Research Article
BibTex RIS Cite

The Influence of Bottom Geometry on Turbulent Flow Field in a Lid-Driven Cavity

Year 2019, , 531 - 543, 01.09.2019
https://doi.org/10.2339/politeknik.563581

Abstract

In this study, the effect of rib structures on the turbulent flow and heat transfer have been investigated numerically. six different Reynolds Numbers, two different rib geometry (sharp-edged square and rounded-edged square) and four different rib layout are carried out. Streamlines close to  the ribbed area, velocities, temperature distributions and Nusselt Number distributions on the bottom surface are investigated.
The results shows that, flow near the  bottom surface behaves independently by the reason of small stable vortices arises among the little cavities between the rib geometries and this hydrodynamic field created by the bottom geometry has significant effects on heat transfer. Besides, it is found that, for all Reynolds numbers,  the total heat transfer coefficient is prominently influenced in case of sharp edged square rib cross section, and most reduction on the heat transfer is observed in this case. The reduction in the total heat transfer coefficient in a given Reynolds number range has reached 25%.

References

  • [1] Ghia U, Ghia K.N, Shin C. T, "High-Re Solutions for incompressible flow using the Navier-Stokes equations and a multigrid method", Journal of Computational Physics, 48: 387- 411, (1982).
  • [2] Neofytou P., "A 3rd order upwind finite volume method for generalised Newtonian fluid flows", Advances in Engineering Software, 36: 664–680, (2005).
  • [3] Chen S., Tölke J., Krafczyk M., "A new method for the numerical solution of vorticity–streamfunction formulations", Comput. Methods Appl. Mech. Engrg., 198: 367–376, (2008).
  • [4] Kalita J.C., Gupta M.M., "A stream function–velocity approach for 2D transient incompressible viscous flows", Int. J. Numer. Meth. Fluids, 62: 237–266, (2010).
  • [5] Bustamante C.A., Power H., Florez W.F., "A global meshless collocation particular solution method for solving the two-dimensional Navier–Stokes system of equations" , Computers and Mathematics with Applications, 65: 1939-1955, (2013).
  • [6] Felter, C.L. Walther J.H., Henriksen C., "Moving least squares simulation of free surface flows", Computers & Fluids, 91:47–56, (2014).
  • [7] Salant R. F., Maser N., Yang B., "Numerical Model of a Reciprocating Hydraulic Rod Seal", Journal of Tribology, 129: 91-97, (2007).
  • [8] Berger E. J. , Sadeghi F., Krousgrill C. M., "Finite element modelling of engagement of rough and grooved wet clutches", Journal of Tribology, 118: 137-146, (1996).
  • [9] Nikas G. K., Sayles R. S., "Computational model of tandem rectangular elastomeric seals for reciprocating motion", Tribology International, 39: 622–634, (2006).
  • [10] Dragoslav S.L., Stefan H. G., "Simulation of transient cavity flows driven by buoyancy and shear", Journal of Hydraulic Research, 38(3): 181-195, (2000).
  • [11] Prasad A.K., Koseff J.R., "Reynolds number and end-wall effects on a lid-driven cavity flow", Phys. Fluids, A1: 208-218, (1989).
  • [12] Prasad A.K., Koseff J.R., "Combined forced and natural convection heat transfer in a deep lid-driven cavity flow", Int. J. Heat Fluid Flow, 17: 460-467, (1996).
  • [13] Mohamad A.A., Viskanta R., "Flow and thermal structures in a lid-driven cavity heated from below", Fluid Dynamics Research, 12: 173-184, (1993).
  • [14] Iwatsu R., Hyun J.M., Kuwahara K., "Numerical simulation of flows driven by a torsionally oscillating lid in a square cavity", J. Fluids Eng., 114: 143-151, (1992).
  • [15] Wang C.-C., Chen C.-K., "Forced convection in a wavy wall channel", Intl. J. Heat Mass Transfer, 45: 2587- 2595, (2002).
  • [16] Al-Amiri A., Khanafer K., Bull J., Ioan Pop., "Effect of sinusoidal wavy bottom surface on mixed convection heat transfer in a lid-driven cavity", Int. J. Heat Mass Transfer, 50: 1771-1780, (2007).
  • [17] Barletta A., Nield D.A., "Mixed convection with viscous dissipation and pressure work in a lid-driven square enclosure", International Journal of Heat and Mass Transfer, 52: 4244–4253, (2009).
  • [18] Cheng T.S., Liu W.H., "Effect of temperature gradient orientation on the characteristics of mixed convection flow in a lid-driven square cavity", Computers & Fluids, 39: 965–978, (2010). [19] Basak T., Roy S., Sharma P.K., Pop I., "Analysis of mixed convection flows within a square cavity with uniform and non-uniform heating of bottom wall", International Journal of Thermal Sciences, 48: 891–912, (2009).
  • [20] Ji T.H., Kim S. Y., Hyun J. M., "Transient mixed convection in an enclosure driven by a sliding lid", Heat Mass Transfer, 43: 629–638, (2007).
  • [21] Rashid M., Kaish A. B. M. A., Islam M. M., Islam M. T., "Numerical simulation of incompressible flows in one-sided lid-driven square cavity by finite element method", Journal of Innovation & Development Strategy (JIDS), 5(3):114-119, (2011).
  • [22] Omari R., "CFD simulations of lid driven cavity flow at moderate reynolds number", European Scientific Journal, 9(15): 22-35, (2013).
  • [23] Zheng G. F., Ha M. Y., Yoon H. S., Park Y. G., "A numerical study on mixed convection in a lid-driven cavity with a circular cylinder", Journal of Mechanical Science and Technology, 27(1): 273-286, (2013).
  • [24] Nasrin R., Parvin S., "Hydromagnetic effect on mixed convection in a lid-driven cavity with sinusoidal corrugated bottom surface", International Communications in Heat and Mass Transfer, 38: 781-789, (2011).
  • [25] Mekroussi S., Nehari D., Bouzit M., Chemloul N.E.S., "Analysis of mixed convection in an inclined lid-driven cavity with a wavy wall", Journal of Mechanical Science and Technology, 27(7): 2181-2190, (2013).
  • [26] Yapıcı K., Obut S., "Laminar Mixed-Convection Heat Transfer in a Lid-Driven CAvity with Modified Heated Wall", Heat Transfer Engineering, 36(3): 303-314, (2015).
  • [27] Gangawane K. M., "Computational analysis of mixed convection heat transfer characteristics in lid-driven cavity containing triangular block with constant heat flux: Effect of Prandtl and Grashof numbers", International Journal of Heat and Mass Transfer, 105: 34–57, (2017).
  • [28] Versteeg, H.K., ve Malalasekera, W., "An Introduction to Computational Fluid Dynamics(Second Ed.)", Pearson, Glasgow, England, (2007).
  • [29] Sahiti N., Lemouedda A., Stojkovic D., Durst F., Franz E., "Performance comparison of pin fin in-duct flow arrays with various pin cross-sections", Appl.Therm. Eng, 26, (2006).
  • [30] Chimres N., Wang C.C., Wongwises S., "Optimal design of the semi-dimple vortex generator in the fin and tube heat exchanger", International Journal of Heat and Mass Transfer, 120: 1173-1186, (2018).
  • [31] Chen,H., Li, K., and Wang, S., "A dimension split method for the incompressible Navier–Stokes equations in three dimensions", Int. J. Numer. Meth. Fluids, 73: 409–435, (2013).
  • [32] Feldman, Y., Gelfgat A., "Oscillatory instability of a three-dimensional lid-driven flow in a cube", Physics Of Fluids, 22: 093602, (2010). [33] CD-Adapco - "StarCCM+ Kullanıcı Rehberi", (2010).

