Research Article
BibTex RIS Cite

Influence of Traffic and Road Surface Materials on Elastic Behavior of Layered Pavements

Year 2022, , 855 - 860, 01.06.2022
https://doi.org/10.2339/politeknik.811330

Abstract

In this paper the overall elastic properties of different layered road pavements have been presented. Using micromechanical theory and the Voigt/Reuss and Hashin-Shtrikman bounds, all the elastic moduli that characterize the stiffness of the composite medium are determined. Following the Spanish Highway Administration classification of the pavement sections, this work presents in detail the effective elastic behavior of any of the cases covered by this document from their composition and the type of traffic. Although numerous experimental and laboratory works have been developed to study the mechanisms that govern different types of pavements, there are few works where they are explicitly determined. That is why the main novelty of this work consists in presenting analytical methods capable of quantifying the performance of the pavement based on the materials that compose it and the traffic loads to which it is subjected. The proposed scheme is implemented in some scenarios by showing the dependence of the different elastic modulus on the volume fraction of the different materials that made the layered composite pavement.

Supporting Institution

Ministerio de Economía y Competitividad, Junta de Extremadura through Research Group Grants

Project Number

MTM2017-83583-P, FQM-022

References

  • [1] Backus G., “Long-wave elastic anisotropy produced by horizontal layering”, Journal of Geophysical Research., 67: 4427–4440, (1962).
  • [2] Beskou N.D., Tsinopoulos S.V., Theodorakopoulos, D.D., “Dynamic elastic analysis of 3-D flexible pavements under moving vehicles: A unified FEM treatment”, Soil Dynamics and Earthquake Engineering, 82: 63-72, (2016).
  • [3] Ministro de Obras Públicas y Urbanismo, “Aprobación de la Norma 6.1-IC Secciones de firme de la Instrucción de Carreteras”, BOE. ORDEN FOM/3460/2003, (2003).
  • [4] Chen Q., He C., “The prototype measurement of retaining wall reinforced by a new type of wedgie tied-reinforcement”, Chinese Journal of Geotechnical Engineering, 22 (3): 289-293, (2000).
  • [5] Cho Y.H., Mccullough B.F., Weissmann J., “Considerations on finite-element method application in pavement structural analysis”, Transportation Research Record, 1539: 96-101, (1996).
  • [6] Eshelby JD., “The determination of the elastic field of an ellipsoidal inclusion”, Proceedings of the Royal Society of London A, 241:376–396, (1957).
  • [7] Hashin Z., Shtrikman S., “On some variational principles in anisotropic and non-homogeneous elasticity”, Journal of the Mechanics and Physics of Solids, 10: 335–342, (1962).
  • [8] Hashin Z, Shtrikman S., “A variational approach to the theory of the elastic behaviour of multiphase materials”, Journal of the Mechanics and Physics of Solids, 11:127–140, (1963).
  • [9] Hill R., “Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior”, Journal of the Mechanics and Physics of Solid, 12:199–212, (1964).
  • [10] Kang H., Milton G.W., “Solutions to the PlyaSzeg conjecture and the weak Eshelby conjecture”, Archive for Rational Mechanics and Analysis, 188: 93-116, (2008).
  • [11] Kraemer C., Albelda R., “Evaluación técnico-económica de las secciones de firme de la Norma 6.1-IC”, VI Congreso Nacional de Firmes: Normalización e Innovación, Asociación Española de la Carretera, Madrid. (2004).
  • [12] Ling H.I., Liu H., “Finite element studies of asphalt concrete pavement reinforced with geogrid”, Journal of Engineering Mechanics, 129 (7): 801-811, (2003).
  • [13] Liu L.P., “Solutions to the Eshelby conjectures”, Proceedings of the Royal Society of London A, 464: 573–594 (2008).
  • [14] Mousavi S.M., Hashemi S.A., Babapoor A., “Enhancement of Rheological and Mechanical Properties of Bitumen by Polythiophene Doped with Nano Fe3O4”, Journal of Operations Management, 71: 531–540 (2019).
  • [15] Mura T., “Micromechanics of Defects in Solids”, Kluwer, Dordrecht, (1991).
  • [16] Parnell W.J., Calvo-Jurado C., “On the computation of the Hashin–Shtrikman bounds for transversely isotropic two-phase linear elastic fibre-reinforced composites”, Journal of Engineering Mathematics, 95: 295–323, (2015).
  • [17] Peng Y., Yunlong H.E., “Structural characteristics of cement-stabilized soil bases with 3D finite element method”, Frontiers of Architecture and Civil Engineering in China, 3 (4): 428, (2009).
  • [18] Perkins S.W., “Constitutive modeling of geosynthetics”, Geotextiles and Geomembranes, 8(5): 273-292, (2000).
  • [19] Rashidian V., Naeini S.A., Mirzakhanlari M., “Laboratory testing and numerical modelling on bearing capacity of geotextile reinforced granular soils”, International Journal of Geotechnical Engineering, 12(3): 1-11, (2016).
  • [20] Reuss, A., “Calculation of the flow limits of mixed crystals on the basis of the plasticity of mono-crystals”, Journal of Applied Mathematics and Mechanics, 9: 49–58, (1929).
  • [21] Rodrigues-Ramos R., Guinovart-Díaz R., Bravo-Castillero J., Sabina F.J., Berger H., Kari S., Gabbert U., “Variational bounds for anisotropic elastic multiphase composites with different shapes of inclusions”, Archive of Applied Mechanics, 79: 695-708, (2009).
  • [22] Roy T.K., “Evaluation of properties of alluvial soil with addition of wastes from thermal power plant and rice mill”, International Journal of Geotechnical Engineering, 7 (3): 323-329, (2013).
  • [23] Singh B., Kalita A., “Influence of y ash and cement on CBR behavior of lateritic soil and sand”, International Journal of Geotechnical Engineering, 7 (2): 173-177, (2013).
  • [24] Smith G.N., Brigilson G.I., “Inclined stripes in reinforced soil walls”, Proceedings of the Institution of Civil Engineers-Civil Engineering, 54 (6): 60-61, (1979).
  • [25] Voigt W., “Ueber die Beziehung zwischeden beiden Elasticitatsconstanten”, Annalen der Physik, 38: 573-587, (1889).
  • [26] Walpole L.J., “Elastic Behavior of Composite Materials: Theoretical Foundations”, Advances in Applied Mechanics, 21: 169-242, (1981).
  • [27] Willis J.R., “Bounds and self-consistent estimates for the overall moduli of anisotropic composites”, Journal of the Mechanics and Physics of Solids, 25: 185-202, (1977).
  • [28] Yamamoto K., Otani J., “Bearing capacity and failure mechanism of reinforced foundations based on rigid-plastic finite element formulation”, Geotextiles and Geomembranes, 20 (6): 367-393, (2002).
  • [29] Zhao S., “Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement”, Construction and Building Materials, 44: 92-100, (2013).

