Research Article
BibTex RIS Cite

Emme Havası Giriş Sıcaklığı ve Ön Karışımlı Yakıt Oranının RCCI Yanma Karakteristiklerine ve Motor Performansına Etkileri

Year 2017, Volume: 20 Issue: 3, 689 - 688, 15.09.2017
https://doi.org/10.2339/politeknik.339401

Abstract

Bu çalışmada emme
havası giriş sıcaklığı ve ön karışım yakıt oranının reaktif kontrollü
sıkıştırma ile ateşlemeli (RCCI) yanma karakteristikleri ve motor performansı
üzerindeki etkileri deneysel olarak araştırılmıştır. Bu amaçla dört silindirli,
dört zamanlı, direkt enjeksiyonlu benzinli motor RCCI modda 1000 d/d’da 40°C,
60°C ve 80°C emme havası giriş sıcaklıklarında PRF20,
PRF40 ve PRF 60 yakıtları ile stokiyometrik karışım oranında ve tam yükte
çalıştırılmıştır. Emme havası giriş sıcaklığı ve ön karışım oranı arttıkça
maksimum silindir basıncının ve ısı dağılımının arttığı, yanmanın avansa
alındığı görülmüştür. Bunun tersine sabit emme havası giriş sıcaklığında ön
karışım oranı arttıkça yanmanın rötara alındığı görülmüştür. Maksimum indike
termik verim 60 °C emme giriş havası sıcaklığında PRF20 yakıtına
göre PRF60 yakıtı ile %7.4 artarak %32.3 elde edilmiştir. Motor performansı
açısından en uygun yakıtın PRF60 olduğu belirlenmiştir. Deney sonuçları RCCI
yanmasının emme havası giriş sıcaklığı ve ön karışım yakıt oranından hassas bir
şekilde etkilendiğini, yanma fazının emme giriş sıcaklığı ve ön karışım yakıt
oranı ile kontrol edilebileceğini göstermiştir.

