Research Article
BibTex RIS Cite

Optimization of Cutting Parameters for Surface Roughness in Milling of Cryogenic Treated EN AW 5754 (AlMg3) Aluminum Alloy

Year 2019, , 665 - 673, 01.09.2019
https://doi.org/10.2339/politeknik.457957

Abstract

Aluminum alloys are
now widely used in plastic injection molds in the automotive and aerospace
industries due to their high strength and weight ratio, good corrosion and
fatigue resistance. In this study,
EN AW 5754
(AlMg3)
5754
aluminum alloy with dimensions of 80x80x30 mm was subjected to cryogenic
treatment, face milling was performed with coated and uncoated inserts, and then
the effects of cutting parameters on surface roughness during face milling were
examined. The experiments were conducted with Taguchi L9 orthogonal
array, using three different cutting inserts (Al2O3-TiCN-TiN
coated, TiAlN coated Nano, TiB2 coated), cutting speeds (310, 450,
600 m / min), feed rates (0.15, 0.25, 0.35 mm / tooth) and depths of cut (0.5,
1, 1.5 mm). The values obtained at the end of the experiments were evaluated
using signal-to-noise ratio (S/N), variance analysis (ANOVA), three-dimensional
graphs and regression method. Taguchi analysis has revealed that optimum
cutting conditions for the minimum surface roughness are the Al2O3-TiCN-TiN
coated insert, 1 mm depth of cut, 600 m/min cutting speed and 0.15 mm/tooth
feed rate. The surface roughness values for these cutting conditions were found
as 0.47 μm in the calculations and 0.32 μm in the verification experiments.

