Frequency Dependent Dielectric Properties of ZnSe/p-Si Diode
Year 2019,
Volume: 22 Issue: 1, 63 - 67, 01.03.2019
Hasan Hüseyin Güllü
Dilber Esra Yıldız
Abstract
The study on electrical and
dielectric properties of the ZnSe/p-Si diode have been investigated using
admittance measurements in the frequency range of 50 kHz - 1 MHz at room
temperature. The experimental values of dielectric constant and dielectric loss
are found in decreasing behavior with increase in frequency due to the
characteristics of the interface capacitance in the diode and so that the
similar behavior was observed in loss tangent. With the contribution of the
series resistance, the results of the electrical conductivity analysis
indicated direct proportionality to the frequency change. Additionally,
electric modulus was discussed to represent the dielectric relaxation process
in the diode structure.
References
- [1] Wasa, K., Hayakawa, S., “RF-Sputtered n-p Heterojunction Diodes of ZnSe-Si and ZnSe-GaAs”, Jpn. J. Appl. Phys. 12: 408-414 (1973).
- [2] Darwish, S., Riad, A.S., Soliman, H.S., “Electrical conductivity and the effect of temperature on photoconduction of n-ZnSe/p-Si rectifying heterojunction cells”, Semicond. Sci. Technol. 11: 96-102 (1996).
- [3] Jiansheng, J., Zhang, W., Bello, I., Lee, C.S., Lee, S.T., “One-dimensional II–VI nanostructures: Synthesis, properties and optoelectronic applications”, Nano Today 5: 313-336 (2010).
- [4] Venkatachalam, S., Mangalaraj, D., Narayandass, Sa.K., Velumani, S., Schabes-Retchkiman, P., Ascencio, J.A., “Structural studies on vacuum evaporated ZnSe/p-Si Schottky diodes”, Mater. Chem. Phys. 103: 305-311 (2007).
- [5] Zhang, X., Zhang, X., Wang, L., Wu, Y., Wang, Y., Gao, P., Han, Y., Jie, J., “ZnSe nanowire/Si p–n heterojunctions: device construction and optoelectronic applications”, Nanotechnology 24: 395201 (2013).
- [6] Gullu, H.H., Bayrakli, O., Yildiz, D.E., Parlak, M., “Study on the electrical properties of ZnSe/si heterojunction diode”, J. Mater. Sci.: Mater. Electron. 28: 17809-17815 (2017).
- [7] Chattorpadhyay, P., Raychaudhuri, B., “Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes”, Solid-State Electron. 36: 605-610 (1993).
- [8] Gokcen, M., Altuntas, H., “On the profile of temperature dependent electrical and dielectric properties of Au/SiO2/n-GaAs (MOS) structures at various frequencies”, Physica B 404: 4221-4224 (2009).
- [9] Tataroglu, A., Yucedag, I., Altindal, S., “Dielectric properties and ac electrical conductivity studies of MIS type Schottky diodes at high temperatures”, Microelectron. Eng. 85: 1518-1523 (2008).
- [10] Akkal, B., Benamara, Z., Gruzza, B., Bideux, L., “Characterization of interface states at Au/InSb/InP(100) Schottky barrier diodes as a function of frequency”, Vacuum 57: 219-228 (2002).
- [11] Sze, S.M., “Physics of Semiconductor Devices”, Wiley, New York, 1981.
- [12] Murat, P., “The contribution of broad interface state bands to the capacitance of metal/semiconductor diodes”, Solid-State Commun. 59: 67-70 (1986).
- [13] Murthy, B.S., Rao, P.R.S., “Frequency dependence of junction capacitance”, IETE J. Res. 17: 273-276 (1970).
- [14] Haddara, H.S., El-Sayed, M., “Conductance technique in MOSFETs: Study of interface trap properties in the depletion and weak inversion regimes”, Solid-State Electron. 31: 1289-1298 (1998).
- [15] Nicollian, E.H., Goetzberger, A., “MOS conductance technique for measuring surface state parameters”, Appl. Phys. Lett. 7: 216-219 (1965).
