Year 2021, Volume 24 , Issue 2, Pages 663 - 672 2021-06-01

Analytical Solutions for Transversely Isotropic Fiber-Reinforced Composite Cylinders under Internal or External Pressure
Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure

Ömer Can FARUKOĞLU [1] , İhsan KORKUT [2]


This paper deals with the elastic stresses of internally or externally pressurized long thick-walled composite cylinders with fixed ends. Cylinders are made of unidirectionally aligned transversely isotropic fibers and isotropic matrix. Axial and radial fiber alignments are considered, and analytical solutions are derived accordingly. Effects of fiber direction and fiber volume fraction alteration on the elastic limit stresses are analyzed. It is observed for both internal and external pressure cases that fiber direction and fiber volume fraction are important parameters which impact the elastic behavior of the cylinders.
This paper deals with the elastic stresses of internally or externally pressurized long thick-walled composite cylinders with fixed ends. Cylinders are made of unidirectionally aligned transversely isotropic fibers and isotropic matrix. Axial and radial fiber alignments are considered, and analytical solutions are derived accordingly. Effects of fiber direction and fiber volume fraction alteration on the elastic limit stresses are analyzed. It is observed for both internal and external pressure cases that fiber direction and fiber volume fraction are important parameters which impact the elastic behavior of the cylinders.
  • [1] Ugural A. C., and Fenster S. K., “Advanced Mechanics of Materials and Applied Elasticity”, Prentice Hall, New Jersey, (2003).
  • [2] Timoshenko S. P., and Goodier J. N., “Theory of Elasticity”, McGraw Hill, Palo Alto, (1951).
  • [3] Grigorenko Y. M., and Rozhok L.S., “Stress solutions for transversely isotropic corrugated hollow cylinders. International Applied Mechanics”, International Applied Mechanics, 41(3): 277-282, (2005).
  • [4] Sharma S., Sahni M., and Kumar R., “Elastic-plastic transition of transversely isotropic thick-walled rotating cylinder under internal pressure”, Defence Science Journal, 59(3): 260-264, (2009).
  • [5] Chen Y. Z., and Lin X. Y., “Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials”, Computational Materials Science, 44(2): 581-587, (2008).
  • [6] Fukui Y., and Yamanaka N., “Elastic analysis for thick-walled tubes of functionally graded material subjected to internal pressure”, JSME International Journal. Ser.1, Solid Mechanics, Strength of Materials, 35(4): 379-385, (1992).
  • [7] Dui G., Xin L.,Yang S., and Zhang J., “An elasticity solution for functionally graded thick-walled tube subjected to internal pressure”, International Journal of Mechanical Sciences, 89: 344–349, (2014).
  • [8] Eraslan A. N., and Akış T., “Plane strain analytical solutions for a functionally graded elastic–plastic pressurized tube”, International Journal of Pressure Vessels and Piping, 83: 635–644, (2006).
  • [9] Tütüncü N., “Stresses in thick-walled fgm cylinders with exponentially-varying properties”, Engineering Structures, 29: 2032–2035, (2007).
  • [10] Akış T., and Eren Ö., “Radyal Yönde Basınç Uygulanan Fonksiyonel Derecelendirilmiş Malzemeden Yapılmış Uzun Tüplerde Von Mises Kriterine Göre Akmanın Başlaması”, Politeknik Dergisi, 18(2): 63-71, (2015).
  • [11] Asgari M., and Akhlaghi M., “Transient thermal stresses in two-dimensional functionally graded thick hollow cylinder with finite length”, Archive of Applied Mechanics, 80: 353-376, (2010).
  • [12] Shao Z. S., “Mechanical and thermal stresses of a functionally graded circular hollow cylinder with finite length”, International Journal of Pressure Vessels and Piping, 82: 155–163, (2005).
  • [13] Ohmichi M., and Noda N., “Steady thermal stresses in functionally graded eccentric polygonal cylinder with circular hole”, Archive of Applied Mechanics, 86: 1163–1177, (2016).
  • [14] Leu S. Y., and Hsu H. C., “Exact solutions for plastic responses of orthotropic strain-hardening rotating hollow cylinders”, International Journal of Mechanical Sciences, 52: 1579–1587 (2010).
  • [15] Tervonen M., and Pramila A., “Stress in a hollow rotating cylindrically orthotropic tube”, Mechanics of Composite Materials, 32(6): 577-581, (1996).
  • [16] Abd-Alla A. M., Mahmoud S. R., and AL-Shehri N. A., “Effect of the rotation on a non-homogeneous infinite cylinder of orthotropic material”, Applied Mathematics and Computation, 217: 8914–8922, (2011).
  • [17] Garmestani H., Vaghar M. R., Markiewicz D., and Chandra, N., “Stress analysis of an orthotropic work-hardening cylinder with body force”, Journal of Structural Mechanics, 23(4): 521-548, (1995).
  • [18] Zenkour A. M., “Rotating variable-thickness orthotropic cylinder containing a solid core of uniform-thickness”, Archive of Applied Mechanics, 76: 89–102, (2006).
  • [19] Çallıoğlu H., Ergün E., and Demirdağ O., “Stress analysis of filament-wound composite cylinders under combined internal pressure and thermal loading”, Advanced Composites Letters, 17(1): 13-21, (2008).
  • [20] Akcay I. H., and Kaynak I., “Analysis of multilayered composite cylinders under thermal loading”, Journal of Reinforced Plastics and Composites, 24(11): 1169-1179, (2005).
  • [21] Starbuck J. M., “Stress analysis of laminated composite cylinders under non-axisymmetric loading”, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, (1999).
  • [22] Ebeid S., Taha I., and Abdel-Ghany A. W., “Failure prediction of fiber reinforced polymer pipes using fea”, International Journal of Engineering and Technical Research, 4(2): 2454-4698, (2016).
  • [23] Parnas L., and Katırcı N., “Design of fiber-reinforced composite pressure vessels under various loading conditions”, Composite Structures, 58(1): 83-95, (2002).
  • [24] Geng P., Xing J. Z., and Chen X. X., “Winding angle optimization of filament-wound cylindrical vessel under internal pressure”, Archive of Applied Mechanics, 87(3): 365-384, (2017).
  • [25] Chamis C. C., “Mechanics of composite materials: past, present, and future”, Journal of Composites, Technology and Research, 11(1): 3-14, (1989).
  • [26] Chamis C. C., “Simplified Composite Micromechanics Equations for Strength, Fracture Toughness, Impact Resistance and Environmental Effects”, National Aeronautics and Space Administration (NASA), CL. OH., (1984).
  • [27] Tsai S. W., and Wu E. M., “A general theory of strength for anisotropic materials”, Journal of Composite Materials, 5(1): 58-80, (1971).
  • [28] Kaw A. K., “Mechanics of Composite Materials”, CRC Press, Boca Raton, (2006).
Primary Language en
Subjects Engineering
Journal Section Research Article
Authors

