Research Article
BibTex RIS Cite

Effect of Recycled Acrylonitrile Butadiene Styrene (ABS) Plastic Material on Moldability

Year 2020, Volume: 23 Issue: 1, 1 - 6, 01.03.2020
https://doi.org/10.2339/politeknik.501800

Abstract

It is difficult and costly to disassemble impurities in plastic materials during recycling. Foreign materials such as oil, dirt, metal particles and paint are mixed into a thin layer of plastic when using plastic products. The use of recyclable materials in many applications is believed to have a greater impact on the product. During the re-melting of the plastic material on the injection machine, the oil and dirt are separated by the effect of temperature. Copper, especially in the electronics and automotive industry, is the most common material for plastic materials. In this study, the effect of copper particles %1, 3%, 5%, 7% and mixed recycled Acrylonitrile Butadiene Styrene (ABS) on the physical properties of plastic material was investigated. The properties of ABS which is used for the first time with copper particulate recycled ABS material are investigated for strain, impact, flow index properties, thermal and electrical conductivity. As a result, it has been observed that the effect of physical and moldability properties of the mixture of copper particles up to 3% is within acceptable limits.

References

  • [1]. V Chifor, Z. Tekiner, M. Türker, R Orban, “An Experimental Investigation of Properties of polyethylene Reinforced with Al Powders”, Journal of Zhejiang University-SCIENCE A (Applied Physics Engineering), 1-5, 2010.[2]. N. Singh, D. Hui, R. Singh, I.P.S. Ahuja, L. Feo, and F. Fraternali, “Recycling of plastic solid waste: A state of art review and future applications”, Composites Part B, 115, 409-422, (2017).[3]. Y. Liu, M. Farnsworth, and A. Tiwari, “A review of optimisation techniques used in the composite recycling area: State-of-the-art and steps towards a research agenda”, Journal of Cleaner Production, 140: 1775-1781, (2017).[4]. K.H. Sua, J.H. Lin, and C.C. Lin, “Influence of reprocessing on the mechanical properties and structure of polyamide 6”, Journal of Materials Processing Technology, 192–193: 532–538, (2007).[5]. N. Feng, X. Wang, and D. Wu, “Surface modification of recycled carbon fiber and its reinforcement effect on nylon 6 composites: Mechanical properties morphology and crystallization behaviors”, Current Applied Physics, 13: 2038-2050, (2013).[6]. Pyrolysis of synthetic polymers and plastic wastes., Kinetic study, J.M. Encinar, J.F. González, Fuel Processıng Technology 89: 678 – 686, (2008).[7]. X. Hua, Y. Guo, L. Chen, X. Wang, L. Li, Y. Wang, “A novel polymeric intumescent flame retardant: Synthesis, thermal degradation mechanism and application in ABS copolymer”, Polymer Degradation and Stability 97:1772-1778, (2012).[8]. D.J. Jung, J. Cheon, and S.J Na, “Effect of surface pre-oxidation on laser assisted joining of acrylonitrile butadiene styrene (ABS) and zinc-coated steel”, Materials and Design 99: 1–9, (2016).[9]. Y. Li, X. Wu, J. Song, J. Li, Q. Shao, N.Cao, N. Lu, and Z. Guo, “Reparation of recycled acrylonitrile- butadiene-styrene by pyromellitic dianhydride: Reparation performance evaluation and property analysis”, Polymer, 124: 41-47, (2017).[10]. A. Arostegui, M. Sarrionandia, and J. Aurrekoetxea, I. Urrutibeascoa, “Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrile-butadiene-styrene copolymer”, Polymer Degradation and Stability, 91: 2768-2774, (2006). [11]. S.J. Pickering, “Recycling technologies for thermoset composite materials—current status”, Composites: Part A 37: 1206–1215, (2006).[12]. D. Perrin, L. Clerc, E. Leroy, J.