Review
BibTex RIS Cite

Rüzgar Türbinlerinin Yaban Hayatına Etkilerinin İncelenmesi

Year 2021, Volume: 24 Issue: 3, 953 - 962, 01.09.2021
https://doi.org/10.2339/politeknik.741965

Abstract

Yenilenebilir enerji kaynakları, zararlı emisyonlar açığa çıkarmadığı için temiz ve sürdürülebilir niteliktedir. Ancak bu kaynakların kullanımı farklı çevresel etkilere sahiptir. Bu çalışmada, rüzgar türbinlerinin çevresel etkileri incelenmiştir. Aynı zamanda açık deniz rüzgar türbinlerinin de özellikle kuşlar açısından tehlikeleri araştırılmıştır. Rüzgar türbinlerinin yol açtığı gürültü etkisi, estetik ve elektromanyetik etkiler ile birlikte yaban hayatına olan etkisi incelenerek tartışılmıştır. Yaban hayatına olan etkileri kuşlar, yarasalar ve arılar olmak üzere üç kısımda açıklanmıştır. Yaban hayatın rüzgar türbinlerinden etkilenmelerinin minimum düzeyde sınırlandırması için yanıp sönen ışığın sürekli ışığa göre tercih edilmesi gerektiği ve sürekli ışık gerekiyorsa kırmızı ışığın uygulanması gerektiği bulunmuştur. Çalışmanın son bölümünde, kuşlar ve yarasalar gibi ekosistemin önemli parçaları olan canlıların rüzgar türbinleri vasıtasıyla ölümlerini önleyebilmek amacıyla ses ve ışık uyarıcıları modifikasyonlarını içeren bir prototip tasarlanmış, imal edilmiş ve sunulmuştur. 

Supporting Institution

TÜBİTAK

Project Number

2209-A 1919B011902278

Thanks

Bu çalışma TÜBİTAK 2209-A 1919B011902278 numaralı proje ile desteklenmektedir.

