Review
BibTex RIS Cite

Şekil Hafıza Davranışlarının Termodinamiği

Year 2018, Volume: 21 Issue: 1, 201 - 211, 31.03.2018
https://doi.org/10.2339/politeknik.386895

Abstract

Akıllı malzemeler bugünkü
teknolojik uygulamalarda önemli bir yer tutmaktadır. Metalik akıllı malzemeler
olan şekil hafızalı alaşımlar ise yüksek dayanım ve fonksiyonel özellik
gerektiren uygulamalarda kullanılma potansiyeline sahiptir. Şekil hafızalı
alaşımların sıradışı özellikleri, termo-elastik martenzitik faz dönüşümlerinden
kaynaklanmaktadır. Bu çalışmada, termo-elastik martenzitik faz dönüşümleri
konusunda yapılmış çalışmalarda kullanılan termodinamik teorileri, denge
termodinamik teorisi ve fenomolojik termodinamik teorisi olarak iki ana başlık
altında incelenmiştir. Daha sonra şekil hafızalı alaşımların dönüşüm
sıcaklıkları ve ısıları termodinamik formüller ile ifade edilmiştir. Son olarak
ise şekil hafızalı alaşımların davranışları genelleştirilmiş termodinamik
teorileri ile açıklanmıştır. 