References

  • 1. Ansari E., Poorghasemi K., Khoshbakht Irdmousa B., Shahbakhti M. and Naber J., "Efficiency and Emissions Mapping of a Light Duty Diesel - Natural Gas Engine Operating in Conventional Diesel and RCCI Modes," SAE Technical Paper, (2016).
  • 2. Poorghasemi K., Saray R. K., Ansari E., Irdmousa B. K., Shahbakhti M. and Naber J. D., ‘’Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine’’, Applied Energy, 199: 430-446, (2017).
  • 3. Liu H.F., Xu J., Zheng ZQ, Li S.J. and Yao MF., ‘’Effects of fuel properties on combustion and emissions under both conventional and low temperature combustion mode fueling 2,5-dimethylfuran/diesel blends’’, Energy, 62: 215-23, (2013).
  • 4. Hanson R.M., Kokjohn S. L., Splitter D.A. and Reitz R.D., ‘’An experimental investigation of fuel reactivity controlled PCCI combustion in a heavy-duty engine’’, SAE Int. J. Engines, 2010-01-0864, (2010).
  • 5. Splitter D., Reitz R., Hanson R., ‘'High efficiency, low emissions RCCI combustion by use of a fuel additive’’, SAE International, 2010-01-2167, (2010).
  • 6. Bessonette P.W., Schleyer C.H., Duffy K.P., Hardy W.L. and Liechty M.P., “Effects of fuel property changes on heavy- duty hccı combustion,” SAE Technical Paper 2007-01-0191, (2007).
  • 7. Kokjohn S., Hanson R., Splitter D., Kaddatz J. and Reitz R., ‘’Fuel reactivity controlled compression ignition (RCCI) combustion in light- and heavy-duty engines”, SAE International, 2011-01-0357, (2011).
  • 8. Theis J., Ura J., Li J., Surnilla G., Roth J.M. and Goralski C.T., “NOx release characteristics of lean nox traps during rich purges,” SAE Technical Paper 2003-01-1159, (2003).
  • 9. Ra Y. and Reitz R. D., ‘’A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels’’, Combustion and Flame, 155(4): 713-738, (2008).
  • 10. Hardy W. and Reitz R., “A Study of the Effects of High EGR, High Equivalence Ratio, and Mixing Time on Emissions Levels in a Heavy-Duty Diesel Engine for PCCI Combustion,” SAE Technical Paper, 2006-01-0026, (2006).
  • 11. Kim J., Park S. W. and Reitz R. D., ‘’Improvements in the Performance and Pollutant Emissions for Stoichiometric Diesel Combustion Engines using a Two-Spray-Angle Nozzle’’, Journal of Automobile Engineering, 224(8): 1113-1122, (2010).
  • 12. Opat R., Ra Y., Gonzalez D., M., Krieger R., Reitz R.D., Durrett R.P., Foster D.E., Siewert R.M., “Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine,” SAE Technical Paper, 2007-01-0193, (2007).
  • 13. Kokjohn S. L., Reitz R. D. ‘’Investigation of the Roles of Flame Propagation, Turbulent Mixing, and Volumetric Heat Release in Conventional and Low Temperature Diesel Combustion’’, ASME J. Eng. Gas Turbines Power, 133: 10, (2011).
  • 14. Hanson R., Kokjohn S., Splitter D. and Reitz R., ‘’Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load’’, SAE International, 2011-01-0361, (2011).
  • 15. Dempsey A., Curran S., Storey J., Eibl M., Pihl J., Prikhodko V., Wagner R. and Parks J., ‘’Particulate Matter Characterization of Reactivity Controlled Compression Ignition (RCCI) on a Light Duty Engine’’, SAE International, 2014-01-1596, (2014).
  • 16. Hanson R., Reitz R., ‘’Transient RCCI Operation in a Light-Duty Multi-Cylinder Engine’’, SAE International, 2013-24-0050, (2013).
  • 17. Wissink M., Wang Z., Splitter D., Shahlari A. And Reitz R., ‘’Investigation of Pressure Oscillation Modes and Audible Noise in RCCI, HCCI, and CDC’’, SAE International, 2013-01-1652, (2013).
  • 18. Pohlkamp K. and Reitz R., ‘’Reactivity Controlled Compression Ignition (RCCI) in a Single-Cylinder Air-Cooled HSDI Diesel Engine’’, SAE International, 2012-32-0074, (2012).
  • 19. Benajes J., Molina S., García A. and Belarte E., Vanvolsem M., ‘’An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels’’, Applied Thermal Engineering, 63: 66-76, (2014).