- [16] Bulbul, M. M., Zeyrek, S., “Frequency dependent capacitance and conductance–voltage characteristics of Al/Si3N4/p-Si(100) MIS diodes”, Microelectron. Eng. 83: 2522-2526 (2006)
- [17] Tataroglu, A., Altindal, S., “Study on the frequency dependence of electrical and dielectric characteristics of Au/SnO2/n-Si (MIS) structures”, Microelectron. Eng. 85: 1866-1871 (2008)
- [18] Symth, C.P. “Dielectric Behavior and Structure”, McGraw-Hill, New York, 1955.
- [19] Kar, S., Narasimhan, R.L., “Characteristics of the Si- SiO2 interface states in thin (70-230 Å) oxide structures”, J. Appl. Phys. 61: 5353-5359 (1987).
- [20] Daniel, V.V., “Dielectric Relaxation”, Academic, London, 1967.
- [21] Yildiz, D.E., Dokme, I., “Frequency and gate voltage effects on the dielectric properties and electrical conductivity of Al/SiO2/p-Si metal-insulator-semiconductor Schottky diodes”, J. Appl. Phys. 110: 014507 (2011).
- [22] Chelkowski, A., “Dielectric Physics”, Elseiver, Amsterdam, 1980.
- [23] Tataroglu, A., Altindal, S., Bulbul, M.M., “Temperature and frequency dependent electrical and dielectric properties of Al/SiO2/p-Si (MOS) structure”, Microelectron. Eng. 81: 140-149 (2005).
- [24] Kaya, A., Vural, O., Tecimer, H., Demirezen, S., Altindal, S., “Frequency and voltage dependence of dielectric properties and electric modulus in Au/PVC + TCNQ/p-Si structure at room temperature”, Curr. Appl. Phys. 14: 322-330 (2014).
- [25] Tataroglu, A., “Dielectric Permittivity, AC Conductivity and Electric Modulus Properties of Metal/Ferroelectric/Semiconductor (MFS) Structures”, GU J. Sci. 26: 501-508 (2013)
- [26] Ataseven, T., Tataroglu, A., “Temperature-dependent dielectric properties of Au/Si3N4/n-Si (metal-insulator-semiconductor) structures”, Chin. Phys. B 22: 117310-1-6 (2013)
- [27] Strzalkowski, I., Joshi, S., Crowell, C. R., “Dielectric constant and its temperature dependence for GaAs, CdTe, and ZnSe”, Appl. Phys. Lett. 28: 350-352 (1976)
- [28] Altindal, S., Asar, Y. S., Kaya, A., Sonmez, Z., “Investigation of interface states in Al/SiO2/p-Si (MIS) structures with 50 and 826 angstrom SiO2 interfacial layer using admittance spectroscopy method”, J. Optoelectron. Adv. Mater. 14: 998–1004 (2012)
- [29] Bilkan, C., Asisian-Kalandaragh, Y., Altindal, S., Shokrani-Havigh, R., “Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structure”, Physica B 500: 154-160 (2016)
- [30] Popescu, M. Bunget, I., “Physics of Solid Dielectrics”, Elseiver, Amsterdam, 1984.
- [31] Riad, A.S., Korayem, M.T., Abdel-Malik, T.G., “AC conductivity and dielectric measurements of metal-free phthalocyanine thin films dispersed in polycarbonate”, Physica B 270:140-147 (1999).
- [32] Macedo, P.B., Moynihan, C.T., Bose, R., “Role of ionic diffusion in polarization in vitreous ionic conductors”, Phys. Chem. Glasses 13:171-179 (1972).
- [33] Hoque, Md.M., Dutta, A., Kumar, S., Sinha, T.P., “Dielectric Relaxation and Conductivity of Ba(Mg1/3Ta2/3)O3 and Ba(Zn1/3Ta2/3)O3”, J. Mater. Sci. Technol. 30: 311-320 (2014).
