Liu, R., “Design and experimental evaluation of a 12 kw large synchronous reluctance motor and control system for elevator traction”, IEEE Access, 8, 34256-34264. (2020).
- [11] Bakhtiarzadeh, H., Polat, A., & Ergene, L. T., “Design and analysis of a permanent magnet synchronous motor for elevator applications”, IEEE 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, 293-298, (2017).
- [12] Kruglikov, O. V., “Low-speed induction motors for directly driven elevator machines”, Russian Electrical Engineering, 86(3), pp: 118-124, (2015).
- [13] D. -Y. Kim, M. -R. Park, J. -H. Sim and J. -P. Hong, “Advanced Method of Selecting Number of Poles and Slots for Low-Frequency Vibration Reduction of Traction Motor for Elevator”, IEEE/ASME Transactions on Mechatronics, 22(4), 1554-1562, (2017).
- [14] M. Soyaslan, Y. Avsar, A. Fenercioglu and O. Eldogan, “Cogging Torque Reduction in External Rotor PM Synchronous Motors by Optimum Pole Embrace” , IEEE 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 1-4, (2019).
- [15] Ocak, C., “Investigation of the effects of magnet geometry on motor performance and cost in permanent magnet synchronous motors used in direct drive elevator systems”, Journal of Engineering Sciences and Design, 7(4), 825-834, (2019).
- [16] Ayaz, M. “Dişlisiz Asansör Sistemleri İçin Alüminyum Sargılı Sabit Mıknatıslı Senkron Motor Tasarımı ve Maliyet Analizi”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 115-123, (2019).
- [17] Okşar, M., Yetiş, H., Göktaş, T., Kaygusuz, A., & Meşe, E., “Dişlisiz Asansör Uygulamaları için Yüzey Montajlı Senkron Motorun Optimal Tasarımı”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 32(2), 335-344, (2020).
- [18] Dalcalı, A., Kurt, E., Çelik, E., & Öztürk, N., “Cogging torque minimization using skewed and separated magnet geometries”, Politeknik Dergisi, 23(1), 223-230, (2020).
- [19] Polat, M., Akyun, Y., & Nory, H., “Minimizing the Influence of Cogging Torque on Motor Performance of PM Synchronous Machines for Elevator Applications”, Arabian Journal for Science and Engineering, 1-15, (2022).
- [20] Kaya, K., & Ünsal, A., “Yapay sinir ağlarıyla asenkron motor çoklu arızalarının tespiti ve sınıflandırılması”, Politeknik Dergisi, 25(4), 1687-1699, (2022).
- [21] Aydinli, M., & ÖZKAYA, K., “Design improvements by using the design for assembly (dfa) method in elevator production”, Politeknik Dergisi, 1-11, (2022).
- [22] Retolaza, I., Zulaika, I., Remirez, A., Cabello, M. J., Campos, M. A., Ramos, A., “New Design for Installation (DfI) Methodology for Large Size and Long Life Cycle Products: Application to an Elevator”, Proceedings of the International Conference on Engineering Design (ICED21), Gothenburg, Sweden, 16-20, (2021).
- [23] Nalbant, M. O., & Sezer, S., “Mathematical Modelling of Electrically Driven Elevator via Linear Graph Method, Dynamic Response Analysis and Active Vibration Control”, Celal Bayar University Journal of Science, 15(3), 241-250, (2019).
- [24] Otis-Gen2. Gen2® modernization. Available: https://www.otis.com/tr/tr/products-services/modernization-upgrades/gen2-modernization, (2019).
- [25] Ziehl-Abegg, Drive technology, Elevator motors, ZAtopx. Available: https://www.ziehl-abegg.com/en/products/zatopx#overview, (2022).
- [26] Faxi Drive, FAXI100A Series Belt Traction Machine. Available: https://www.faxidrive.com/belt-traction-machine/faxi100-series.html, (2022).
- [27] Schindler 3300, Schindler 3300 AP elevator. Available: https://www.youtube.com/watch?v=f5IlBR_YATs, (2015).
- [28] Kisa Industry, Elevator Belt Drive Gearless Traction Machine, Kisa KA100 Series. Available: https://www.kisa-global.com/belt-traction-machine/elevator-belt-gearless-traction-machine-motor/belt-gearless-traction-machine-deflector-pulley/elevator-belt-drive-gearless-traction-ka114.html, (2022).
- [29] Akış Asansör, Gearless Machine Group, Gearless Belt Series, Akış S200 K2. Available: https://www.akisasansor.com.tr/en/urunler/dislisiz-makine-grubu, (2022).