  • 20. Benajes J., Molina S., García A. And Monsalve-Serrano J., ‘’Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels’’, Energy Conversion and Management, 99: 193–209, (2015).
  • 21. Zhu L., Qian Y., Wang X. and Lu X., ‘’Effects of direct injection timing and premixed ratio on combustion and emissions characteristics of RCCI (Reactivity Controlled Compression Ignition) with N-heptane/gasoline-like fuels’’, Energy, 93: 383-392, (2015).
  • 22. Li J., Yang W. M., Ana H. and Zhao D., ‘’Effects of fuel ratio and injection timing on gasoline/biodiesel fueled RCCI engine: A modeling study’’, Applied Energy, 155: 59–67, (2015).
  • 23. Benajes J., Molina S., García A. and Monsalve-Serrano J., ‘’Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine’’, Energy, 90: 1261-1271, (2015).
  • 24. Qian Y., Wang X., Zhu L. and Lu X., ‘’Experimental studies on combustion and emissions of RCCI (reactivity controlled compression ignition) with gasoline/n-heptane and ethanol/n-heptane as fuels’’, Energy, 88: 584-594, (2015).
  • 25. Qian Y., Ouyang L., Wang X., Zhu L. and Lu X., ‘’Experimental studies on combustion and emissions of RCCI fueled with n-heptane/alcohols fuels’’, Fuel, 162: 239–250, (2015).
  • 26. Kakaee A-H., Rahnam, P. and Paykani A., ‘’Influence of fuel composition on combustion and emissions characteristics of natural gas/diesel RCCI engine’’, Journal of Natural Gas Science and Engineering, 25: 58-65, (2015).
  • 27. Zhao H., ‘’HCCI and CAI engines for the automotive industry’’, Cambridge England: Woodhead Publishing Ltd., (2007).
  • 28. Heywood J. B., “Internal combustion engine fundamentals”, New York: McGraw- Hill; ISBN 0-07-028637-X, United States of America, (1988).
  • 29. Stone R., ‘’Introduction to Internal Combustion Engines, Second Edition’’, Macmillan Press Ltd, ISBN 0-333-55083-8, Hong Kong, (1992).
  • 30. Polat S., Kannan, K., Shahbakhti M., Uyumaz A. and Yücesu H.S., ‘’an experimental study for the effects of supercharging on performance and combustion of an early direct ınjection HCCI engine’’, Second International Reserch Conference on Engineering, Science and Management, Dubai, 51-57, (2015).
  • 31. Anonymous 2,2,4-2-2-4Trimethylpentane-compound summary, PubChem Compound. USA: National Center for Biotechnology Information 26 March Identification and Related Records, 2005 (Retrieved March 2012).
  • 32. Chang K., Lavoie G., Babajimopoulos A., Filipi Z. and Assanis D.N.,“Control of a Multi-Cylinder HCCI engine during transient operation by modulating residual gas fraction to compensate for wall temperature effects,” SAE Technical Paper, 2007-01-0204, (2007).
  • 33. Dempsey A. B., Walker N. R., Reitz R., ‘’Effect of cetane ımproves on gasoline, ethanol, and methanol reactivity and the ımplications for RCCI combustion’’, SAE International, 2013-01-1678, (2013).
  • 34. Splitter D., Hanson R., Kokjohn S., Wissink M. and Reitz R., ‘’Injection effects in low load RCCI dual-fuel combustion’’, SAE International, 2011-24-0047, (2011).
  • 35. Curran S., Hanson R. And Wagner R.,’’Effect of E85 on RCCI performance and emissions on a multi-cylinder light-duty diesel engine’’, SAE International, 2012-01-0376, (2012).
  • 36. Splitter D., Wissink M., DelVescovo D. and Reitz R., ‘’RCCI engine operation towards 60% thermal efficiency’’, SAE International, 2013-01-0279, (2013).
  • 37. Curran S., Hanson R. and Wagner R., ‘’Efficiency and Emissions Mapping of RCCI in a light-duty diesel engine’’, SAE International, 2013-01-0289, (2013).
  • 38. Hanson R., Curran S. and Wagner R., ‘’Effects of Biofuel Blends on RCCI Combustion in a Light-Duty, Multi-Cylinder Diesel Engine’’, SAE International, 2013-01-1653, (2013).
Year 2017, Volume: 20 Issue: 3, 689 - 688, 15.09.2017
https://doi.org/10.2339/politeknik.339401