Kapak Etkili Hücre İçindeki Türbülanslı Akıma Taban Geometrisinin Etkisi

Year 2019, , 531 - 543, 01.09.2019
https://doi.org/10.2339/politeknik.563581

Abstract

Üç boyutlu hücre tabanındaki çıkıntıların (rib), hücre içindeki türbülanslı akıma ve ısı transferine etkisi sayısal olarak incelenmiştir. Çalışmada altı farklı Reynolds sayısı, iki farklı çıkıntı geometrisi ( kare ve köşeleri yuvarlatılmış kare) ve dört farklı yerleşim kullanılmıştır. Çıkıntı bölgelerindeki akım çizgileri, hız alanları, sıcaklık dağılımları ile birlikte Nusselt sayısının alt yüzeydeki değerleri ve değişimi incelenmiştir.
Çıkıntıların oluşturduğu hücrecikler içerisindeki küçük girdaplar nedeniyle taban yakınındaki akımın hücre içindeki ana akımdan büyük oranda bağımsız davranış gösterdiği ve taban geometrisinin ortaya çıkardığı hidrodinamik yapının ısı transferi üzerinde etkili olduğu görülmüştür. Toplam ısı transfer katsayısının bütün Reynolds sayılarında keskin köşeli kare kesitli çıkıntı geometrisi ve rib yükseklik genişlik oranının eşit olması durumundan belirgin şekilde etkilendiği ve ısı transferinin en fazla bu durumda azaldığı görülmüştür. Belirli bir Reynolds sayısı aralığında toplam ısı transfer katsayısındaki azalma %25 mertebelerine ulaşmıştır.