-M. Lopez-Cuesta, A. Bergeret, “Optimizing a recycling process of SMC composite waste”, Waste Management, 28: 541–548, (2008).[13]. A.Ashori, and A.Nourbakhsh, “Characteristics of wood–fiber plastic composites made of recycled materials”, Waste Management, 29: 1291–1295, (2009). [14]. S.M. Al-Salem, and P. Lettieri, J. Baeyens “Recycling and recovery routes of plastic solid waste (PSW): A review”, Waste Management 29: 2625–2643, (2009).[15]. I. Turku, T. Karkia, A. Puurtinen, “Durability of wood plastic composites manufactured from recycled plastic”, Heliyon, 4: e00559, (2018).[16]. D. P. Kamdem, H. Jiang, W.Cui, J. Freed, and L. M. Matuana, “Properties of wood plastic composites made of recycled HDPE and wood flour from CCA-treated wood removed from service”, Composites: Part A, 35: 347–355, (2004).[17]. S. Y. Leu, T.H. Yang, S.F. Lo, and T.H. Yang, “Optimized material composition to improve the physical and mechanical properties of extruded wood–plastic composites (WPCs)”, Construction and Building Materials 29: 120–127, (2012).[18]. P.Y. Kuo, S.Y. Wang, J.H. Chen, H.C.Hsueh, M.J. Tsai, “Effects of material compositions on the mechanical properties of wood–plastic omposites manufactured by injection molding”, Materials and Design, 30: 3489–3496, (2009).[19]. K. B. Adhikary, S. Pang , and M. P. Staiger, “Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE)”, Composites: Part B, 39: 807–815, (2008).[20]. M. Gracia, T. Garcia, M. Schlatter, F.M. Cabrera, J. T. Manzanares, and I.Hanafi, “Recycling of acrylonitrile-butadiene-styrene using ınjection moulding machine”, Procedia Technology, 22: 399-406, (2016).[21]. J. Palmer, L. Savage, O.R. Ghita, and K.E. Evans, “Sheet moulding compound (SMC) from carbon fibre recyclate,” Composites, Part A, 41: 1232–1237, (2010).[22]. J. Howarth, S.S.R. Mareddy, and P. T. Mativenga, “Energy intensity and environmental analysis of mechanical recycling of carbon fibre composite”, Journal of Cleaner Production 81: 46-50, (2014).[23]. M.Rahimia, M.Esfahanianb, M. Moradi, “Effect of reprocessing on shrinkage and mechanical properties of ABS and investigating the proper blend of virgin and recycled ABS ininjection molding”, Journal of Materials Processing Technology, 214: 2359–2365, (2014).[24]. A. Ashmawy, R. McDonald, D. Carreon and F. Atalay, “Stabilization of marginal soils using recycled materials, Final report”, Florida Department of Transportation, Contract Number BD-544-4, February 2006

Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi

Year 2020, Volume: 23 Issue: 1, 1 - 6, 01.03.2020
https://doi.org/10.2339/politeknik.501800

Abstract

Geri dönüşüm esnasında plastik malzemelere karışan yabancı maddeleri ayrıştırmak zor ve maliyetli bir iştir. Yağ, kir, metal partikülleri ve boya gibi yabancı maddeler plastik ürünler kullanılırken ince bir tabaka halinde plastik malzemeye karışırlar. Birçok uygulamada geri dönüşümlü malzeme kullanımının ürün üzerinde etkisinin fazla olduğuna inanılır. Plastik malzemenin enjeksiyon makinasında tekrar eritilerek basılması esnasında yağ ve kir sıcaklığın etkisi ile ayrışırlar. Bakır, özellikle elektronik ve otomotiv sektöründe plastik malzemelere en yaygın karışım yapan malzemedir. Bu çalışmada, bakır partikülleri %1, %3, %5, %7 oranlarında karıştırılmış geri dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) plastik malzemesinin fiziksel özelliklerine etkisi araştırılmıştır. Bakır partüküllü geri dönüşümlü ABS malzemesi ile ilk kez kullanılan ABS malzemesinin gerinim, darbe, akış indeks, termal ve elektrik iletkenliği özellikleri araştırılmıştır. Sonuç olarak %3 oranına kadar bakır partikülü karışımlı malzemenin fiziksel ve kalıplanabilirlik özelliklerine etkisinin kabul edilebilir sınırlar içerisinde olduğu görülmüştür.