References

  • [1] Durmuş H., “Optimization of multi-process parameters according to the surface quality criteria in the end milling of the AA6013 aluminum alloy”, Materials and Technology, 46 (4): 383–388, (2012).
  • [2] Rawangwong S., Chatthong J., Boonchouytan W. and Burapa R., “Influence of cutting parameters in face milling semi-solid AA-7075 using carbide tool affected the surface roughness and tool wear”, Energy Procedia, 56 (1): 448–457, (2014).
  • [3] Escalona P.M. and Maropoulos P.G.,“A geometrical model for surface roughness prediction when face milling Al 7075-T7351 with square insert tools”, Journal of Manufacturing Systems, 36: 216-223, 2015.
  • [4] Kechagias J., Petropoulos G., Iakovakis V. and Maropoulos S. (2009), “An investigation of surface texture parameters during turning of are inforced polymer composite using design of experiments and analysis”, Int. J. Experimental Design and Process Optimization, 1 (2/3): 164–177, (2009).
  • [5] Danilevsky V., “Manufacturing Engineering”, No. 121, TMMOB Publishing, Ankara, (1987).
  • [6] Boothroyd G., “Fundamentals of Metal Machining and Machine Tools, 5th ed.”, McGraw- Hill, New York, (1981).
  • [7] Yang J.L and Chen J.C., “A systematic approach for identifying optimum surface roughness performance in end-milling operations”, Journal Industrial Technology, 17 (1): 1–8, (2001).
  • [8] Benardos P.G. and Vosniakos G.C., “Predicting surface roughness in machining: a review”, International Journal of Machine Tools and Manufacture, 43 (6): 833–844, (2003).
  • [9] Risbood K.A., Dixit U.S. and Sahasrabudhe A.D., “Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process”, Journal of Materials Processing Technology, 132 (1–3): 203–214, (2003).
  • [10] Khattree R. and Rao C.R., “Statistics in Industry, Handbook of Statistics V.22”, Gulf Professional Publishing, Netherlands, (2003).
  • [11] Davim J.P.,“Sustainable Manufacturing”, John Wiley and Sons, Hoboken, (2010).
  • [12] Lin Y.C., Chen Y.F., Wang D.A. and Lee H.S., “Optimization of machining parameters in magnetic force assisted EDM based on Taguchi method”, Journal of Materials Processing Technology, 209 (7): 3374–3383, (2009).
  • [13] Zhang J.Z., Chen J.C. and Kirby E.D. (2007), “Surface roughness optimization in an end-milling operation using the Taguchi design method”, Journal of Materials Processing Technology, 184 (1–3): 233–239, (2007).
  • [14] Mandal N., Doloi B., Mondal B. and Das R., “Optimization of flank wear using zirconia toughened alumina (ZTA) cutting tool: Taguchi method and regression analysis”, Measurement, 44 (10): 2149–2155, (2011).
  • [15] Asiltürk İ. and Neşeli S., “Multi response optimization of CNC turning parameters via Taguchi method-based response surface analysis”, Measurement, 45 (4): 785–794, (2012).
  • [16] Günay M. and Yücel E., “Application of Taguchi method for determining optimum surface roughness in turning of high-alloy white cast iron”, Measurement, 46 (2): 913–919, (2013).
  • [17] Kurt M., Bagci E. and Kaynak Y., “Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes”, Journal of Advanced Manufacturing Technology, 40 (5–6): 458–469, (2009).
  • [18] Babu GHV P., Murthy BSN., Rao K.V., Kumar K.A., “Taguchi based optimization of process parameters in orthogonal turn milling of ASTM B319”, Materials Today Proceedings, 4 (2, Part A): 2147-2156, (2017).
  • [19] Vardhan M. V., Sankaraiah G., Yohan M., Rao H. J.,“Optimization of parameters in CNC milling of P20 steel using Response Surface Methodology and Taguchi Method”, Materials Today Proceedings, 4 (8): 9163-9169, (2017).
  • [20] Aravind S., Shunmugesh K., Biju J., Vijayan J.K., 2017, “Optimization of micro –Drilling parameters by Taguchi Grey Relational Analysis”, Materials Today Proceedings, 4 (2, Part B): 4188-4195, (2017).
  • [21] Meyers A.R. and Slattery T.J., “Basic Machining Reference Handbook”, Industrial Press, New York, (2001).
  • [22] Vakondios D., Kyratsis P., Yaldız S. and Antoniadis A., “Influence of milling strategy on the surface roughness in ball end milling of the aluminum alloy AL7075-T6”, Measurement, 45 (6): 1480–1488, (2012).
  • [23] Kuram E. and Özçelik B., “Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill”, Measurement, 46 (6): 1849–1864, (2013).
  • [24] Dimin S. F., Anand T.J.S., Jamli R., Kamely A., “Surface quality investigation of Al 6061-T6511 using TiALN soated milling tool”, International Journal of Basic & Applied Sciences IJBAS-IJENS, 10 (4): 55-59, (2010).
  • [25] Kadirgama K., Noor M.M., Rahman M.M., Rejad M. R. M., Haron C.H.C., “Surface roughness prediction model of 6061-T6 aluminium alloy machining using statistical method”, European Journal Scientific Research, 25 (2): 250-256, (2009).
  • [26] Baharudin B.T.H.T., İbrahim M.R., İsmail N., Leman Z., Ariffin M.K.A. and Majid D.L., “Experimental investigation of HSS face milling to AL6061 using Taguchi method”, Procedia Engineering, 50: 933–941, (2012).
  • [27] Kechagias J.D., Ziogas C.K., Pappas M.K. and Ntziatzias I.E., “Parameter optimization during finish end milling of Al alloy 5083 using robust design”, Proceedings of the World Congress on Engineering (WCE 2011), London, UK, (2011).
  • [28] Pınar A.M., “Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method”, Arabian Journal Science and Engineering, 38 (3): 705–714, (2013).
  • [29] Chen P., Malone T., Bond R. and Torres P., “Effects of cryogenic treatment on the residual stress and mechanical properties of an aerospace aluminum alloy”, Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology, (2001).
  • [30] Pavan K.M., Sachin L.S., Mayur S., Chandrashekara A. and Ajaykumar B.S., “Effect of cryogenic treatment on the mechanical and microstructural properties of aluminum alloys – a brief study”, International Journal of Mechanical and Production Engineering, 2 (5): 95-99, (2014).
  • [31] Trieu H.H., Morris L.H., Kaufman M.E., Hood R. and Jenkins L.S., “Investigation of cryogenic treatment of UHMWPE”, Proceedings of the Sixteenth Southern Biomedical Engineering Conference, 90-91, (1997).
  • [32] Lulay K.E., Khan K. and Chaaya D., “The Effect of Cryogenic Treatments on 7075 Aluminum Alloy”, Journal of Materials Engineering and Performance, 11(5): 479-480, (2002).
  • [33] Joshi P., Singh J., Dhiman P., Shekhar H. and Kumar V., “Effect of cryogenic treatment on various materials: A review”, HCTL Open International Journal of Technology Innovations and Research, 14: 1-11, (2015).
  • [34] www.aalco.co.uk, “Properties of 5754 H111 Aluminum Alloy”, (2018).
  • [35] www.seykoc.com.tr, “Alüminyum 5754 H111 alaşımının özellikleri”, (2018).
  • [36] Krishnaiah K. and Shahabudeen P., “Applied Design of Experiments and Taguchi Methods”, PHI Learning Private Limited, New Delhi, (2012).
  • [37] Roy R.K., “A Primer on the Taguchi Method, Competitive Manufacturing Series”, Van Nostrand Reinhold, New York, (1990).
  • [38] Fowlkes W.Y. and Creveling C.M., “Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development”, Prentice Hall, New Jersey, (1995).
  • [39] www.kapco.com.tr, “Kesici Uç Kaplama Türleri ve Özellikleri”, (2018).
  • [40] Park D.H., Choi S.W., Kim J.H. and Lee J.M., “Cryogenic mechanical behavior of 5000- and 6000-series aluminum alloys: Issues on application to offshore plants” Cryogenics, 68: 44-58, (2015).