References

  • [1] Khanlari A., Sözen A., Şirin C., Tuncer A.D., Gungor A., “Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater”, Journal of Cleaner Production, 251: 119672, (2020)
  • [2] Kaya M., Gürel A.E., Ağbulut Ü., Ceylan I., Çelik S., Ergün A., Acar B.,“Performance analysis of using CuO-Methanol nanofluid in a hybrid system with concentrated air collector and vacuum tube heat pipe”, Energy Conversion and Management, 199: 111936, (2019)
  • [3] Khanlari A., Sözen A., Afshari F., Şirin C., Tuncer A.D., Gungor A., “Drying municipal sewage sludge with v-groove triple-pass and quadruple-pass solar air heaters along with testing of a solar absorber drying chamber”, Science of The Total Environment, 709: 136198, (2020)
  • [4] Kılıç B., “Determination of wind dissipation maps and wind energy potential in Burdur province of Turkey using geographic information system (GIS)”, Sustainable Energy Technologies and Assessments, 36: 100555, (2019)
  • [5] Emeksiz C., Demirci B., “The determination of offshore wind energy potential of Turkey by using novelty hybrid site selection method”, Sustainable Energy Technologies and Assessments, 36: 100562, (2019)
  • [6] Akdağ S. A., Güler Ö., “Alternative Moment Method for wind energy potential and turbine energy output estimation”, Renewable Energy, 120: 69–77,(2018)
  • [7] Wang H., Ke S. T., Wang T.G., Zhu S.Y., “Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects”, Renewable Energy, 153: 740-758,(2020)
  • [8] Zhao Y., Pan J., Huang Z., Miao Y., Jiang J., Wang Z., “Analysis of vibration monitoring data of an onshore wind turbine under different operational conditions”, Engineering Structures, 205: 110071,(2020)
  • [9] Lee H., Lee D.J., “Low Reynolds number effects on aerodynamic loads of a small scale wind türbine”, Renewable Energy, 154: 1283-1293,(2020)
  • [10] Sedighi H., Akbarzadeh P., Salavatipour A., “Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation”, Energy, 195:117056, (2020)
  • [11] Jiang Y., Zhao P., Stoesser T., Wang K., Zou L., “Experimental and numerical investigation of twin vertical axis wind turbines with a deflector”, Energy Conversion and Management, 209: 112588, (2020)
  • [12] Usta I., Arik I., Yenilmez I., Kantar Y. M., “A new estimation approach based on moments for estimating Weibull parameters in wind power applications”, Energy Conversion and Management, 164: 570–578, (2018)
  • [13] Ozay C., Celiktas M. S., “Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region”, Energy Conversion and Management, 121:49–54,(2016)
  • [14] Khanlari A., Sözen A., Polat F., Şirin C., Düden Örgen F.K., Tuncer A.D., Güngör A., “Statistical analysis of the wind energy potential of Western Mediterranean Region, Turkey”, 2nd International Conference on Technology and Science, Burdur, Turkey, (2019)
  • [15] Celik A.N., “A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey”, Renewable Energy, 29(4): 593–604, (2004)
  • [16] Khanlari A., Tuncer A.D., Düden Örgen F.K., Çelebi C., Aydemir U., Güngör A., “Investigation of the wind energy potential of Gallipoli Peninsula”, New Horizons in Techno-Science, 99-105, Akademisyen Publishing, Ankara, Turkey.
  • [17] Jahangir H., Golkar M.A., Alhameli F., Mazouz A., Ahmadian A., Elkamel A., “Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN”, Sustainable Energy Technologies and Assessments, 38: 100601,(2020)