- [30] Fenercioglu, A., Soyaslan, M., Avsar, Y., Sarıhan, F. & Atakay, D., “Halatlı ve Kayışlı Sistemlerde Kullanılan Asansör Motorlarının Performans Değerlendirmesi”, 4 th International Conference on Applied Engineering and Natural Sciences (ICAENS), Konya, Türkiye, 713-718, (2022).
- [31] SolidWorks, “Solidworks software, selecting material properties tool”, (2022).
- [32] IEC 60034-2-1:2014, “Rotating electrical machines - Part 2-1: Standard methods for determining losses and efficiency from tests”, Available: https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073101073116078073086081117115057080, (2014).
- [33] BRUGG Lifting, “BRUBelt High-tensile galvanized steel cords for elevators”, Available: https://brugglifting.com/wp-content/uploads/2022/06/BRUbelt_EN.pdf, (2022).
- [34] EN 81-20, Safety rules for the construction and installation of lifts - Lifts for the transport of persons and goods, Part 20: Passenger and goods passenger lifts, (2014).
- [35] Mayr Roba twinstop, “Spring-applied, electromagnetic brakes for elevator motors”, Available: https://www.mayr.com/en/products/brakes/shaft-mounted-brakes/roba-twinstop~498, (2022).
- [36] Heidenhain Absolute Encoder, “Rotary Encoders with Plane-Surface Coupling for Elevator Servo Drive Control, ECN 1313”, Available: https://www.heidenhain.be/fileadmin/pdb/media/img/1085677_03_A_02_ExN_13xx_Aufzugtechnik_en.pdf, (2022).
- [37] Tong W., “Mechanical Design of Electric Motors”, CRC Press, Radford, Virginia, (2014).
- [38] TS1812, “Asansörlerin hesap, tasarım ve yapım kuralları (Elektrikle çalışan insan ve yük asansörleri için)”, Available: https://intweb.tse.org.tr/Standard/Standard/StandardAra.aspx, (1988).
- [39] Shear Strength, “Strength of a material or component against the type of yield or structural failure”, Available: https://en.wikipedia.org/wiki/Shear_strength, (2007).
Kayış Tahrikli Asansör Çekiş Makinesinin Tasarımı ve Üretimi: Çift Taraflı Kayış Sisteminin Modellenmesi
Year 2024,
, 1069 - 1080, 25.07.2024
Mücahit Soyaslan
,
Yusuf Avşar
,
Ahmet Fenercioglu
,
Feyyaz Sarıhan
Abstract
Asansör tahrik motorları, asansör sistemlerinin kritik bileşenleridir. Asansör sistemlerinin konforlu ve güvenli kullanımı için, tahrik motorunun yapısal analizleri yapıldıktan sonra üretim süreçlerine geçilmesi gerekmektedir. Bu çalışmada rulman ömür hesabı, kayış seçimi ve sonlu eleman analizleri (SEA) için statik yük değerleri belirlenmiştir. Hesaplanan yüklere göre; malzemeler, rulmanlar, kayış, kasnak, fren ve enkoder seçilmiştir. Asansör standartlarına uygun bir tasarım elde edebilmek için motor parçaları yapısal analiz ile incelenmiştir. Belirlenen maksimum statik yük değerlerine göre sonlu elemanlar analizleri yapılmış ve emniyet katsayılarını sağlayan yeni bir kayışlı asansör tahrik motoru tasarımı ortaya çıkmıştır. Eğilme momentlerinin SEA analiz sonuçları incelendiğinde; motor gövdesine ve mile etki eden maksimum Von Mises gerilmesi sırasıyla 17,1 MPa ve 27,62 MPa olarak elde edilmiştir. Burulma momenti altında maksimum Von Mises gerilmesi 71,4 MPa olarak elde edilmiş olup mil burulma momentine karşı 6,1 kat emniyetlidir. Bu değer, tasarlanan sistemin minimum emniyet faktörüdür ve eğilme momentlerinin emniyet katsayıları bu değerden yüksektir. Tasarlanan asansör makinesi 12,9 kW anma gücüne, 1,6 m/s kabin hızına ve 1175 kg taşıma kapasitesine sahiptir. Önerilen tasarımın avantajı, çift taraflı kayış sistemi ile modüler yapı ile döküm işlemini ortadan kaldırmasıdır. Tasarlanan motorun prototipi üretilmiş ve yapılan yükleme deneyleri sonucunda motorun istenilen kısıtlamaları sağladığı görülmüştür.