References

  • [1]. V Chifor, Z. Tekiner, M. Türker, R Orban, “An Experimental Investigation of Properties of polyethylene Reinforced with Al Powders”, Journal of Zhejiang University-SCIENCE A (Applied Physics Engineering), 1-5, 2010.[2]. N. Singh, D. Hui, R. Singh, I.P.S. Ahuja, L. Feo, and F. Fraternali, “Recycling of plastic solid waste: A state of art review and future applications”, Composites Part B, 115, 409-422, (2017).[3]. Y. Liu, M. Farnsworth, and A. Tiwari, “A review of optimisation techniques used in the composite recycling area: State-of-the-art and steps towards a research agenda”, Journal of Cleaner Production, 140: 1775-1781, (2017).[4]. K.H. Sua, J.H. Lin, and C.C. Lin, “Influence of reprocessing on the mechanical properties and structure of polyamide 6”, Journal of Materials Processing Technology, 192–193: 532–538, (2007).[5]. N. Feng, X. Wang, and D. Wu, “Surface modification of recycled carbon fiber and its reinforcement effect on nylon 6 composites: Mechanical properties morphology and crystallization behaviors”, Current Applied Physics, 13: 2038-2050, (2013).[6]. Pyrolysis of synthetic polymers and plastic wastes., Kinetic study, J.M. Encinar, J.F. González, Fuel Processıng Technology 89: 678 – 686, (2008).[7]. X. Hua, Y. Guo, L. Chen, X. Wang, L. Li, Y. Wang, “A novel polymeric intumescent flame retardant: Synthesis, thermal degradation mechanism and application in ABS copolymer”, Polymer Degradation and Stability 97:1772-1778, (2012).[8]. D.J. Jung, J. Cheon, and S.J Na, “Effect of surface pre-oxidation on laser assisted joining of acrylonitrile butadiene styrene (ABS) and zinc-coated steel”, Materials and Design 99: 1–9, (2016).[9]. Y. Li, X. Wu, J. Song, J. Li, Q. Shao, N.Cao, N. Lu, and Z. Guo, “Reparation of recycled acrylonitrile- butadiene-styrene by pyromellitic dianhydride: Reparation performance evaluation and property analysis”, Polymer, 124: 41-47, (2017).[10]. A. Arostegui, M. Sarrionandia, and J. Aurrekoetxea, I. Urrutibeascoa, “Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrile-butadiene-styrene copolymer”, Polymer Degradation and Stability, 91: 2768-2774, (2006). [11]. S.J. Pickering, “Recycling technologies for thermoset composite materials—current status”, Composites: Part A 37: 1206–1215, (2006).[12]. D. Perrin, L. Clerc, E. Leroy, J.-M. Lopez-Cuesta, A. Bergeret, “Optimizing a recycling process of SMC composite waste”, Waste Management, 28: 541–548, (2008).[13]. A.Ashori, and A.Nourbakhsh, “Characteristics of wood–fiber plastic composites made of recycled materials”, Waste Management, 29: 1291–1295, (2009). [14]. S.M. Al-Salem, and P. Lettieri, J. Baeyens “Recycling and recovery routes of plastic solid waste (PSW): A review”, Waste Management 29: 2625–2643, (2009).[15]. I. Turku, T. Karkia, A. Puurtinen, “Durability of wood plastic composites manufactured from recycled plastic”, Heliyon, 4: e00559, (2018).[16]. D. P. Kamdem, H. Jiang, W.Cui, J. Freed, and L. M. Matuana, “Properties of wood plastic composites made of recycled HDPE and wood flour from CCA-treated wood removed from service”, Composites: Part A, 35: 347–355, (2004).[17]. S. Y. Leu, T.H. Yang, S.F. Lo, and T.H. Yang, “Optimized material composition to improve the physical and mechanical properties of extruded wood–plastic composites (WPCs)”, Construction and Building Materials 29: 120–127, (2012).[18]. P.Y. Kuo, S.Y. Wang, J.H. Chen, H.C.Hsueh, M.J. Tsai, “Effects of material compositions on the mechanical properties of wood–plastic omposites manufactured by injection molding”, Materials and Design, 30: 3489–3496, (2009).[19]. K. B. Adhikary, S. Pang , and M. P. Staiger, “Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE)”, Composites: Part B, 39: 807–815, (2008).[20]. M. Gracia, T. Garcia, M. Schlatter, F.M. Cabrera, J. T. Manzanares, and I.Hanafi, “Recycling of acrylonitrile-butadiene-styrene using ınjection moulding machine”, Procedia Technology, 22: 399-406, (2016).[21]. J. Palmer, L. Savage, O.R. Ghita, and K.E. Evans, “Sheet moulding compound (SMC) from carbon fibre recyclate,” Composites, Part A, 41: 1232–1237, (2010).[22]. J. Howarth, S.S.R. Mareddy, and P. T. Mativenga, “Energy intensity and environmental analysis of mechanical recycling of carbon fibre composite”, Journal of Cleaner Production 81: 46-50, (2014).[23]. M.Rahimia, M.Esfahanianb, M. Moradi, “Effect of reprocessing on shrinkage and mechanical properties of ABS and investigating the proper blend of virgin and recycled ABS ininjection molding”, Journal of Materials Processing Technology, 214: 2359–2365, (2014).[24]. A. Ashmawy, R. McDonald, D. Carreon and F. Atalay, “Stabilization of marginal soils using recycled materials, Final report”, Florida Department of Transportation, Contract Number BD-544-4, February 2006
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Ayşegül Gültekin Toroslu 0000-0002-7380-3109