  • [18] Demolli H., Dokuz A.S., Ecemis A., Gokcek M., “Wind power forecasting based on daily wind speed data using machine learning algorithms”, Energy Conversion and Management, 198: 111823,(2019)
  • [19] Işık A.H., Düden Örgen F.K., Şirin C., Tuncer A.D., Güngör A., “Prediction of wind blowing durations of Eastern Turkey with machine learning for integration of renewable energy and organic farming‐stock raising”, Tecnho-Science, 2: 47-53, (2019)
  • [20] Yin H., Dong Z., Chen Y., Ge J., Lai L. L., Vaccaro A., Meng A., “An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization”, Energy Conversion and Management, 150:108–121,(2017)
  • [21] Zagubień A., Wolniewicz K., “The impact of supporting tower on wind turbine noise emission”, Applied Acoustics, 155: 260–270,(2019)
  • [22] Alamir M.A., Hansen K.L., Zajamsek B., Catcheside P., “Subjective responses to wind farm noise: A review of laboratory listening test methods”, Renewable and Sustainable Energy Reviews, 114: 109317, (2019)
  • [23] Zhu W.J., Shen W.Z., Barlas E., Bertagnolio F., Sørensen J.N., “Wind turbine noise generation and propagation modeling at DTU Wind Energy:A review”, Renewable and Sustainable Energy Reviews, 88: 133–150,(2018)
  • [24] Liu W.Y., “A review on wind turbine noise mechanism and de-noising techniques”, Renewable Energy, 108: 311–320,(2017)
  • [25] Oerlemans S, Sijtsma P, López BM., “Location and quantification of noise sources on a wind türbine”, Journal of Sound and Vibration, 299: 869-883, (2007)
  • [26] Wagner S, Bareiß R, Guidati G., “Wind turbine noise”, Springer, Berlin, (2012)
  • [27] Deshmukh S., Bhattacharya S., Jain A., Paul A.R., “Wind turbine noise and its mitigation techniques: A review”, Energy Procedia, 160, 633–640, (2019)
  • [28] Fairley P., “Wind power for pennies”, Technol Rev, July/August:40–5, (2002)
  • [29] Torres-Sibille A., Cloquell-Ballester V., Cloquell-Ballester V., Darton R., “Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms”, Renewable and Sustainable Energy Reviews, 13(1): 40–66,(2009)
  • [30] Wolsink M., “Wind power implementation: the nature of public attitudes: equity and fairness instead of ‘backyard motives’”, Renewable Sustainable Energy Rev, 11:1188–1207,(2007)
  • [31] Gordon G., “Wind, energy, landscape: reconciling nature and technology”, Philos Geog, 4:169–184, (2001)
  • [32] Rodman L.C., Meentemeyer R.K., “A geographic analysis of wind turbine placement in Northern California”, Energy Policy, 34:2137–2149,(2005)
  • [33] Coles RW, Taylor J., “Wind power and planning: the environmental impact of windfarms in the UK”, Land Use Policy, 10:205–26,(1993)
  • [34] Maslov N., Claramunt C., Wang T., Tang T., “Evaluating the Visual Impact of an Offshore Wind Farm”, Energy Procedia, 105: 3095–3100,(2017)
  • [35] Sæþórsdóttir A.D., Ólafsdóttir R., “Not in my back yard or not on my playground: Residents and tourists' attitudes towards wind turbines in Icelandic landscapes”, Energy for Sustainable Development, 54: 127-138, (2020)
  • [36] Masden E. A., Haydon D.T., Fox A.D., Furness R.W., Bullman R., Desholm M., “Barriers to movement: impacts of wind farms on migrating birds”, ICES Journal of Marine Science, 66: 746–753,(2009)
  • [37] Fielding A.H., Whitfield D.P., Mcleod D.R.A., “Spatial association as an indicator of the potential for future interactions between wind energy developments and golden eagles Aquila chrysaetos in Scotland”, Biological Conservation, 131: 359 369,(2006)