Orcid: 0000-0003-3244-8355
Author: Ömer Can FARUKOĞLU (Primary Author)
Institution: Gazı University
Country: Turkey


Orcid: 0000-0002-5001-4449
Author: İhsan KORKUT
Institution: Gazı University
Country: Turkey


Supporting Institution -
Project Number -
Thanks -
Dates

Application Date : August 26, 2020
Publication Date : June 1, 2021

Bibtex @research article { politeknik784812, journal = {Politeknik Dergisi}, issn = {}, eissn = {2147-9429}, address = {Gazi Üniversitesi Teknoloji Fakültesi 06500 Teknikokullar - ANKARA}, publisher = {Gazi University}, year = {2021}, volume = {24}, pages = {663 - 672}, doi = {10.2339/politeknik.784812}, title = {Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure}, key = {cite}, author = {Farukoğlu, Ömer Can and Korkut, İhsan} }
APA Farukoğlu, Ö , Korkut, İ . (2021). Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure . Politeknik Dergisi , 24 (2) , 663-672 . DOI: 10.2339/politeknik.784812
MLA Farukoğlu, Ö , Korkut, İ . "Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure" . Politeknik Dergisi 24 (2021 ): 663-672 <https://dergipark.org.tr/en/pub/politeknik/issue/61515/784812>
Chicago Farukoğlu, Ö , Korkut, İ . "Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure". Politeknik Dergisi 24 (2021 ): 663-672
RIS TY - JOUR T1 - Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure AU - Ömer Can Farukoğlu , İhsan Korkut Y1 - 2021 PY - 2021 N1 - doi: 10.2339/politeknik.784812 DO - 10.2339/politeknik.784812 T2 - Politeknik Dergisi JF - Journal JO - JOR SP - 663 EP - 672 VL - 24 IS - 2 SN - -2147-9429 M3 - doi: 10.2339/politeknik.784812 UR - https://doi.org/10.2339/politeknik.784812 Y2 - 2020 ER -
EndNote %0 Politeknik Dergisi Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure %A Ömer Can Farukoğlu , İhsan Korkut %T Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure %D 2021 %J Politeknik Dergisi %P -2147-9429 %V 24 %N 2 %R doi: 10.2339/politeknik.784812 %U 10.2339/politeknik.784812
ISNAD Farukoğlu, Ömer Can , Korkut, İhsan . "Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure". Politeknik Dergisi 24 / 2 (June 2021): 663-672 . https://doi.org/10.2339/politeknik.784812
AMA Farukoğlu Ö , Korkut İ . Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure. Politeknik Dergisi. 2021; 24(2): 663-672.
Vancouver Farukoğlu Ö , Korkut İ . Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure. Politeknik Dergisi. 2021; 24(2): 663-672.
IEEE Ö. Farukoğlu and İ. Korkut , "Analytical Solutions for Transversely Isotropic Fiber Reinforced Composite Cylinders Under Internal or External Pressure", Politeknik Dergisi, vol. 24, no. 2, pp. 663-672, Jun. 2021, doi:10.2339/politeknik.784812