Kriyojenik İşlem Görmüş EN AW 5754 (AlMg3) Alüminyum Alaşımının Frezelenmesinde Yüzey Pürüzlülüğü İçin Kesme Parametrelerinin Optimizasyonu

Year 2019, , 665 - 673, 01.09.2019
https://doi.org/10.2339/politeknik.457957

Abstract

Alüminyum alaşımları günümüzde, yüksek dayanım
ve ağırlık oranı, iyi korozyon ve yorulma direnci nedeniyle, otomotiv ve
havacılık sanayinde, plastik enjeksiyon kalıplarında yaygın bir şekilde
kullanılmaktadır. Bu çalışmada, 80x80x30 mm ebatlarında EN AW 5754 (AlMg3)  alüminyum alaşımına kriyojenik işlem
uygulanmış, kaplamalı ve kaplamasız kesici uçlarla yüzey frezeleme işlemi
gerçekleştirilmiş ve yüzey frezeleme işlemi esnasında kesme parametrelerinin
yüzey pürüzlülüğü üzerindeki etkileri araştırılmıştır. Deneylerde Taguchi L9
ortogonal dizini ile üç farklı kesici uç (Al2O3-TiCN-TiN
kaplamalı, TiAlN kaplamalı Nano, TiB2 kaplamalı), kesme hızı (310,
450, 600 m/dak), ilerleme oranı (0.15, 0.25, 0.35 mm/diş) ve üç farklı kesme
derinliği (0.5, 1, 1.5 mm) kullanılmıştır. Deneyler sonucunda elde edilen
değerler, sinyal-gürültü oranı (S/N), varyans analizi (ANOVA), üç boyutlu
grafikler ve regresyon metodu kullanılarak değerlendirilmiştir. Taguchi analizi
sonucu minimum yüzey pürüzlülüğü için elde edilen optimum kesme şartları; Al2O3-TiCN-TiN
kaplamalı kesici uç, 1 mm kesme derinliği, 600 m/dak kesme hızı ve 0.15 mm/diş ilerleme oranı olarak bulunmuştur. Bu
kesme şartları için yüzey pürüzlülük değerleri hesaplamalarda 0.47
µm olarak bulunmuş, doğrulama deneylerinde 0.32 µm olarak
ölçülmüştür.