References
- [1] S. Ahmed, M. Shekha, S. Skran, and A. Bassyouny, “Investigation of Optimization Techniques on the Elevator Dispatching Problem,” Computer Science & Information Technology, 37–49, (2022).
- [2] M. Soyaslan, “Design of an External Rotor Permanent Magnet Synchronous Motor for Elevator Traction Systems,” PhD Thesis, Sakarya University, Institue of Naturel Sciences, Sakarya, Turkey, (2020).
- [3] R. Demiröz, H. Yaprak, S. Saroğlu, and H. T. Durmaz, “Kayış Tahrikli Asansör Sisteminin Tasarım ve Uygulaması,” 6. Enerji Verimliliği, Kalitesi Sempozyum ve Sergisi, Kocaeli, 1-8, (2015).
- [4] Akış Asansör, Dişlisiz Makine Grubu, AK Serisi-AK2, Available: https://www.akisasansor.com.tr/tr/urun/ak-2, (2022).
- [5] EMF Motor, SQML Gearless Lift Motor, SQML 132-100, Available: https://www.emfmotor.com/uploads/7/0/4/2/70426609/sqml_gearless_lift_ing22.pdf, (2022).
- [6] M. Soyaslan, Y. Avşar, A. Fenercioğlu, and O. Eldoğan, “Asansörlerde Kullanılan Dıştan Rotorlu Bir Tahrik Motoru,” Turk Patent No. 2021/004176. (2021).
- [7] Y. Avsar, A. Fenercioglu and M. Soyaslan, “Design Optimization of PM Synchronous Motor Used in Belt Drive Elevator Systems,” 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur, Malaysia, 1-5, (2021).
- [8] Dursun, M., & Özden, S., “Değişken hızlı sürücülü ve bulanık mantık denetimli bir anahtarlamalı relüktans motorun asansör tahrikinde benzetimi ve uygulanması”, Politeknik Dergisi, 11(2), 129-137, (2008).
- [9] Masoudi, S., Mehrjerdi, H., & Ghorbani, A., “New elevator system constructed by multi‐translator linear switched reluctance motor with enhanced motion quality”, IET Electric Power Applications, 14(9), 1692-1701, (2020).
- [10] Li, J. C., Xin, M., Fan, Z. N., & Liu, R., “Design and experimental evaluation of a 12 kw large synchronous reluctance motor and control system for elevator traction”, IEEE Access, 8, 34256-34264. (2020).
- [11] Bakhtiarzadeh, H., Polat, A., & Ergene, L. T., “Design and analysis of a permanent magnet synchronous motor for elevator applications”, IEEE 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, 293-298, (2017).
- [12] Kruglikov, O. V., “Low-speed induction motors for directly driven elevator machines”, Russian Electrical Engineering, 86(3), pp: 118-124, (2015).
- [13] D. -Y. Kim, M. -R. Park, J. -H. Sim and J. -P. Hong, “Advanced Method of Selecting Number of Poles and Slots for Low-Frequency Vibration Reduction of Traction Motor for Elevator”, IEEE/ASME Transactions on Mechatronics, 22(4), 1554-1562, (2017).
- [14] M. Soyaslan, Y. Avsar, A. Fenercioglu and O. Eldogan, “Cogging Torque Reduction in External Rotor PM Synchronous Motors by Optimum Pole Embrace” , IEEE 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 1-4, (2019).
- [15] Ocak, C., “Investigation of the effects of magnet geometry on motor performance and cost in permanent magnet synchronous motors used in direct drive elevator systems”, Journal of Engineering Sciences and Design, 7(4), 825-834, (2019).
- [16] Ayaz, M. “Dişlisiz Asansör Sistemleri İçin Alüminyum Sargılı Sabit Mıknatıslı Senkron Motor Tasarımı ve Maliyet Analizi”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 115-123, (2019).
- [17] Okşar, M., Yetiş, H., Göktaş, T., Kaygusuz, A., & Meşe, E., “Dişlisiz Asansör Uygulamaları için Yüzey Montajlı Senkron Motorun Optimal Tasarımı”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 32(2), 335-344, (2020).
- [18] Dalcalı, A., Kurt, E., Çelik, E., & Öztürk, N., “Cogging torque minimization using skewed and separated magnet geometries”, Politeknik Dergisi, 23(1), 223-230, (2020).
- [19] Polat, M., Akyun, Y., & Nory, H., “Minimizing the Influence of Cogging Torque on Motor Performance of PM Synchronous Machines for Elevator Applications”, Arabian Journal for Science and Engineering, 1-15, (2022).