References

  • [1] Wayman, C.M. and Otsuka,K. Shape Memory Materials. Cambridge University Press, (1998).
  • [2] Acar,E., Ozbulut, O.E. and Karaca,H.E. “Experimental investigation and modeling of the loading rate and temperature dependent superelastic response of a high performance shape-memory alloy,” Smart Mater. Struct., 24; 7, 75020, (2015).
  • [3] Karaca,H.E., Acar,E., Ded,G.S.,Saghaian,S.M.,Basaran,B.,Tobe,H., Kok,M. Maier,H.J., Noebe,R.D. and Chumlyakov,Y.I. “Microstructure and transformation related behaviors of a Ni45.3Ti29.7Hf20Cu5 high temperature shape memory alloy,” Mater. Sci. Eng. A, 627; 82–94, (2015).
  • [4] Karaca,H.E.,Acar,E.,Basaran,B.,Noebe,R.D., Bigelow,G., Garg,A., Yang,F., Mills, M.J. and Chumlyakov, Y.I.“Effects of aging on [111] oriented NiTiHfPd single crystals under compression,” Scr. Mater., 67; 7, 728–731, (2012).
  • [5] Karaca,H.E., Acar,E., Ded,G.S.,Basaran,B., Tobe,H., Noebe,R.D.,Bigelow,G., and Chumlyakov,Y.I. “Shape memory behavior of high strength NiTiHfPd polycrystalline alloys,” Acta Mater., 61; 13,5036–5049, (2013).
  • [6] Lin,H.C., Wu,S.K., Chou,T.S. and Kao,H.P. “The effects of cold rolling on the martensitic transformation of an equiatomic TiNi alloy,” Acta Metall. Mater., 39; 9, 2069–2080, (1991).
  • [7] Acar,E., Karaca,H.E.,Tobe,H., Noebe,R.D. and Chumlyakov,Y.I. “Orientation dependence of the shape memory properties in aged Ni45.3Ti29.7Hf20Pd5 single crystals,” Intermetallics, 54; 60–68, (2014).
  • [8] Karaca,H.E., Acar,E.,Basaran,B., Noebe,R.D. and Chumlyakov,Y.I. “Superelastic response and damping capacity of ultrahigh-strength [111]-oriented NiTiHfPd single crystals,” Scr. Mater., 67;5, 447–450, (2012).
  • [9] Acar, E.,Tobe,H., Kaya, I.Karaca,H.E. and Chumlyakov,Y.I., “Compressive response of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 shape-memory alloys,” J. Mater. Sci.,50;4,1924–1934, (2015).
  • [10] Liu,Y. and Yang,H. “The concern of elasticity in stress-induced martensitic transformation in NiTi,” Mater. Sci. Eng. A, 260;1, 240–245, (1999).
  • [11] Wollants, P.,Roos, J.R. and Delaey,L., “Thermally- and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics,” Prog. Mater. Sci., 37;3, 227–288, (1993).
  • [12] McCormick,P.G. and Liu,Y. “Thermodynamic analysis of the martensitic transformation in NiTi—II. Effect of transformation cycling,” Acta Metall. Mater., 42; 7,2407–2413, (1994).
  • [13] Ortín,J. and Planes, A.“Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations,” Acta Metall., 36; 8, 1873–1889, (1988).
  • [14] Acar,E. “Precipitation, orientation and composition effects on the shape memory properties of high strength NiTiHfPd alloys,” University of Kentucky, (2014).
  • [15] Kaya, I., Tobe,H., Karaca, H.E.,Acar,E. and Chumlyakov,Y.I. “Shape Memory Behavior of [111]-Oriented NiTi Single Crystals After Stress-Assisted Aging,” Acta Metall. Sin. English Lett., 29;3, 282–286, (2016).
  • [16] Tong,H.C. and Wayman,C.M. “Characteristic temperatures and other properties of thermoelastic martensites,” Acta Metall., 22;7, 887–896, (1974).
  • [17] Lagoudas, D.C. and Kumar,P.K. “Introduction to Shape Memory Alloys,” in Shape Memory Alloys, Springer,1–51,(2008).
  • [18] Tong, H.C. and Wayman,C.M. “Thermodynamics of thermoelastic martensitic transformations,” Acta Metall., 23; 2,209–215, (1975).
  • [19] Liu, Y. “Thermodynamics of the shape memory effect in Ti–Ni alloys,” in Shape memory Alloys for Biomedical Applications, T. Y. and S. Miyazaki, Ed. Woodhead Publishing, (2009).
  • [20] Wollants,P., Roos, J.R. and Delaey,L. “On the stress-dependence of the latent heat of transformation as related to the efficiency of a work performing cycle of a memory engine,” Scr. Metall.,14;11,1217–1223, (1980).
  • [21] Wollants,P., De Bonte, M. and Roos,J.R. “Comments on ‘The transformation free energy in ordered Fe3Pt,”’ Scripta Metallurgica, 17; 5. Pergamon, 671–672, (1983).
  • [22] Salzbrenner,R.J. and Cohen,M. “On the thermodynamics of thermoelastic martensitic transformations,” Acta Metall., 27;5,739–748, (1979).
  • [23] Olson,G.B. and M. Cohen, M.“Thermoelastic behavior in martensitic transformations,” Scr. Metall., 9;11,1247–1254, (1975).
  • [24] Salzbrenner,R.J. and Cohen,M. “On the thermodynamics of thermoelastic martensitic transformations,” Acta Metall., 27;5,739–748, (1979).
  • [25] Khalil-Allafi,J., Dlouhy,A. and Eggeler,G. “Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations,” Acta Mater., 50;17,4255–4274, (2002).
  • [26] Ortín,J. and Planes,A. “Thermodynamics of thermoelastic martensitic transformations,” Acta Metall., 37;5,1433–1441, (1989).
  • [27] Liu,Y. and McCormick,P.G. “Thermodynamic analysis of the martensitic transformation in NiTi—I. Effect of heat treatment on transformation behaviour,” Acta Metall. Mater.,42; 7, 2401–2406, (1994).
  • [28] Wayman,C.M. and Tong,H.C. “On the equilibrium temperature in thermoelastic martensitic transformations,” Scr. Metall., 11; 5,341–343, (1977).
  • [29] Stachowiak,G.B. and McCormick,P.G., “Shape memory behaviour associated with the R and martensitic transformations in a NiTi alloy,” Acta Metall., 36; 2, 291–297, (1988).
  • [30] Stachowiak,G.B. and McCormick, P.G.“Two stage yielding in a NiTi alloy,” Scr. Metall., 21;3, 403–406, (1987).
  • [31] Kakeshita, T.,Saburi,T. and Shimizu, K.“Effects of hydrostatic pressure and magnetic field on martensitic transformations,” Mater. Sci. Eng. A, 273;21–39, (1999).
  • [32] Zhang,S. and McCormick,P.G. “Thermodynamic Analysis of Shape Memory Phenomena — II. Modelling,” Acta Mater., 48;12,3091–3101, (2000).
  • [33] Zhang,S. and McCormick,P.G. “Thermodynamic analysis of shape memory phenomena — I. Effect of transformation plasticity on elastic strain energy,” Acta Mater., 48; 12, 3081–3089, (2000).
  • [34] Mur, G., Javier,F. “Friction and stored elastic energy in Cu-Zn-A1 single crystals with pseudoelastic behaviour,” Thermochim. Acta, 290;2,167–171, (1997).
  • [35] Acar, E.,Karaca,H.E., Basaran, B.,Yang,F.,Mills,M.J.,Noebe,R.D. and Chumlyakov,Y.I. “Role of aging time on the microstructure and shape memory properties of NiTiHfPd single crystals,” Mater. Sci. Eng. A, 573;161–165, (2013).
  • [36] Acar, E.,Karaca,H.E., Tobe,H., Noebe,R.D. and Chumlyakov,Y.I. “Characterization of the shape memory properties of a Ni45.3Ti39.7Hf10Pd5 alloy,” J. Alloys Compd., 578; 297–302, (2013).
  • [37] Karaca, H.E.,Saghaian,S.M., Tobe, H.,Acar, E.,Basaran, B.,Nagasako,M., Kainuma,R. and Noebe,R.D. “Diffusionless phase transformation characteristics of Mn75.7Pt24.3,” J. Alloys Compd., 589; 412–415, (2014).
  • [38] Nishida,M.,Wayman,C.M. and Honma,T. “Precipitation processes in near-equiatomic TiNi shape memory alloys,” Metall. Trans. A, 17;9, 1505–1515, (1986).
  • [39] Tong,H.C. and Wayman,C.M. “Some stress-temperature-energy relationships for thermoelastic martensitic transformations,” Scr. Metall., 8;2,93–100, (1974).
  • [40] Shimizu,K. and Kakeshita,T. “Effect of Magnetic Fields on Martensitic Transformations in Ferrous Alloys and Steels,” ISIJ Int., 29; 97–116, (1989).