- [34] Baraz, N., Yucedag, I., Asisian-Kalandaragh, Y., Altindal, S., “Determining electrical and dielectric parameters of dependence as function of frequencies in Al/ZnS-PVA/p-Si (MPS) structures”, J. Mater. Sci.: Mater. Electron. 28: 1315-1351 (2017)
Frequency Dependent Dielectric Properties of ZnSe/p-Si Diode
Year 2019,
Volume: 22 Issue: 1, 63 - 67, 01.03.2019
Hasan Hüseyin Güllü
Dilber Esra Yıldız
Abstract
The study on electrical and
dielectric properties of the ZnSe/p-Si diode have been investigated using
admittance measurements in the frequency range of 50 kHz - 1 MHz at room
temperature. The experimental values of dielectric constant and dielectric loss
are found in decreasing behavior with increase in frequency due to the
characteristics of the interface capacitance in the diode and so that the
similar behavior was observed in loss tangent. With the contribution of the
series resistance, the results of the electrical conductivity analysis
indicated direct proportionality to the frequency change. Additionally,
electric modulus was discussed to represent the dielectric relaxation process
in the diode structure.
References
- [1] Wasa, K., Hayakawa, S., “RF-Sputtered n-p Heterojunction Diodes of ZnSe-Si and ZnSe-GaAs”, Jpn. J. Appl. Phys. 12: 408-414 (1973).
- [2] Darwish, S., Riad, A.S., Soliman, H.S., “Electrical conductivity and the effect of temperature on photoconduction of n-ZnSe/p-Si rectifying heterojunction cells”, Semicond. Sci. Technol. 11: 96-102 (1996).
- [3] Jiansheng, J., Zhang, W., Bello, I., Lee, C.S., Lee, S.T., “One-dimensional II–VI nanostructures: Synthesis, properties and optoelectronic applications”, Nano Today 5: 313-336 (2010).
- [4] Venkatachalam, S., Mangalaraj, D., Narayandass, Sa.K., Velumani, S., Schabes-Retchkiman, P., Ascencio, J.A., “Structural studies on vacuum evaporated ZnSe/p-Si Schottky diodes”, Mater. Chem. Phys. 103: 305-311 (2007).
- [5] Zhang, X., Zhang, X., Wang, L., Wu, Y., Wang, Y., Gao, P., Han, Y., Jie, J., “ZnSe nanowire/Si p–n heterojunctions: device construction and optoelectronic applications”, Nanotechnology 24: 395201 (2013).
- [6] Gullu, H.H., Bayrakli, O., Yildiz, D.E., Parlak, M., “Study on the electrical properties of ZnSe/si heterojunction diode”, J. Mater. Sci.: Mater. Electron. 28: 17809-17815 (2017).
- [7] Chattorpadhyay, P., Raychaudhuri, B., “Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes”, Solid-State Electron. 36: 605-610 (1993).
- [8] Gokcen, M., Altuntas, H., “On the profile of temperature dependent electrical and dielectric properties of Au/SiO2/n-GaAs (MOS) structures at various frequencies”, Physica B 404: 4221-4224 (2009).
- [9] Tataroglu, A., Yucedag, I., Altindal, S., “Dielectric properties and ac electrical conductivity studies of MIS type Schottky diodes at high temperatures”, Microelectron. Eng. 85: 1518-1523 (2008).
- [10] Akkal, B., Benamara, Z., Gruzza, B., Bideux, L., “Characterization of interface states at Au/InSb/InP(100) Schottky barrier diodes as a function of frequency”, Vacuum 57: 219-228 (2002).
- [11] Sze, S.M., “Physics of Semiconductor Devices”, Wiley, New York, 1981.
- [12] Murat, P., “The contribution of broad interface state bands to the capacitance of metal/semiconductor diodes”, Solid-State Commun. 59: 67-70 (1986).
- [13] Murthy, B.S., Rao, P.R.S., “Frequency dependence of junction capacitance”, IETE J. Res. 17: 273-276 (1970).
- [14] Haddara, H.S., El-Sayed, M., “Conductance technique in MOSFETs: Study of interface trap properties in the depletion and weak inversion regimes”, Solid-State Electron. 31: 1289-1298 (1998).
- [15] Nicollian, E.H., Goetzberger, A., “MOS conductance technique for measuring surface state parameters”, Appl. Phys. Lett. 7: 216-219 (1965).