References

  • [1] Ghia U, Ghia K.N, Shin C. T, "High-Re Solutions for incompressible flow using the Navier-Stokes equations and a multigrid method", Journal of Computational Physics, 48: 387- 411, (1982).
  • [2] Neofytou P., "A 3rd order upwind finite volume method for generalised Newtonian fluid flows", Advances in Engineering Software, 36: 664–680, (2005).
  • [3] Chen S., Tölke J., Krafczyk M., "A new method for the numerical solution of vorticity–streamfunction formulations", Comput. Methods Appl. Mech. Engrg., 198: 367–376, (2008).
  • [4] Kalita J.C., Gupta M.M., "A stream function–velocity approach for 2D transient incompressible viscous flows", Int. J. Numer. Meth. Fluids, 62: 237–266, (2010).
  • [5] Bustamante C.A., Power H., Florez W.F., "A global meshless collocation particular solution method for solving the two-dimensional Navier–Stokes system of equations" , Computers and Mathematics with Applications, 65: 1939-1955, (2013).
  • [6] Felter, C.L. Walther J.H., Henriksen C., "Moving least squares simulation of free surface flows", Computers & Fluids, 91:47–56, (2014).
  • [7] Salant R. F., Maser N., Yang B., "Numerical Model of a Reciprocating Hydraulic Rod Seal", Journal of Tribology, 129: 91-97, (2007).
  • [8] Berger E. J. , Sadeghi F., Krousgrill C. M., "Finite element modelling of engagement of rough and grooved wet clutches", Journal of Tribology, 118: 137-146, (1996).
  • [9] Nikas G. K., Sayles R. S., "Computational model of tandem rectangular elastomeric seals for reciprocating motion", Tribology International, 39: 622–634, (2006).
  • [10] Dragoslav S.L., Stefan H. G., "Simulation of transient cavity flows driven by buoyancy and shear", Journal of Hydraulic Research, 38(3): 181-195, (2000).
  • [11] Prasad A.K., Koseff J.R., "Reynolds number and end-wall effects on a lid-driven cavity flow", Phys. Fluids, A1: 208-218, (1989).
  • [12] Prasad A.K., Koseff J.R., "Combined forced and natural convection heat transfer in a deep lid-driven cavity flow", Int. J. Heat Fluid Flow, 17: 460-467, (1996).
  • [13] Mohamad A.A., Viskanta R., "Flow and thermal structures in a lid-driven cavity heated from below", Fluid Dynamics Research, 12: 173-184, (1993).
  • [14] Iwatsu R., Hyun J.M., Kuwahara K., "Numerical simulation of flows driven by a torsionally oscillating lid in a square cavity", J. Fluids Eng., 114: 143-151, (1992).
  • [15] Wang C.-C., Chen C.-K., "Forced convection in a wavy wall channel", Intl. J. Heat Mass Transfer, 45: 2587- 2595, (2002).
  • [16] Al-Amiri A., Khanafer K., Bull J., Ioan Pop., "Effect of sinusoidal wavy bottom surface on mixed convection heat transfer in a lid-driven cavity", Int. J. Heat Mass Transfer, 50: 1771-1780, (2007).
  • [17] Barletta A., Nield D.A., "Mixed convection with viscous dissipation and pressure work in a lid-driven square enclosure", International Journal of Heat and Mass Transfer, 52: 4244–4253, (2009).
  • [18] Cheng T.S., Liu W.H., "Effect of temperature gradient orientation on the characteristics of mixed convection flow in a lid-driven square cavity", Computers & Fluids, 39: 965–978, (2010). [19] Basak T., Roy S., Sharma P.K., Pop I., "Analysis of mixed convection flows within a square cavity with uniform and non-uniform heating of bottom wall", International Journal of Thermal Sciences, 48: 891–912, (2009).
  • [20] Ji T.H., Kim S. Y., Hyun J. M., "Transient mixed convection in an enclosure driven by a sliding lid", Heat Mass Transfer, 43: 629–638, (2007).
  • [21] Rashid M., Kaish A. B. M. A., Islam M. M., Islam M. T., "Numerical simulation of incompressible flows in one-sided lid-driven square cavity by finite element method", Journal of Innovation & Development Strategy (JIDS), 5(3):114-119, (2011).
  • [22] Omari R., "CFD simulations of lid driven cavity flow at moderate reynolds number", European Scientific Journal, 9(15): 22-35, (2013).
  • [23] Zheng G. F., Ha M. Y., Yoon H. S., Park Y. G., "A numerical study on mixed convection in a lid-driven cavity with a circular cylinder", Journal of Mechanical Science and Technology, 27(1): 273-286, (2013).
  • [24] Nasrin R., Parvin S., "Hydromagnetic effect on mixed convection in a lid-driven cavity with sinusoidal corrugated bottom surface", International Communications in Heat and Mass Transfer, 38: 781-789, (2011).
  • [25] Mekroussi S., Nehari D., Bouzit M., Chemloul N.E.S., "Analysis of mixed convection in an inclined lid-driven cavity with a wavy wall", Journal of Mechanical Science and Technology, 27(7): 2181-2190, (2013).
  • [26] Yapıcı K., Obut S., "Laminar Mixed-Convection Heat Transfer in a Lid-Driven CAvity with Modified Heated Wall", Heat Transfer Engineering, 36(3): 303-314, (2015).
  • [27] Gangawane K. M., "Computational analysis of mixed convection heat transfer characteristics in lid-driven cavity containing triangular block with constant heat flux: Effect of Prandtl and Grashof numbers", International Journal of Heat and Mass Transfer, 105: 34–57, (2017).
  • [28] Versteeg, H.K., ve Malalasekera, W., "An Introduction to Computational Fluid Dynamics(Second Ed.)", Pearson, Glasgow, England, (2007).
  • [29] Sahiti N., Lemouedda A., Stojkovic D., Durst F., Franz E., "Performance comparison of pin fin in-duct flow arrays with various pin cross-sections", Appl.Therm. Eng, 26, (2006).
  • [30] Chimres N., Wang C.C., Wongwises S., "Optimal design of the semi-dimple vortex generator in the fin and tube heat exchanger", International Journal of Heat and Mass Transfer, 120: 1173-1186, (2018).
  • [31] Chen,H., Li, K., and Wang, S., "A dimension split method for the incompressible Navier–Stokes equations in three dimensions", Int. J. Numer. Meth. Fluids, 73: 409–435, (2013).
  • [32] Feldman, Y., Gelfgat A., "Oscillatory instability of a three-dimensional lid-driven flow in a cube", Physics Of Fluids, 22: 093602, (2010). [33] CD-Adapco - "StarCCM+ Kullanıcı Rehberi", (2010).
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Ahmet Yurtseven This is me 0000-0003-2561-1783