Publication Date March 1, 2020
Submission Date December 24, 2018
Published in Issue Year 2020 Volume: 23 Issue: 1

Cite

APA Gültekin Toroslu, A. (2020). Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. Politeknik Dergisi, 23(1), 1-6. https://doi.org/10.2339/politeknik.501800
AMA Gültekin Toroslu A. Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. Politeknik Dergisi. March 2020;23(1):1-6. doi:10.2339/politeknik.501800
Chicago Gültekin Toroslu, Ayşegül. “Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi”. Politeknik Dergisi 23, no. 1 (March 2020): 1-6. https://doi.org/10.2339/politeknik.501800.
EndNote Gültekin Toroslu A (March 1, 2020) Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. Politeknik Dergisi 23 1 1–6.
IEEE A. Gültekin Toroslu, “Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi”, Politeknik Dergisi, vol. 23, no. 1, pp. 1–6, 2020, doi: 10.2339/politeknik.501800.
ISNAD Gültekin Toroslu, Ayşegül. “Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi”. Politeknik Dergisi 23/1 (March 2020), 1-6. https://doi.org/10.2339/politeknik.501800.
JAMA Gültekin Toroslu A. Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. Politeknik Dergisi. 2020;23:1–6.
MLA Gültekin Toroslu, Ayşegül. “Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi”. Politeknik Dergisi, vol. 23, no. 1, 2020, pp. 1-6, doi:10.2339/politeknik.501800.
Vancouver Gültekin Toroslu A. Geri Dönüşümlü Akrilonitril Bütadiyen Stiren (ABS) Plastik Malzemesinin Kalıplama Parametrelerine Etkisi. Politeknik Dergisi. 2020;23(1):1-6.