References

  • [1] Durmuş H., “Optimization of multi-process parameters according to the surface quality criteria in the end milling of the AA6013 aluminum alloy”, Materials and Technology, 46 (4): 383–388, (2012).
  • [2] Rawangwong S., Chatthong J., Boonchouytan W. and Burapa R., “Influence of cutting parameters in face milling semi-solid AA-7075 using carbide tool affected the surface roughness and tool wear”, Energy Procedia, 56 (1): 448–457, (2014).
  • [3] Escalona P.M. and Maropoulos P.G.,“A geometrical model for surface roughness prediction when face milling Al 7075-T7351 with square insert tools”, Journal of Manufacturing Systems, 36: 216-223, 2015.
  • [4] Kechagias J., Petropoulos G., Iakovakis V. and Maropoulos S. (2009), “An investigation of surface texture parameters during turning of are inforced polymer composite using design of experiments and analysis”, Int. J. Experimental Design and Process Optimization, 1 (2/3): 164–177, (2009).
  • [5] Danilevsky V., “Manufacturing Engineering”, No. 121, TMMOB Publishing, Ankara, (1987).
  • [6] Boothroyd G., “Fundamentals of Metal Machining and Machine Tools, 5th ed.”, McGraw- Hill, New York, (1981).
  • [7] Yang J.L and Chen J.C., “A systematic approach for identifying optimum surface roughness performance in end-milling operations”, Journal Industrial Technology, 17 (1): 1–8, (2001).
  • [8] Benardos P.G. and Vosniakos G.C., “Predicting surface roughness in machining: a review”, International Journal of Machine Tools and Manufacture, 43 (6): 833–844, (2003).
  • [9] Risbood K.A., Dixit U.S. and Sahasrabudhe A.D., “Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process”, Journal of Materials Processing Technology, 132 (1–3): 203–214, (2003).
  • [10] Khattree R. and Rao C.R., “Statistics in Industry, Handbook of Statistics V.22”, Gulf Professional Publishing, Netherlands, (2003).
  • [11] Davim J.P.,“Sustainable Manufacturing”, John Wiley and Sons, Hoboken, (2010).
  • [12] Lin Y.C., Chen Y.F., Wang D.A. and Lee H.S., “Optimization of machining parameters in magnetic force assisted EDM based on Taguchi method”, Journal of Materials Processing Technology, 209 (7): 3374–3383, (2009).
  • [13] Zhang J.Z., Chen J.C. and Kirby E.D. (2007), “Surface roughness optimization in an end-milling operation using the Taguchi design method”, Journal of Materials Processing Technology, 184 (1–3): 233–239, (2007).
  • [14] Mandal N., Doloi B., Mondal B. and Das R., “Optimization of flank wear using zirconia toughened alumina (ZTA) cutting tool: Taguchi method and regression analysis”, Measurement, 44 (10): 2149–2155, (2011).
  • [15] Asiltürk İ. and Neşeli S., “Multi response optimization of CNC turning parameters via Taguchi method-based response surface analysis”, Measurement, 45 (4): 785–794, (2012).
  • [16] Günay M. and Yücel E., “Application of Taguchi method for determining optimum surface roughness in turning of high-alloy white cast iron”, Measurement, 46 (2): 913–919, (2013).
  • [17] Kurt M., Bagci E. and Kaynak Y., “Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes”, Journal of Advanced Manufacturing Technology, 40 (5–6): 458–469, (2009).
  • [18] Babu GHV P., Murthy BSN., Rao K.V., Kumar K.A., “Taguchi based optimization of process parameters in orthogonal turn milling of ASTM B319”, Materials Today Proceedings, 4 (2, Part A): 2147-2156, (2017).
  • [19] Vardhan M. V., Sankaraiah G., Yohan M., Rao H. J.,“Optimization of parameters in CNC milling of P20 steel using Response Surface Methodology and Taguchi Method”, Materials Today Proceedings, 4 (8): 9163-9169, (2017).
  • [20] Aravind S., Shunmugesh K., Biju J., Vijayan J.K., 2017, “Optimization of micro –Drilling parameters by Taguchi Grey Relational Analysis”, Materials Today Proceedings, 4 (2, Part B): 4188-4195, (2017).