  • [38] Bright J., Langston R., Bullman R., Evans R., Gardner S., Pearce-Higgins J., “Map of bird sensitivities to wind farms in Scotland: a tool to aid planning and conservation”, Biological Conservation, 141: 2342–2356,(2008)
  • [39] Larsen J.K., Guillemette M., “Effects of wind turbines on flight behaviour of wintering common eiders: implications for habitat use and collision risk”, Journal of Applied Ecology, 44: 516–522 (2007).
  • [40] Barrios L., Rodriguez A., “Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines”, Journal of Applied Ecology, 41: 72–81, (2004)
  • [41] Hötker H., Thomsen K.M., Jeromin H., “Impacts on biodiversity of exploitation of renewable energy resources: the example of birds and bats—facts, gaps in knowledge, demands for further research, and ornithological guidelines for the development of renewable energy exploitation”, Michael-Otto-Institut im NABU, Bergenhusen, (2006)
  • [42] Langston R.H.W., Pullan J.D., “Windfarms and birds: an analysis of the effects of windfarms on birds, and guidance on environmental assessment criteria and site selection issues”, Report to the Standing Committee on the Convention on the Conservation of Wildlife and Natural Habitats. Council of European Communities, Strasbourg ,(2003)
  • [43] Fox A.D., Desholm M., Kahlert J., Christensen T. K., Petersen, I.K., “Information needs to support environmental impact assessment of the effects of European offshore wind farms on birds”, Ibis, 148: 129–144, (2006)
  • [44] Madders M., Whitfield D.P., “Upland raptors and the assessment of wind farm impacts”, Ibis, 148: 43–56, (2006)
  • [45] Frair J.L., Merrill E.H., Visscher D.R., Fortin D., Beyer H.L., Morales J.M., “Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk”, Landscape Ecology, 20: 273–287, (2005)
  • [46] Jander R., “Ecological aspects of spatial orientation”, Annual Review of Ecology and Systematics, 6: 171–188, (1975)
  • [47] Desholm M., Kahlert J., “Avian collision risk at an offshore wind farm”, Biology Letters, 1: 296–298,(2005)
  • [48] Wendeln H., Becker P.H., “Effects of parental quality and effort on the reproduction of common terns”, Journal of Animal Ecology, 68: 205–214,(1995)
  • [49] Parker H., Holm H., “Patterns of nutrient and energy-expenditure in female common eiders nesting in the high Arctic”, The Auk, 107: 660–668, (1990)
  • [50] Meijer T., Drent R., “Re-examination of the capital and income dichotomy in breeding birds”, Ibis, 141: 399–414,(1999)
  • [51] Desholm M., Fox A.D., Beasley P.D.L., Kahlert J., “Remote techniques for counting and estimating the number of bird-wind turbine collisions at sea: a review”, Ibis, 148:76–89, (2006)
  • [52] Huppop O., Dierschke J., Exo K.M., Fredrich E., Hill R., “Bird migration studies and potential collision risk with offshore wind turbines”, Ibis, 148:90–109, (2006)
  • [53] Arnett E. B., Brown W.K., Erickson W.P., Fiedler J.K., Hamilton B.L., Henry T.H., Jain A., Johnson G.D., Kerns J., Koford R.R., Nicholson C.P., O’Connell T. J., Piorkowski M. D., Tankersley R. D., “Patterns of bat fatalities at wind energy facilities in North America”, Journal of Wildlife Management, 72:61–78, (2008)
  • [54] Piorkowski M.D., O’Connell T.J., “Spatial patterns of summer bat mortality from collisions with wind turbines in mixed-grass prairie”, American Midland Naturalist, 164:260–269,(2010)