Trafik ve Yol Yüzeyi Özelliklerinin Katmanlı Kaplamaların Elastik Davranışına Etkisi

Year 2022, , 855 - 860, 01.06.2022
https://doi.org/10.2339/politeknik.811330

Abstract

Bu yazıda, farklı katmanlı yol kaplamalarının genel elastik özelliklerini sunuyoruz. Mikromekanik teori ve Voigt / Reuss ve Hashin-Strikman sınırlarını kullanarak, kompozit ortamın sertliğini karakterize eden tüm elastik modülleri belirleriz. İspanyol Karayolu İdaresi'nin kaldırım bölümlerinin sınıflandırmasını takiben, bu belgede kapsanan durumlardan herhangi birinin bileşimine ve trafik türüne göre etkili elastik davranışını ayrıntılı olarak sunacağız. Farklı kaplama türlerini yöneten mekanizmaları incelemek için çok sayıda deneysel ve laboratuvar çalışması geliştirilmiş olsa da, açıkça belirlendikleri çok az çalışma vardır. Bu nedenle, bu çalışmanın temel yeniliği, kaplamanın performansını, onu oluşturan malzemeler ve maruz kaldığı trafik yüklerine göre ölçebilen analitik yöntemler sunmaktır. Bazı senaryolarda şemanın uygulanmasını, farklı elastik modülünün katmanlı kompozit kaplamayı oluşturan farklı malzemelerin hacim fraksiyonuna bağımlılığını göstererek gösteriyoruz.