  • [21] Meyers A.R. and Slattery T.J., “Basic Machining Reference Handbook”, Industrial Press, New York, (2001).
  • [22] Vakondios D., Kyratsis P., Yaldız S. and Antoniadis A., “Influence of milling strategy on the surface roughness in ball end milling of the aluminum alloy AL7075-T6”, Measurement, 45 (6): 1480–1488, (2012).
  • [23] Kuram E. and Özçelik B., “Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill”, Measurement, 46 (6): 1849–1864, (2013).
  • [24] Dimin S. F., Anand T.J.S., Jamli R., Kamely A., “Surface quality investigation of Al 6061-T6511 using TiALN soated milling tool”, International Journal of Basic & Applied Sciences IJBAS-IJENS, 10 (4): 55-59, (2010).
  • [25] Kadirgama K., Noor M.M., Rahman M.M., Rejad M. R. M., Haron C.H.C., “Surface roughness prediction model of 6061-T6 aluminium alloy machining using statistical method”, European Journal Scientific Research, 25 (2): 250-256, (2009).
  • [26] Baharudin B.T.H.T., İbrahim M.R., İsmail N., Leman Z., Ariffin M.K.A. and Majid D.L., “Experimental investigation of HSS face milling to AL6061 using Taguchi method”, Procedia Engineering, 50: 933–941, (2012).
  • [27] Kechagias J.D., Ziogas C.K., Pappas M.K. and Ntziatzias I.E., “Parameter optimization during finish end milling of Al alloy 5083 using robust design”, Proceedings of the World Congress on Engineering (WCE 2011), London, UK, (2011).
  • [28] Pınar A.M., “Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method”, Arabian Journal Science and Engineering, 38 (3): 705–714, (2013).
  • [29] Chen P., Malone T., Bond R. and Torres P., “Effects of cryogenic treatment on the residual stress and mechanical properties of an aerospace aluminum alloy”, Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology, (2001).
  • [30] Pavan K.M., Sachin L.S., Mayur S., Chandrashekara A. and Ajaykumar B.S., “Effect of cryogenic treatment on the mechanical and microstructural properties of aluminum alloys – a brief study”, International Journal of Mechanical and Production Engineering, 2 (5): 95-99, (2014).
  • [31] Trieu H.H., Morris L.H., Kaufman M.E., Hood R. and Jenkins L.S., “Investigation of cryogenic treatment of UHMWPE”, Proceedings of the Sixteenth Southern Biomedical Engineering Conference, 90-91, (1997).
  • [32] Lulay K.E., Khan K. and Chaaya D., “The Effect of Cryogenic Treatments on 7075 Aluminum Alloy”, Journal of Materials Engineering and Performance, 11(5): 479-480, (2002).
  • [33] Joshi P., Singh J., Dhiman P., Shekhar H. and Kumar V., “Effect of cryogenic treatment on various materials: A review”, HCTL Open International Journal of Technology Innovations and Research, 14: 1-11, (2015).
  • [34] www.aalco.co.uk, “Properties of 5754 H111 Aluminum Alloy”, (2018).
  • [35] www.seykoc.com.tr, “Alüminyum 5754 H111 alaşımının özellikleri”, (2018).
  • [36] Krishnaiah K. and Shahabudeen P., “Applied Design of Experiments and Taguchi Methods”, PHI Learning Private Limited, New Delhi, (2012).
  • [37] Roy R.K., “A Primer on the Taguchi Method, Competitive Manufacturing Series”, Van Nostrand Reinhold, New York, (1990).
  • [38] Fowlkes W.Y. and Creveling C.M., “Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development”, Prentice Hall, New Jersey, (1995).
  • [39] www.kapco.com.tr, “Kesici Uç Kaplama Türleri ve Özellikleri”, (2018).
  • [40] Park D.H., Choi S.W., Kim J.H. and Lee J.M., “Cryogenic mechanical behavior of 5000- and 6000-series aluminum alloys: Issues on application to offshore plants” Cryogenics, 68: 44-58, (2015).
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Gürcan Samtaş This is me