Abstract

References

  • 1. Ansari E., Poorghasemi K., Khoshbakht Irdmousa B., Shahbakhti M. and Naber J., "Efficiency and Emissions Mapping of a Light Duty Diesel - Natural Gas Engine Operating in Conventional Diesel and RCCI Modes," SAE Technical Paper, (2016).
  • 2. Poorghasemi K., Saray R. K., Ansari E., Irdmousa B. K., Shahbakhti M. and Naber J. D., ‘’Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine’’, Applied Energy, 199: 430-446, (2017).
  • 3. Liu H.F., Xu J., Zheng ZQ, Li S.J. and Yao MF., ‘’Effects of fuel properties on combustion and emissions under both conventional and low temperature combustion mode fueling 2,5-dimethylfuran/diesel blends’’, Energy, 62: 215-23, (2013).
  • 4. Hanson R.M., Kokjohn S. L., Splitter D.A. and Reitz R.D., ‘’An experimental investigation of fuel reactivity controlled PCCI combustion in a heavy-duty engine’’, SAE Int. J. Engines, 2010-01-0864, (2010).
  • 5. Splitter D., Reitz R., Hanson R., ‘'High efficiency, low emissions RCCI combustion by use of a fuel additive’’, SAE International, 2010-01-2167, (2010).
  • 6. Bessonette P.W., Schleyer C.H., Duffy K.P., Hardy W.L. and Liechty M.P., “Effects of fuel property changes on heavy- duty hccı combustion,” SAE Technical Paper 2007-01-0191, (2007).
  • 7. Kokjohn S., Hanson R., Splitter D., Kaddatz J. and Reitz R., ‘’Fuel reactivity controlled compression ignition (RCCI) combustion in light- and heavy-duty engines”, SAE International, 2011-01-0357, (2011).
  • 8. Theis J., Ura J., Li J., Surnilla G., Roth J.M. and Goralski C.T., “NOx release characteristics of lean nox traps during rich purges,” SAE Technical Paper 2003-01-1159, (2003).
  • 9. Ra Y. and Reitz R. D., ‘’A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels’’, Combustion and Flame, 155(4): 713-738, (2008).
  • 10. Hardy W. and Reitz R., “A Study of the Effects of High EGR, High Equivalence Ratio, and Mixing Time on Emissions Levels in a Heavy-Duty Diesel Engine for PCCI Combustion,” SAE Technical Paper, 2006-01-0026, (2006).
  • 11. Kim J., Park S. W. and Reitz R. D., ‘’Improvements in the Performance and Pollutant Emissions for Stoichiometric Diesel Combustion Engines using a Two-Spray-Angle Nozzle’’, Journal of Automobile Engineering, 224(8): 1113-1122, (2010).
  • 12. Opat R., Ra Y., Gonzalez D., M., Krieger R., Reitz R.D., Durrett R.P., Foster D.E., Siewert R.M., “Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine,” SAE Technical Paper, 2007-01-0193, (2007).
  • 13. Kokjohn S. L., Reitz R. D. ‘’Investigation of the Roles of Flame Propagation, Turbulent Mixing, and Volumetric Heat Release in Conventional and Low Temperature Diesel Combustion’’, ASME J. Eng. Gas Turbines Power, 133: 10, (2011).
  • 14. Hanson R., Kokjohn S., Splitter D. and Reitz R., ‘’Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load’’, SAE International, 2011-01-0361, (2011).
  • 15. Dempsey A., Curran S., Storey J., Eibl M., Pihl J., Prikhodko V., Wagner R. and Parks J., ‘’Particulate Matter Characterization of Reactivity Controlled Compression Ignition (RCCI) on a Light Duty Engine’’, SAE International, 2014-01-1596, (2014).
  • 16. Hanson R., Reitz R., ‘’Transient RCCI Operation in a Light-Duty Multi-Cylinder Engine’’, SAE International, 2013-24-0050, (2013).
  • 17. Wissink M., Wang Z., Splitter D., Shahlari A. And Reitz R., ‘’Investigation of Pressure Oscillation Modes and Audible Noise in RCCI, HCCI, and CDC’’, SAE International, 2013-01-1652, (2013).
  • 18. Pohlkamp K. and Reitz R., ‘’Reactivity Controlled Compression Ignition (RCCI) in a Single-Cylinder Air-Cooled HSDI Diesel Engine’’, SAE International, 2012-32-0074, (2012).
  • 19. Benajes J., Molina S., García A. and Belarte E., Vanvolsem M., ‘’An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels’’, Applied Thermal Engineering, 63: 66-76, (2014).
  • 20. Benajes J., Molina S., García A. And Monsalve-Serrano J., ‘’Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels’’, Energy Conversion and Management, 99: 193–209, (2015).
  • 21. Zhu L., Qian Y., Wang X. and Lu X., ‘’Effects of direct injection timing and premixed ratio on combustion and emissions characteristics of RCCI (Reactivity Controlled Compression Ignition) with N-heptane/gasoline-like fuels’’, Energy, 93: 383-392, (2015).
  • 22. Li J., Yang W. M., Ana H. and Zhao D., ‘’Effects of fuel ratio and injection timing on gasoline/biodiesel fueled RCCI engine: A modeling study’’, Applied Energy, 155: 59–67, (2015).
  • 23. Benajes J., Molina S., García A. and Monsalve-Serrano J., ‘’Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine’’, Energy, 90: 1261-1271, (2015).
  • 24. Qian Y., Wang X., Zhu L. and Lu X., ‘’Experimental studies on combustion and emissions of RCCI (reactivity controlled compression ignition) with gasoline/n-heptane and ethanol/n-heptane as fuels’’, Energy, 88: 584-594, (2015).
  • 25. Qian Y., Ouyang L., Wang X., Zhu L. and Lu X., ‘’Experimental studies on combustion and emissions of RCCI fueled with n-heptane/alcohols fuels’’, Fuel, 162: 239–250, (2015).
  • 26. Kakaee A-H., Rahnam, P. and Paykani A., ‘’Influence of fuel composition on combustion and emissions characteristics of natural gas/diesel RCCI engine’’, Journal of Natural Gas Science and Engineering, 25: 58-65, (2015).
  • 27. Zhao H., ‘’HCCI and CAI engines for the automotive industry’’, Cambridge England: Woodhead Publishing Ltd., (2007).
  • 28. Heywood J. B., “Internal combustion engine fundamentals”, New York: McGraw- Hill; ISBN 0-07-028637-X, United States of America, (1988).
  • 29. Stone R., ‘’Introduction to Internal Combustion Engines, Second Edition’’, Macmillan Press Ltd, ISBN 0-333-55083-8, Hong Kong, (1992).
  • 30. Polat S., Kannan, K., Shahbakhti M., Uyumaz A. and Yücesu H.S., ‘’an experimental study for the effects of supercharging on performance and combustion of an early direct ınjection HCCI engine’’, Second International Reserch Conference on Engineering, Science and Management, Dubai, 51-57, (2015).
  • 31. Anonymous 2,2,4-2-2-4Trimethylpentane-compound summary, PubChem Compound. USA: National Center for Biotechnology Information 26 March Identification and Related Records, 2005 (Retrieved March 2012).
  • 32. Chang K., Lavoie G., Babajimopoulos A., Filipi Z. and Assanis D.N.,“Control of a Multi-Cylinder HCCI engine during transient operation by modulating residual gas fraction to compensate for wall temperature effects,” SAE Technical Paper, 2007-01-0204, (2007).
  • 33. Dempsey A. B., Walker N. R., Reitz R., ‘’Effect of cetane ımproves on gasoline, ethanol, and methanol reactivity and the ımplications for RCCI combustion’’, SAE International, 2013-01-1678, (2013).
  • 34. Splitter D., Hanson R., Kokjohn S., Wissink M. and Reitz R., ‘’Injection effects in low load RCCI dual-fuel combustion’’, SAE International, 2011-24-0047, (2011).
  • 35. Curran S., Hanson R. And Wagner R.,’’Effect of E85 on RCCI performance and emissions on a multi-cylinder light-duty diesel engine’’, SAE International, 2012-01-0376, (2012).
  • 36. Splitter D., Wissink M., DelVescovo D. and Reitz R., ‘’RCCI engine operation towards 60% thermal efficiency’’, SAE International, 2013-01-0279, (2013).
  • 37. Curran S., Hanson R. and Wagner R., ‘’Efficiency and Emissions Mapping of RCCI in a light-duty diesel engine’’, SAE International, 2013-01-0289, (2013).
  • 38. Hanson R., Curran S. and Wagner R., ‘’Effects of Biofuel Blends on RCCI Combustion in a Light-Duty, Multi-Cylinder Diesel Engine’’, SAE International, 2013-01-1653, (2013).
There are 38 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