Project Number

MTM2017-83583-P, FQM-022

References

  • [1] Backus G., “Long-wave elastic anisotropy produced by horizontal layering”, Journal of Geophysical Research., 67: 4427–4440, (1962).
  • [2] Beskou N.D., Tsinopoulos S.V., Theodorakopoulos, D.D., “Dynamic elastic analysis of 3-D flexible pavements under moving vehicles: A unified FEM treatment”, Soil Dynamics and Earthquake Engineering, 82: 63-72, (2016).
  • [3] Ministro de Obras Públicas y Urbanismo, “Aprobación de la Norma 6.1-IC Secciones de firme de la Instrucción de Carreteras”, BOE. ORDEN FOM/3460/2003, (2003).
  • [4] Chen Q., He C., “The prototype measurement of retaining wall reinforced by a new type of wedgie tied-reinforcement”, Chinese Journal of Geotechnical Engineering, 22 (3): 289-293, (2000).
  • [5] Cho Y.H., Mccullough B.F., Weissmann J., “Considerations on finite-element method application in pavement structural analysis”, Transportation Research Record, 1539: 96-101, (1996).
  • [6] Eshelby JD., “The determination of the elastic field of an ellipsoidal inclusion”, Proceedings of the Royal Society of London A, 241:376–396, (1957).
  • [7] Hashin Z., Shtrikman S., “On some variational principles in anisotropic and non-homogeneous elasticity”, Journal of the Mechanics and Physics of Solids, 10: 335–342, (1962).
  • [8] Hashin Z, Shtrikman S., “A variational approach to the theory of the elastic behaviour of multiphase materials”, Journal of the Mechanics and Physics of Solids, 11:127–140, (1963).
  • [9] Hill R., “Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior”, Journal of the Mechanics and Physics of Solid, 12:199–212, (1964).
  • [10] Kang H., Milton G.W., “Solutions to the PlyaSzeg conjecture and the weak Eshelby conjecture”, Archive for Rational Mechanics and Analysis, 188: 93-116, (2008).
  • [11] Kraemer C., Albelda R., “Evaluación técnico-económica de las secciones de firme de la Norma 6.1-IC”, VI Congreso Nacional de Firmes: Normalización e Innovación, Asociación Española de la Carretera, Madrid. (2004).
  • [12] Ling H.I., Liu H., “Finite element studies of asphalt concrete pavement reinforced with geogrid”, Journal of Engineering Mechanics, 129 (7): 801-811, (2003).
  • [13] Liu L.P., “Solutions to the Eshelby conjectures”, Proceedings of the Royal Society of London A, 464: 573–594 (2008).
  • [14] Mousavi S.M., Hashemi S.A., Babapoor A., “Enhancement of Rheological and Mechanical Properties of Bitumen by Polythiophene Doped with Nano Fe3O4”, Journal of Operations Management, 71: 531–540 (2019).
  • [15] Mura T., “Micromechanics of Defects in Solids”, Kluwer, Dordrecht, (1991).
  • [16] Parnell W.J., Calvo-Jurado C., “On the computation of the Hashin–Shtrikman bounds for transversely isotropic two-phase linear elastic fibre-reinforced composites”, Journal of Engineering Mathematics, 95: 295–323, (2015).
  • [17] Peng Y., Yunlong H.E., “Structural characteristics of cement-stabilized soil bases with 3D finite element method”, Frontiers of Architecture and Civil Engineering in China, 3 (4): 428, (2009).
  • [18] Perkins S.W., “Constitutive modeling of geosynthetics”, Geotextiles and Geomembranes, 8(5): 273-292, (2000).
  • [19] Rashidian V., Naeini S.A., Mirzakhanlari M., “Laboratory testing and numerical modelling on bearing capacity of geotextile reinforced granular soils”, International Journal of Geotechnical Engineering, 12(3): 1-11, (2016).
  • [20] Reuss, A., “Calculation of the flow limits of mixed crystals on the basis of the plasticity of mono-crystals”, Journal of Applied Mathematics and Mechanics, 9: 49–58, (1929).
  • [21] Rodrigues-Ramos R., Guinovart-Díaz R., Bravo-Castillero J., Sabina F.J., Berger H., Kari S., Gabbert U., “Variational bounds for anisotropic elastic multiphase composites with different shapes of inclusions”, Archive of Applied Mechanics, 79: 695-708, (2009).
  • [22] Roy T.K., “Evaluation of properties of alluvial soil with addition of wastes from thermal power plant and rice mill”, International Journal of Geotechnical Engineering, 7 (3): 323-329, (2013).
  • [23] Singh B., Kalita A., “Influence of y ash and cement on CBR behavior of lateritic soil and sand”, International Journal of Geotechnical Engineering, 7 (2): 173-177, (2013).
  • [24] Smith G.N., Brigilson G.I., “Inclined stripes in reinforced soil walls”, Proceedings of the Institution of Civil Engineers-Civil Engineering, 54 (6): 60-61, (1979).
  • [25] Voigt W., “Ueber die Beziehung zwischeden beiden Elasticitatsconstanten”, Annalen der Physik, 38: 573-587, (1889).
  • [26] Walpole L.J., “Elastic Behavior of Composite Materials: Theoretical Foundations”, Advances in Applied Mechanics, 21: 169-242, (1981).
  • [27] Willis J.R., “Bounds and self-consistent estimates for the overall moduli of anisotropic composites”, Journal of the Mechanics and Physics of Solids, 25: 185-202, (1977).
  • [28] Yamamoto K., Otani J., “Bearing capacity and failure mechanism of reinforced foundations based on rigid-plastic finite element formulation”, Geotextiles and Geomembranes, 20 (6): 367-393, (2002).
  • [29] Zhao S., “Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement”, Construction and Building Materials, 44: 92-100, (2013).
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Pablo Roldan-oliden This is me 0000-0002-5845-9469