  • [55] Kuvlesky W.P., Brennan L.A., Morrison M.L., Ballard K.K., Bryant F.C., “Wind energy development and wildlife conservation: challenges and opportunities”, Journal of Wildlife Management, 71:2487–2498,(2007)
  • [56] Erickson W.P., Johnson G.D., Strickland M.D., Young D.P., Sernka K.J., Good R.E., “Avian collisions with wind turbines: a summary of existing studies and comparisons to other sources of avian collision mortality in the United States”, Prepared by W.E.S.T., Inc. for the National Wind Coordinating Collaborative (NWCC), (2001)
  • [57] Anderson R. L., Morrison M., Sinclair K., Strickland M.D., “Studying wind energy-bird interactions: a guidance document”, Prepared for Avian subcommittee and National Wind Coordinating Committee,(1999)
  • [58] Kunz T.H., Arnett E.B., Cooper B.M., Erickson W.P., Larkin R.P., Mabee T., Morrison M.L., Strickland M.D., Szewczak J.M., “Assessing impacts of wind-energy development on nocturnally active birds and bats: a guidance document”, Journal of Wildlife Management, 71:2449–2486, (2007)
  • [59] Bright J., Langston R., Bullman R., Evans R., Gardner S., Pearce-Higgins J., “Map of bird sensitivities to wind farms in Scotland: a tool to aid planning and conservation”, Biological Conservation, 14:2342–2356,(2008)
  • [60] Desholm M., “Avian sensitivity to mortality: prioritizing migratory bird species for assessment at proposed wind farms”, Journal of Environmental Management, 90:2672–2679, (2009)
  • [61] Kerlinger P., Hatch J., “Preliminary avian risk assessment for the Cape Wind Energy Project”, Prepared by Curry & Kerlinger, L.L.C. for Cape Wind Associates, L.L.C. and Environmental Science Service, Inc., (2001)
  • [62] Allison T.D., Jedrey E., Perkins S., “Avian issues for offshore wind development”, Marine Technology Society Journal, 42(2):28–38, (2008)
  • [63] Kunz T.H., Arnett E.B., Erickson W.P., Hoar A.R., Johnson G.D., Larkin R.P., Strickland M.D., Thresher R.W., Tuttle M.D., Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses, Frontier in Ecology and the Environment, 5:315–324, (2007)
  • [64] Kerlinger P., Gehring J.L., Erickson W.P., Curry R., Jain A., Guarnaccia J., “Night migrant fatalities and obstruction lighting at wind turbines in North America”, Wilson Journal of Ornithology, 122:744–754,(2010)
  • [65] Huso M.M.P., “An estimator of wildlife fatality from observed carcasses”, Environmetrics 22:318–329, (2011)
  • [66] Ferreira D., Freixo C., Cabral J.A., Santos R., Santos M., “Do habitat characteristics determine mortality risk for bats at wind farms? Modelling susceptible species activity patterns and anticipating possible mortality events”, Ecol. Inf., 28: 7-18, (2015)
  • [67] Baerwald E.F.F., Patterson W.P., Barclay R.M.R., “Origins and migratory patterns of bats killed by wind turbines in southern Alberta: evidence from stable isotopes”, Ecosphere, 5: 1-17,(2014)
  • [68] Thompson M., Beston J.A., Etterson M., Diffendorfer J.E., Loss S.R., “Factors associated with bat mortality at wind energy facilities in the United States”, Biol. Conserv. 215: 241-245, (2017)
  • [69] Reiskind M.H., Wund M.A., “Experimental assessment of the impacts of northern long-eared bats on ovipositing Culex (Diptera: Culicidae) mosquitoes”, J. Med. Entomol, 46: 1037-1044,(2009)
  • [70] Kuvlesky W.P., Brennan L.A., Morrison M.L., Boydston K.K., Ballard B.M., Bryant F.C.,“Wind energy development and wildlife conservation: challenges and opportunities”, Wildl. Res. ,71:2487-2498, (2007)