Salih Korucu This is me

Publication Date September 1, 2019
Submission Date April 17, 2018
Published in Issue Year 2019

Cite

APA Samtaş, G., & Korucu, S. (2019). Kriyojenik İşlem Görmüş EN AW 5754 (AlMg3) Alüminyum Alaşımının Frezelenmesinde Yüzey Pürüzlülüğü İçin Kesme Parametrelerinin Optimizasyonu. Politeknik Dergisi, 22(3), 665-673. https://doi.org/10.2339/politeknik.457957
AMA Samtaş G, Korucu S. Kriyojenik İşlem Görmüş EN AW 5754 (AlMg3) Alüminyum Alaşımının Frezelenmesinde Yüzey Pürüzlülüğü İçin Kesme Parametrelerinin Optimizasyonu. Politeknik Dergisi. September 2019;22(3):665-673. doi:10.2339/politeknik.457957
Chicago Samtaş, Gürcan, and Salih Korucu. “Kriyojenik İşlem Görmüş EN AW 5754 (AlMg3) Alüminyum Alaşımının Frezelenmesinde Yüzey Pürüzlülüğü İçin Kesme Parametrelerinin Optimizasyonu”. Politeknik Dergisi 22, no. 3 (September 2019): 665-73. https://doi.org/10.2339/politeknik.457957.
EndNote Samtaş G, Korucu S (September 1, 2019) Kriyojenik İşlem Görmüş EN AW 5754 (AlMg3) Alüminyum Alaşımının Frezelenmesinde Yüzey Pürüzlülüğü İçin Kesme Parametrelerinin Optimizasyonu. Politeknik Dergisi 22 3 665–673.
IEEE G. Samtaş and S. Korucu, “Kriyojenik İşlem Görmüş EN AW 5754 (AlMg3) Alüminyum Alaşımının Frezelenmesinde Yüzey Pürüzlülüğü İçin Kesme Parametrelerinin Optimizasyonu”, Politeknik Dergisi, vol. 22, no. 3, pp. 665–673, 2019, doi: 10.2339/politeknik.457957.
ISNAD Samtaş, Gürcan - Korucu, Salih. “Kriyojenik İşlem Görmüş EN AW 5754 (AlMg3) Alüminyum Alaşımının Frezelenmesinde Yüzey Pürüzlülüğü İçin Kesme Parametrelerinin Optimizasyonu”. Politeknik Dergisi 22/3 (September 2019), 665-673. https://doi.org/10.2339/politeknik.457957.
JAMA Samtaş G, Korucu S. Kriyojenik İşlem Görmüş EN AW 5754 (AlMg3) Alüminyum Alaşımının Frezelenmesinde Yüzey Pürüzlülüğü İçin Kesme Parametrelerinin Optimizasyonu. Politeknik Dergisi. 2019;22:665–673.
MLA Samtaş, Gürcan and Salih Korucu. “Kriyojenik İşlem Görmüş EN AW 5754 (AlMg3) Alüminyum Alaşımının Frezelenmesinde Yüzey Pürüzlülüğü İçin Kesme Parametrelerinin Optimizasyonu”. Politeknik Dergisi, vol. 22, no. 3, 2019, pp. 665-73, doi:10.2339/politeknik.457957.
Vancouver Samtaş G, Korucu S. Kriyojenik İşlem Görmüş EN AW 5754 (AlMg3) Alüminyum Alaşımının Frezelenmesinde Yüzey Pürüzlülüğü İçin Kesme Parametrelerinin Optimizasyonu. Politeknik Dergisi. 2019;22(3):665-73.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.