- [20] Kaya, K., & Ünsal, A., “Yapay sinir ağlarıyla asenkron motor çoklu arızalarının tespiti ve sınıflandırılması”, Politeknik Dergisi, 25(4), 1687-1699, (2022).
- [21] Aydinli, M., & ÖZKAYA, K., “Design improvements by using the design for assembly (dfa) method in elevator production”, Politeknik Dergisi, 1-11, (2022).
- [22] Retolaza, I., Zulaika, I., Remirez, A., Cabello, M. J., Campos, M. A., Ramos, A., “New Design for Installation (DfI) Methodology for Large Size and Long Life Cycle Products: Application to an Elevator”, Proceedings of the International Conference on Engineering Design (ICED21), Gothenburg, Sweden, 16-20, (2021).
- [23] Nalbant, M. O., & Sezer, S., “Mathematical Modelling of Electrically Driven Elevator via Linear Graph Method, Dynamic Response Analysis and Active Vibration Control”, Celal Bayar University Journal of Science, 15(3), 241-250, (2019).
- [24] Otis-Gen2. Gen2® modernization. Available: https://www.otis.com/tr/tr/products-services/modernization-upgrades/gen2-modernization, (2019).
- [25] Ziehl-Abegg, Drive technology, Elevator motors, ZAtopx. Available: https://www.ziehl-abegg.com/en/products/zatopx#overview, (2022).
- [26] Faxi Drive, FAXI100A Series Belt Traction Machine. Available: https://www.faxidrive.com/belt-traction-machine/faxi100-series.html, (2022).
- [27] Schindler 3300, Schindler 3300 AP elevator. Available: https://www.youtube.com/watch?v=f5IlBR_YATs, (2015).
- [28] Kisa Industry, Elevator Belt Drive Gearless Traction Machine, Kisa KA100 Series. Available: https://www.kisa-global.com/belt-traction-machine/elevator-belt-gearless-traction-machine-motor/belt-gearless-traction-machine-deflector-pulley/elevator-belt-drive-gearless-traction-ka114.html, (2022).
- [29] Akış Asansör, Gearless Machine Group, Gearless Belt Series, Akış S200 K2. Available: https://www.akisasansor.com.tr/en/urunler/dislisiz-makine-grubu, (2022).
- [30] Fenercioglu, A., Soyaslan, M., Avsar, Y., Sarıhan, F. & Atakay, D., “Halatlı ve Kayışlı Sistemlerde Kullanılan Asansör Motorlarının Performans Değerlendirmesi”, 4 th International Conference on Applied Engineering and Natural Sciences (ICAENS), Konya, Türkiye, 713-718, (2022).
- [31] SolidWorks, “Solidworks software, selecting material properties tool”, (2022).
- [32] IEC 60034-2-1:2014, “Rotating electrical machines - Part 2-1: Standard methods for determining losses and efficiency from tests”, Available: https://intweb.tse.org.tr/Standard/Standard/Standard.aspx?081118051115108051104119110104055047105102120088111043113104073101073116078073086081117115057080, (2014).
- [33] BRUGG Lifting, “BRUBelt High-tensile galvanized steel cords for elevators”, Available: https://brugglifting.com/wp-content/uploads/2022/06/BRUbelt_EN.pdf, (2022).
- [34] EN 81-20, Safety rules for the construction and installation of lifts - Lifts for the transport of persons and goods, Part 20: Passenger and goods passenger lifts, (2014).
- [35] Mayr Roba twinstop, “Spring-applied, electromagnetic brakes for elevator motors”, Available: https://www.mayr.com/en/products/brakes/shaft-mounted-brakes/roba-twinstop~498, (2022).
- [36] Heidenhain Absolute Encoder, “Rotary Encoders with Plane-Surface Coupling for Elevator Servo Drive Control, ECN 1313”, Available: https://www.heidenhain.be/fileadmin/pdb/media/img/1085677_03_A_02_ExN_13xx_Aufzugtechnik_en.pdf, (2022).
- [37] Tong W., “Mechanical Design of Electric Motors”, CRC Press, Radford, Virginia, (2014).
- [38] TS1812, “Asansörlerin hesap, tasarım ve yapım kuralları (Elektrikle çalışan insan ve yük asansörleri için)”, Available: https://intweb.tse.org.tr/Standard/Standard/StandardAra.aspx, (1988).
- [39] Shear Strength, “Strength of a material or component against the type of yield or structural failure”, Available: https://en.wikipedia.org/wiki/Shear_strength, (2007).