  • [71] Arnett E.B., Brown W.K., Erickson W.P., Fiedler J.K., Hamilton B.L., Henry T.H., Jain A., Johnson G.D., Kerns J., Koford R.R., Nicholson C.P., O’Connell T.J., Piorkowski M.D., Tankersley R.D.,. Patterns of bat fatalities at wind energy facilities in North America, J. Wildl. Manag., 72: 61-78,(2008)
  • [72] Arnett E.B., Baerwald E.F., “Impacts of wind energy development on bats: implications for conservation In: Adams, R.A., Pedersen, S.C. (Eds.), Bat Evolution, Ecology, and Conservation”, Springer Science Business Media, New York, NY, 435-456, (2013)
  • [73] Hayes M.A., “Bats killed in large numbers at United States wind energy facilities”,Bioscience, 63: 975-979, (2013)
  • [74] Kunz T.H., Arnett E.B., Erickson W.P., Hoar A.R., Johnson G.D., Larkin R.P., Strickland M.D., Thresher R.W., Tuttle M.D., “Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses”, Front. Ecol. Environ, 5: 315-324,(2007)
  • [75] Orloff S., Flannery A., “Wind Turbine Effects on Avian Activity, Habitat Use, and Mortality in Altamont Pass and Solano County Wind Resource areas: 1989-1991”, A report prepared for the California Energy Commission, 1-199, (1992)
  • [76] Smallwood K.S., “Comparing bird and bat fatality-rate estimates among North American wind-energy projects”, Wildl. Soc. Bull., 37: 19-33, (2013)
  • [77] Frick W.F., Baerwald E.F., Pollock J.F., Barclay R.M.R., Szymanski J.A.,Weller T.J., Russell A.L., Loeb S.C., Medellin R.A., McGuire L.P., “Fatalities at wind turbines may threaten population viability of a migratory bat”, Biol. Conserv., 209: 172-177, (2017)
  • [78] Lomolino M.V., “Elevation gradients of species-density: historical and prospective views”, Glob. Ecol. Biogeogr, 10: 3-13, (2011)
  • [79] Willdenow K.L., “The Principles of Botany, and Vegetable Physiology”, Blackwood, Cadell and Davies, London, (1805)
  • [80] Pustkowiak S., Banaszak-Cibicka W., Mielczarek Ł.E., Tryjanowski P., Skórka P, “The association of windmills with conservation of pollinating insects and wild plants in homogeneous farmland of western Poland”, Environmental Science and Pollution Research, 25(7): 6273–6284, (2017)
  • [81] Corten G.P., Veldkamp H.F., “Insects can halve wind-turbine power”, Nature, 412: 42-43, (2001).
  • [82] Martin G., “Understanding bird collisions with man-made objects: A sensory ecology approach”, Ibis ,153: 239–254, (2011)
  • [83] Mouritsen H. “Long-distance navigation and magnetoreception in migratory animals”, Nature, 558: 50-59, (2018)
  • [84] Sterner D., “A roadmap for PIER research on avian collisions with wind turbines in California”, California Energy Commission (unpublished), (2002)
  • [85] Huppop O., Dierschke J., Exo K.M., Fredrich E., Hill R., “Bird migration studies and potential collision risk with offshore wind turbines”, Ibis, 148: 90–109, (2006)
  • [86] Rebke M., Dierschke V., Weiner C.N., Aumüller R., Hill K., Hill R., “Attraction of nocturnally migrating birds to artificial light: The influence of colour, intensity and blinking mode under different cloud cover conditions”, Biological Conservation, 233: 220-227,(2019)
  • [87] Minderman J., Pendlebury C.J., Pearce-Higgins J.W., Park K.J., “Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity”, PLoS ONE, 7: 41177, (2012)
  • [88] WWF ITALIA. Eolico e biodiversità: linee guida per la realizzazione di impianti eolici industriali in Italia; 2009. Available at: http://regionali.wwf.it.