Thermodynamics of Shape memory Behaviours

Year 2018, Volume: 21 Issue: 1, 201 - 211, 31.03.2018
https://doi.org/10.2339/politeknik.386895

Abstract

Smart materials play important roles in today’s
technology. Shape memory alloys are metallic class of smart materials and they
have promising potentials in applications that require high strength and
functionality. The origin of the unusual properties of shape memory alloys is
thermo-elastic martensitic phase transformation. In this study, thermodynamic
theories used in analyzing the thermo-elastic martensitic phase transformations
are reviewed by considering equilibrium thermodynamic theory and phonemenological
thermodynamic theory. Then, transformation temperatures and heats are expressed
by thermodynamic equations. Finally, shape memory behaviors are investigated by
generalized thermodynamic theories.

References

  • [1] Wayman, C.M. and Otsuka,K. Shape Memory Materials. Cambridge University Press, (1998).
  • [2] Acar,E., Ozbulut, O.E. and Karaca,H.E. “Experimental investigation and modeling of the loading rate and temperature dependent superelastic response of a high performance shape-memory alloy,” Smart Mater. Struct., 24; 7, 75020, (2015).
  • [3] Karaca,H.E., Acar,E., Ded,G.S.,Saghaian,S.M.,Basaran,B.,Tobe,H., Kok,M. Maier,H.J., Noebe,R.D. and Chumlyakov,Y.I. “Microstructure and transformation related behaviors of a Ni45.3Ti29.7Hf20Cu5 high temperature shape memory alloy,” Mater. Sci. Eng. A, 627; 82–94, (2015).
  • [4] Karaca,H.E.,Acar,E.,Basaran,B.,Noebe,R.D., Bigelow,G., Garg,A., Yang,F., Mills, M.J. and Chumlyakov, Y.I.“Effects of aging on [111] oriented NiTiHfPd single crystals under compression,” Scr. Mater., 67; 7, 728–731, (2012).
  • [5] Karaca,H.E., Acar,E., Ded,G.S.,Basaran,B., Tobe,H., Noebe,R.D.,Bigelow,G., and Chumlyakov,Y.I. “Shape memory behavior of high strength NiTiHfPd polycrystalline alloys,” Acta Mater., 61; 13,5036–5049, (2013).
  • [6] Lin,H.C., Wu,S.K., Chou,T.S. and Kao,H.P. “The effects of cold rolling on the martensitic transformation of an equiatomic TiNi alloy,” Acta Metall. Mater., 39; 9, 2069–2080, (1991).
  • [7] Acar,E., Karaca,H.E.,Tobe,H., Noebe,R.D. and Chumlyakov,Y.I. “Orientation dependence of the shape memory properties in aged Ni45.3Ti29.7Hf20Pd5 single crystals,” Intermetallics, 54; 60–68, (2014).
  • [8] Karaca,H.E., Acar,E.,Basaran,B., Noebe,R.D. and Chumlyakov,Y.I. “Superelastic response and damping capacity of ultrahigh-strength [111]-oriented NiTiHfPd single crystals,” Scr. Mater., 67;5, 447–450, (2012).
  • [9] Acar, E.,Tobe,H., Kaya, I.Karaca,H.E. and Chumlyakov,Y.I., “Compressive response of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 shape-memory alloys,” J. Mater. Sci.,50;4,1924–1934, (2015).
  • [10] Liu,Y. and Yang,H. “The concern of elasticity in stress-induced martensitic transformation in NiTi,” Mater. Sci. Eng. A, 260;1, 240–245, (1999).
  • [11] Wollants, P.,Roos, J.R. and Delaey,L., “Thermally- and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics,” Prog. Mater. Sci., 37;3, 227–288, (1993).
  • [12] McCormick,P.G. and Liu,Y. “Thermodynamic analysis of the martensitic transformation in NiTi—II. Effect of transformation cycling,” Acta Metall. Mater., 42; 7,2407–2413, (1994).
  • [13] Ortín,J. and Planes, A.“Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations,” Acta Metall., 36; 8, 1873–1889, (1988).
  • [14] Acar,E. “Precipitation, orientation and composition effects on the shape memory properties of high strength NiTiHfPd alloys,” University of Kentucky, (2014).
  • [15] Kaya, I., Tobe,H., Karaca, H.E.,Acar,E. and Chumlyakov,Y.I. “Shape Memory Behavior of [111]-Oriented NiTi Single Crystals After Stress-Assisted Aging,” Acta Metall. Sin. English Lett., 29;3, 282–286, (2016).
  • [16] Tong,H.C. and Wayman,C.M. “Characteristic temperatures and other properties of thermoelastic martensites,” Acta Metall., 22;7, 887–896, (1974).