- [16] Bulbul, M. M., Zeyrek, S., “Frequency dependent capacitance and conductance–voltage characteristics of Al/Si3N4/p-Si(100) MIS diodes”, Microelectron. Eng. 83: 2522-2526 (2006)
- [17] Tataroglu, A., Altindal, S., “Study on the frequency dependence of electrical and dielectric characteristics of Au/SnO2/n-Si (MIS) structures”, Microelectron. Eng. 85: 1866-1871 (2008)
- [18] Symth, C.P. “Dielectric Behavior and Structure”, McGraw-Hill, New York, 1955.
- [19] Kar, S., Narasimhan, R.L., “Characteristics of the Si- SiO2 interface states in thin (70-230 Å) oxide structures”, J. Appl. Phys. 61: 5353-5359 (1987).
- [20] Daniel, V.V., “Dielectric Relaxation”, Academic, London, 1967.
- [21] Yildiz, D.E., Dokme, I., “Frequency and gate voltage effects on the dielectric properties and electrical conductivity of Al/SiO2/p-Si metal-insulator-semiconductor Schottky diodes”, J. Appl. Phys. 110: 014507 (2011).
- [22] Chelkowski, A., “Dielectric Physics”, Elseiver, Amsterdam, 1980.
- [23] Tataroglu, A., Altindal, S., Bulbul, M.M., “Temperature and frequency dependent electrical and dielectric properties of Al/SiO2/p-Si (MOS) structure”, Microelectron. Eng. 81: 140-149 (2005).
- [24] Kaya, A., Vural, O., Tecimer, H., Demirezen, S., Altindal, S., “Frequency and voltage dependence of dielectric properties and electric modulus in Au/PVC + TCNQ/p-Si structure at room temperature”, Curr. Appl. Phys. 14: 322-330 (2014).
- [25] Tataroglu, A., “Dielectric Permittivity, AC Conductivity and Electric Modulus Properties of Metal/Ferroelectric/Semiconductor (MFS) Structures”, GU J. Sci. 26: 501-508 (2013)
- [26] Ataseven, T., Tataroglu, A., “Temperature-dependent dielectric properties of Au/Si3N4/n-Si (metal-insulator-semiconductor) structures”, Chin. Phys. B 22: 117310-1-6 (2013)
- [27] Strzalkowski, I., Joshi, S., Crowell, C. R., “Dielectric constant and its temperature dependence for GaAs, CdTe, and ZnSe”, Appl. Phys. Lett. 28: 350-352 (1976)
- [28] Altindal, S., Asar, Y. S., Kaya, A., Sonmez, Z., “Investigation of interface states in Al/SiO2/p-Si (MIS) structures with 50 and 826 angstrom SiO2 interfacial layer using admittance spectroscopy method”, J. Optoelectron. Adv. Mater. 14: 998–1004 (2012)
- [29] Bilkan, C., Asisian-Kalandaragh, Y., Altindal, S., Shokrani-Havigh, R., “Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structure”, Physica B 500: 154-160 (2016)
- [30] Popescu, M. Bunget, I., “Physics of Solid Dielectrics”, Elseiver, Amsterdam, 1984.
- [31] Riad, A.S., Korayem, M.T., Abdel-Malik, T.G., “AC conductivity and dielectric measurements of metal-free phthalocyanine thin films dispersed in polycarbonate”, Physica B 270:140-147 (1999).
- [32] Macedo, P.B., Moynihan, C.T., Bose, R., “Role of ionic diffusion in polarization in vitreous ionic conductors”, Phys. Chem. Glasses 13:171-179 (1972).
- [33] Hoque, Md.M., Dutta, A., Kumar, S., Sinha, T.P., “Dielectric Relaxation and Conductivity of Ba(Mg1/3Ta2/3)O3 and Ba(Zn1/3Ta2/3)O3”, J. Mater. Sci. Technol. 30: 311-320 (2014).
- [34] Baraz, N., Yucedag, I., Asisian-Kalandaragh, Y., Altindal, S., “Determining electrical and dielectric parameters of dependence as function of frequencies in Al/ZnS-PVA/p-Si (MPS) structures”, J. Mater. Sci.: Mater. Electron. 28: 1315-1351 (2017)