Investigation of the Impacts of Wind Turbines on Wildlife

Year 2021, Volume: 24 Issue: 3, 953 - 962, 01.09.2021
https://doi.org/10.2339/politeknik.741965

Abstract

Renewable energy sources are clean and sustainable also they do not emit harmful emissions. However, usage of these resources has different environmental impacts. In this study, the environmental effects of wind turbines are examined. At the same time, the dangers of offshore wind turbines, especially for birds, have been investigated. The effect of noise caused by wind turbines, together with aesthetic and electromagnetic effects on wildlife have been examined and discussed. Their impact on wildlife is described in three parts: birds, bats and bees. It is found that flashing light should be preferred over continuous light in order to minimise the effects of wildlife on wind turbines, and red light should be applied if continuous light is required. In the final part of the study, a prototype containing modifications of sound and light stimulators is designed, manufactured and presented in order to prevent the death of living things that are important parts of the ecosystem, such as birds and bats, by means of wind turbines.

Project Number

2209-A 1919B011902278

References

  • [1] Khanlari A., Sözen A., Şirin C., Tuncer A.D., Gungor A., “Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater”, Journal of Cleaner Production, 251: 119672, (2020)
  • [2] Kaya M., Gürel A.E., Ağbulut Ü., Ceylan I., Çelik S., Ergün A., Acar B.,“Performance analysis of using CuO-Methanol nanofluid in a hybrid system with concentrated air collector and vacuum tube heat pipe”, Energy Conversion and Management, 199: 111936, (2019)
  • [3] Khanlari A., Sözen A., Afshari F., Şirin C., Tuncer A.D., Gungor A., “Drying municipal sewage sludge with v-groove triple-pass and quadruple-pass solar air heaters along with testing of a solar absorber drying chamber”, Science of The Total Environment, 709: 136198, (2020)
  • [4] Kılıç B., “Determination of wind dissipation maps and wind energy potential in Burdur province of Turkey using geographic information system (GIS)”, Sustainable Energy Technologies and Assessments, 36: 100555, (2019)
  • [5] Emeksiz C., Demirci B., “The determination of offshore wind energy potential of Turkey by using novelty hybrid site selection method”, Sustainable Energy Technologies and Assessments, 36: 100562, (2019)
  • [6] Akdağ S. A., Güler Ö., “Alternative Moment Method for wind energy potential and turbine energy output estimation”, Renewable Energy, 120: 69–77,(2018)
  • [7] Wang H., Ke S. T., Wang T.G., Zhu S.Y., “Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects”, Renewable Energy, 153: 740-758,(2020)
  • [8] Zhao Y., Pan J., Huang Z., Miao Y., Jiang J., Wang Z., “Analysis of vibration monitoring data of an onshore wind turbine under different operational conditions”, Engineering Structures, 205: 110071,(2020)
  • [9] Lee H., Lee D.J., “Low Reynolds number effects on aerodynamic loads of a small scale wind türbine”, Renewable Energy, 154: 1283-1293,(2020)
  • [10] Sedighi H., Akbarzadeh P., Salavatipour A., “Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation”, Energy, 195:117056, (2020)
  • [11] Jiang Y., Zhao P., Stoesser T., Wang K., Zou L., “Experimental and numerical investigation of twin vertical axis wind turbines with a deflector”, Energy Conversion and Management, 209: 112588, (2020)
  • [12] Usta I., Arik I., Yenilmez I., Kantar Y. M., “A new estimation approach based on moments for estimating Weibull parameters in wind power applications”, Energy Conversion and Management, 164: 570–578, (2018)
  • [13] Ozay C., Celiktas M. S., “Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region”, Energy Conversion and Management, 121:49–54,(2016)
  • [14] Khanlari A., Sözen A., Polat F., Şirin C., Düden Örgen F.K., Tuncer A.D., Güngör A., “Statistical analysis of the wind energy potential of Western Mediterranean Region, Turkey”, 2nd International Conference on Technology and Science, Burdur, Turkey, (2019)
  • [15] Celik A.N., “A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey”, Renewable Energy, 29(4): 593–604, (2004)
  • [16] Khanlari A., Tuncer A.D., Düden Örgen F.K., Çelebi C., Aydemir U., Güngör A., “Investigation of the wind energy potential of Gallipoli Peninsula”, New Horizons in Techno-Science, 99-105, Akademisyen Publishing, Ankara, Turkey.
  • [17] Jahangir H., Golkar M.A., Alhameli F., Mazouz A., Ahmadian A., Elkamel A., “Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN”, Sustainable Energy Technologies and Assessments, 38: 100601,(2020)
  • [18] Demolli H., Dokuz A.S., Ecemis A., Gokcek M., “Wind power forecasting based on daily wind speed data using machine learning algorithms”, Energy Conversion and Management, 198: 111823,(2019)
  • [19] Işık A.H., Düden Örgen F.K., Şirin C., Tuncer A.D., Güngör A., “Prediction of wind blowing durations of Eastern Turkey with machine learning for integration of renewable energy and organic farming‐stock raising”, Tecnho-Science, 2: 47-53, (2019)