Carmen Calvo-jurado 0000-0001-9842-081X

Project Number MTM2017-83583-P, FQM-022
Publication Date June 1, 2022
Submission Date October 16, 2020
Published in Issue Year 2022

Cite

APA Roldan-oliden, P., & Calvo-jurado, C. (2022). Influence of Traffic and Road Surface Materials on Elastic Behavior of Layered Pavements. Politeknik Dergisi, 25(2), 855-860. https://doi.org/10.2339/politeknik.811330
AMA Roldan-oliden P, Calvo-jurado C. Influence of Traffic and Road Surface Materials on Elastic Behavior of Layered Pavements. Politeknik Dergisi. June 2022;25(2):855-860. doi:10.2339/politeknik.811330
Chicago Roldan-oliden, Pablo, and Carmen Calvo-jurado. “Influence of Traffic and Road Surface Materials on Elastic Behavior of Layered Pavements”. Politeknik Dergisi 25, no. 2 (June 2022): 855-60. https://doi.org/10.2339/politeknik.811330.
EndNote Roldan-oliden P, Calvo-jurado C (June 1, 2022) Influence of Traffic and Road Surface Materials on Elastic Behavior of Layered Pavements. Politeknik Dergisi 25 2 855–860.
IEEE P. Roldan-oliden and C. Calvo-jurado, “Influence of Traffic and Road Surface Materials on Elastic Behavior of Layered Pavements”, Politeknik Dergisi, vol. 25, no. 2, pp. 855–860, 2022, doi: 10.2339/politeknik.811330.
ISNAD Roldan-oliden, Pablo - Calvo-jurado, Carmen. “Influence of Traffic and Road Surface Materials on Elastic Behavior of Layered Pavements”. Politeknik Dergisi 25/2 (June 2022), 855-860. https://doi.org/10.2339/politeknik.811330.
JAMA Roldan-oliden P, Calvo-jurado C. Influence of Traffic and Road Surface Materials on Elastic Behavior of Layered Pavements. Politeknik Dergisi. 2022;25:855–860.
MLA Roldan-oliden, Pablo and Carmen Calvo-jurado. “Influence of Traffic and Road Surface Materials on Elastic Behavior of Layered Pavements”. Politeknik Dergisi, vol. 25, no. 2, 2022, pp. 855-60, doi:10.2339/politeknik.811330.
Vancouver Roldan-oliden P, Calvo-jurado C. Influence of Traffic and Road Surface Materials on Elastic Behavior of Layered Pavements. Politeknik Dergisi. 2022;25(2):855-60.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.