  • [17] Lagoudas, D.C. and Kumar,P.K. “Introduction to Shape Memory Alloys,” in Shape Memory Alloys, Springer,1–51,(2008).
  • [18] Tong, H.C. and Wayman,C.M. “Thermodynamics of thermoelastic martensitic transformations,” Acta Metall., 23; 2,209–215, (1975).
  • [19] Liu, Y. “Thermodynamics of the shape memory effect in Ti–Ni alloys,” in Shape memory Alloys for Biomedical Applications, T. Y. and S. Miyazaki, Ed. Woodhead Publishing, (2009).
  • [20] Wollants,P., Roos, J.R. and Delaey,L. “On the stress-dependence of the latent heat of transformation as related to the efficiency of a work performing cycle of a memory engine,” Scr. Metall.,14;11,1217–1223, (1980).
  • [21] Wollants,P., De Bonte, M. and Roos,J.R. “Comments on ‘The transformation free energy in ordered Fe3Pt,”’ Scripta Metallurgica, 17; 5. Pergamon, 671–672, (1983).
  • [22] Salzbrenner,R.J. and Cohen,M. “On the thermodynamics of thermoelastic martensitic transformations,” Acta Metall., 27;5,739–748, (1979).
  • [23] Olson,G.B. and M. Cohen, M.“Thermoelastic behavior in martensitic transformations,” Scr. Metall., 9;11,1247–1254, (1975).
  • [24] Salzbrenner,R.J. and Cohen,M. “On the thermodynamics of thermoelastic martensitic transformations,” Acta Metall., 27;5,739–748, (1979).
  • [25] Khalil-Allafi,J., Dlouhy,A. and Eggeler,G. “Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations,” Acta Mater., 50;17,4255–4274, (2002).
  • [26] Ortín,J. and Planes,A. “Thermodynamics of thermoelastic martensitic transformations,” Acta Metall., 37;5,1433–1441, (1989).
  • [27] Liu,Y. and McCormick,P.G. “Thermodynamic analysis of the martensitic transformation in NiTi—I. Effect of heat treatment on transformation behaviour,” Acta Metall. Mater.,42; 7, 2401–2406, (1994).
  • [28] Wayman,C.M. and Tong,H.C. “On the equilibrium temperature in thermoelastic martensitic transformations,” Scr. Metall., 11; 5,341–343, (1977).
  • [29] Stachowiak,G.B. and McCormick,P.G., “Shape memory behaviour associated with the R and martensitic transformations in a NiTi alloy,” Acta Metall., 36; 2, 291–297, (1988).
  • [30] Stachowiak,G.B. and McCormick, P.G.“Two stage yielding in a NiTi alloy,” Scr. Metall., 21;3, 403–406, (1987).
  • [31] Kakeshita, T.,Saburi,T. and Shimizu, K.“Effects of hydrostatic pressure and magnetic field on martensitic transformations,” Mater. Sci. Eng. A, 273;21–39, (1999).
  • [32] Zhang,S. and McCormick,P.G. “Thermodynamic Analysis of Shape Memory Phenomena — II. Modelling,” Acta Mater., 48;12,3091–3101, (2000).
  • [33] Zhang,S. and McCormick,P.G. “Thermodynamic analysis of shape memory phenomena — I. Effect of transformation plasticity on elastic strain energy,” Acta Mater., 48; 12, 3081–3089, (2000).
  • [34] Mur, G., Javier,F. “Friction and stored elastic energy in Cu-Zn-A1 single crystals with pseudoelastic behaviour,” Thermochim. Acta, 290;2,167–171, (1997).
  • [35] Acar, E.,Karaca,H.E., Basaran, B.,Yang,F.,Mills,M.J.,Noebe,R.D. and Chumlyakov,Y.I. “Role of aging time on the microstructure and shape memory properties of NiTiHfPd single crystals,” Mater. Sci. Eng. A, 573;161–165, (2013).
  • [36] Acar, E.,Karaca,H.E., Tobe,H., Noebe,R.D. and Chumlyakov,Y.I. “Characterization of the shape memory properties of a Ni45.3Ti39.7Hf10Pd5 alloy,” J. Alloys Compd., 578; 297–302, (2013).
  • [37] Karaca, H.E.,Saghaian,S.M., Tobe, H.,Acar, E.,Basaran, B.,Nagasako,M., Kainuma,R. and Noebe,R.D. “Diffusionless phase transformation characteristics of Mn75.7Pt24.3,” J. Alloys Compd., 589; 412–415, (2014).
  • [38] Nishida,M.,Wayman,C.M. and Honma,T. “Precipitation processes in near-equiatomic TiNi shape memory alloys,” Metall. Trans. A, 17;9, 1505–1515, (1986).
  • [39] Tong,H.C. and Wayman,C.M. “Some stress-temperature-energy relationships for thermoelastic martensitic transformations,” Scr. Metall., 8;2,93–100, (1974).
  • [40] Shimizu,K. and Kakeshita,T. “Effect of Magnetic Fields on Martensitic Transformations in Ferrous Alloys and Steels,” ISIJ Int., 29; 97–116, (1989).
There are 40 citations in total.