Ahmet Uyumaz

Hamit Solmaz

Publication Date September 15, 2017
Submission Date September 22, 2017
Published in Issue Year 2017 Volume: 20 Issue: 3

Cite

APA Uyumaz, A., & Solmaz, H. (2017). Emme Havası Giriş Sıcaklığı ve Ön Karışımlı Yakıt Oranının RCCI Yanma Karakteristiklerine ve Motor Performansına Etkileri. Politeknik Dergisi, 20(3), 689-688. https://doi.org/10.2339/politeknik.339401
AMA Uyumaz A, Solmaz H. Emme Havası Giriş Sıcaklığı ve Ön Karışımlı Yakıt Oranının RCCI Yanma Karakteristiklerine ve Motor Performansına Etkileri. Politeknik Dergisi. September 2017;20(3):689-688. doi:10.2339/politeknik.339401
Chicago Uyumaz, Ahmet, and Hamit Solmaz. “Emme Havası Giriş Sıcaklığı Ve Ön Karışımlı Yakıt Oranının RCCI Yanma Karakteristiklerine Ve Motor Performansına Etkileri”. Politeknik Dergisi 20, no. 3 (September 2017): 689-88. https://doi.org/10.2339/politeknik.339401.
EndNote Uyumaz A, Solmaz H (September 1, 2017) Emme Havası Giriş Sıcaklığı ve Ön Karışımlı Yakıt Oranının RCCI Yanma Karakteristiklerine ve Motor Performansına Etkileri. Politeknik Dergisi 20 3 689–688.
IEEE A. Uyumaz and H. Solmaz, “Emme Havası Giriş Sıcaklığı ve Ön Karışımlı Yakıt Oranının RCCI Yanma Karakteristiklerine ve Motor Performansına Etkileri”, Politeknik Dergisi, vol. 20, no. 3, pp. 689–688, 2017, doi: 10.2339/politeknik.339401.
ISNAD Uyumaz, Ahmet - Solmaz, Hamit. “Emme Havası Giriş Sıcaklığı Ve Ön Karışımlı Yakıt Oranının RCCI Yanma Karakteristiklerine Ve Motor Performansına Etkileri”. Politeknik Dergisi 20/3 (September 2017), 689-688. https://doi.org/10.2339/politeknik.339401.
JAMA Uyumaz A, Solmaz H. Emme Havası Giriş Sıcaklığı ve Ön Karışımlı Yakıt Oranının RCCI Yanma Karakteristiklerine ve Motor Performansına Etkileri. Politeknik Dergisi. 2017;20:689–688.
MLA Uyumaz, Ahmet and Hamit Solmaz. “Emme Havası Giriş Sıcaklığı Ve Ön Karışımlı Yakıt Oranının RCCI Yanma Karakteristiklerine Ve Motor Performansına Etkileri”. Politeknik Dergisi, vol. 20, no. 3, 2017, pp. 689-8, doi:10.2339/politeknik.339401.
Vancouver Uyumaz A, Solmaz H. Emme Havası Giriş Sıcaklığı ve Ön Karışımlı Yakıt Oranının RCCI Yanma Karakteristiklerine ve Motor Performansına Etkileri. Politeknik Dergisi. 2017;20(3):689-8.