Taner Çoşgun This is me 0000-0002-1364-0133

Nurten Vardar This is me 0000-0002-9042-7029

Publication Date September 1, 2019
Submission Date February 12, 2018
Published in Issue Year 2019

Cite

APA Yurtseven, A., Çoşgun, T., & Vardar, N. (2019). Kapak Etkili Hücre İçindeki Türbülanslı Akıma Taban Geometrisinin Etkisi. Politeknik Dergisi, 22(3), 531-543. https://doi.org/10.2339/politeknik.563581
AMA Yurtseven A, Çoşgun T, Vardar N. Kapak Etkili Hücre İçindeki Türbülanslı Akıma Taban Geometrisinin Etkisi. Politeknik Dergisi. September 2019;22(3):531-543. doi:10.2339/politeknik.563581
Chicago Yurtseven, Ahmet, Taner Çoşgun, and Nurten Vardar. “Kapak Etkili Hücre İçindeki Türbülanslı Akıma Taban Geometrisinin Etkisi”. Politeknik Dergisi 22, no. 3 (September 2019): 531-43. https://doi.org/10.2339/politeknik.563581.
EndNote Yurtseven A, Çoşgun T, Vardar N (September 1, 2019) Kapak Etkili Hücre İçindeki Türbülanslı Akıma Taban Geometrisinin Etkisi. Politeknik Dergisi 22 3 531–543.
IEEE A. Yurtseven, T. Çoşgun, and N. Vardar, “Kapak Etkili Hücre İçindeki Türbülanslı Akıma Taban Geometrisinin Etkisi”, Politeknik Dergisi, vol. 22, no. 3, pp. 531–543, 2019, doi: 10.2339/politeknik.563581.
ISNAD Yurtseven, Ahmet et al. “Kapak Etkili Hücre İçindeki Türbülanslı Akıma Taban Geometrisinin Etkisi”. Politeknik Dergisi 22/3 (September 2019), 531-543. https://doi.org/10.2339/politeknik.563581.
JAMA Yurtseven A, Çoşgun T, Vardar N. Kapak Etkili Hücre İçindeki Türbülanslı Akıma Taban Geometrisinin Etkisi. Politeknik Dergisi. 2019;22:531–543.
MLA Yurtseven, Ahmet et al. “Kapak Etkili Hücre İçindeki Türbülanslı Akıma Taban Geometrisinin Etkisi”. Politeknik Dergisi, vol. 22, no. 3, 2019, pp. 531-43, doi:10.2339/politeknik.563581.
Vancouver Yurtseven A, Çoşgun T, Vardar N. Kapak Etkili Hücre İçindeki Türbülanslı Akıma Taban Geometrisinin Etkisi. Politeknik Dergisi. 2019;22(3):531-43.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.