Details

Subjects Engineering
Journal Section Review Article
Authors

Emre Acar

Murat Aydın This is me

Publication Date March 31, 2018
Submission Date February 14, 2017
Published in Issue Year 2018 Volume: 21 Issue: 1

Cite

APA Acar, E., & Aydın, M. (2018). Şekil Hafıza Davranışlarının Termodinamiği. Politeknik Dergisi, 21(1), 201-211. https://doi.org/10.2339/politeknik.386895
AMA Acar E, Aydın M. Şekil Hafıza Davranışlarının Termodinamiği. Politeknik Dergisi. March 2018;21(1):201-211. doi:10.2339/politeknik.386895
Chicago Acar, Emre, and Murat Aydın. “Şekil Hafıza Davranışlarının Termodinamiği”. Politeknik Dergisi 21, no. 1 (March 2018): 201-11. https://doi.org/10.2339/politeknik.386895.
EndNote Acar E, Aydın M (March 1, 2018) Şekil Hafıza Davranışlarının Termodinamiği. Politeknik Dergisi 21 1 201–211.
IEEE E. Acar and M. Aydın, “Şekil Hafıza Davranışlarının Termodinamiği”, Politeknik Dergisi, vol. 21, no. 1, pp. 201–211, 2018, doi: 10.2339/politeknik.386895.
ISNAD Acar, Emre - Aydın, Murat. “Şekil Hafıza Davranışlarının Termodinamiği”. Politeknik Dergisi 21/1 (March 2018), 201-211. https://doi.org/10.2339/politeknik.386895.
JAMA Acar E, Aydın M. Şekil Hafıza Davranışlarının Termodinamiği. Politeknik Dergisi. 2018;21:201–211.
MLA Acar, Emre and Murat Aydın. “Şekil Hafıza Davranışlarının Termodinamiği”. Politeknik Dergisi, vol. 21, no. 1, 2018, pp. 201-1, doi:10.2339/politeknik.386895.
Vancouver Acar E, Aydın M. Şekil Hafıza Davranışlarının Termodinamiği. Politeknik Dergisi. 2018;21(1):201-1.