  • [20] Yin H., Dong Z., Chen Y., Ge J., Lai L. L., Vaccaro A., Meng A., “An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization”, Energy Conversion and Management, 150:108–121,(2017)
  • [21] Zagubień A., Wolniewicz K., “The impact of supporting tower on wind turbine noise emission”, Applied Acoustics, 155: 260–270,(2019)
  • [22] Alamir M.A., Hansen K.L., Zajamsek B., Catcheside P., “Subjective responses to wind farm noise: A review of laboratory listening test methods”, Renewable and Sustainable Energy Reviews, 114: 109317, (2019)
  • [23] Zhu W.J., Shen W.Z., Barlas E., Bertagnolio F., Sørensen J.N., “Wind turbine noise generation and propagation modeling at DTU Wind Energy:A review”, Renewable and Sustainable Energy Reviews, 88: 133–150,(2018)
  • [24] Liu W.Y., “A review on wind turbine noise mechanism and de-noising techniques”, Renewable Energy, 108: 311–320,(2017)
  • [25] Oerlemans S, Sijtsma P, López BM., “Location and quantification of noise sources on a wind türbine”, Journal of Sound and Vibration, 299: 869-883, (2007)
  • [26] Wagner S, Bareiß R, Guidati G., “Wind turbine noise”, Springer, Berlin, (2012)
  • [27] Deshmukh S., Bhattacharya S., Jain A., Paul A.R., “Wind turbine noise and its mitigation techniques: A review”, Energy Procedia, 160, 633–640, (2019)
  • [28] Fairley P., “Wind power for pennies”, Technol Rev, July/August:40–5, (2002)
  • [29] Torres-Sibille A., Cloquell-Ballester V., Cloquell-Ballester V., Darton R., “Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms”, Renewable and Sustainable Energy Reviews, 13(1): 40–66,(2009)
  • [30] Wolsink M., “Wind power implementation: the nature of public attitudes: equity and fairness instead of ‘backyard motives’”, Renewable Sustainable Energy Rev, 11:1188–1207,(2007)
  • [31] Gordon G., “Wind, energy, landscape: reconciling nature and technology”, Philos Geog, 4:169–184, (2001)
  • [32] Rodman L.C., Meentemeyer R.K., “A geographic analysis of wind turbine placement in Northern California”, Energy Policy, 34:2137–2149,(2005)
  • [33] Coles RW, Taylor J., “Wind power and planning: the environmental impact of windfarms in the UK”, Land Use Policy, 10:205–26,(1993)
  • [34] Maslov N., Claramunt C., Wang T., Tang T., “Evaluating the Visual Impact of an Offshore Wind Farm”, Energy Procedia, 105: 3095–3100,(2017)
  • [35] Sæþórsdóttir A.D., Ólafsdóttir R., “Not in my back yard or not on my playground: Residents and tourists' attitudes towards wind turbines in Icelandic landscapes”, Energy for Sustainable Development, 54: 127-138, (2020)
  • [36] Masden E. A., Haydon D.T., Fox A.D., Furness R.W., Bullman R., Desholm M., “Barriers to movement: impacts of wind farms on migrating birds”, ICES Journal of Marine Science, 66: 746–753,(2009)
  • [37] Fielding A.H., Whitfield D.P., Mcleod D.R.A., “Spatial association as an indicator of the potential for future interactions between wind energy developments and golden eagles Aquila chrysaetos in Scotland”, Biological Conservation, 131: 359 369,(2006)
  • [38] Bright J., Langston R., Bullman R., Evans R., Gardner S., Pearce-Higgins J., “Map of bird sensitivities to wind farms in Scotland: a tool to aid planning and conservation”, Biological Conservation, 141: 2342–2356,(2008)
  • [39] Larsen J.K., Guillemette M., “Effects of wind turbines on flight behaviour of wintering common eiders: implications for habitat use and collision risk”, Journal of Applied Ecology, 44: 516–522 (2007).
  • [40] Barrios L., Rodriguez A., “Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines”, Journal of Applied Ecology, 41: 72–81, (2004)
  • [41] Hötker H., Thomsen K.M., Jeromin H., “Impacts on biodiversity of exploitation of renewable energy resources: the example of birds and bats—facts, gaps in knowledge, demands for further research, and ornithological guidelines for the development of renewable energy exploitation”, Michael-Otto-Institut im NABU, Bergenhusen, (2006)
  • [42] Langston R.H.W., Pullan J.D., “Windfarms and birds: an analysis of the effects of windfarms on birds, and guidance on environmental assessment criteria and site selection issues”, Report to the Standing Committee on the Convention on the Conservation of Wildlife and Natural Habitats. Council of European Communities, Strasbourg ,(2003)
  • [43] Fox A.D., Desholm M., Kahlert J., Christensen T. K., Petersen, I.K., “Information needs to support environmental impact assessment of the effects of European offshore wind farms on birds”, Ibis, 148: 129–144, (2006)
  • [44] Madders M., Whitfield D.P., “Upland raptors and the assessment of wind farm impacts”, Ibis, 148: 43–56, (2006)
  • [45] Frair J.L., Merrill E.H., Visscher D.R., Fortin D., Beyer H.L., Morales J.M., “Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk”, Landscape Ecology, 20: 273–287, (2005)
  • [46] Jander R., “Ecological aspects of spatial orientation”, Annual Review of Ecology and Systematics, 6: 171–188, (1975)
  • [47] Desholm M., Kahlert J., “Avian collision risk at an offshore wind farm”, Biology Letters, 1: 296–298,(2005)
  • [48] Wendeln H., Becker P.H., “Effects of parental quality and effort on the reproduction of common terns”, Journal of Animal Ecology, 68: 205–214,(1995)
  • [49] Parker H., Holm H., “Patterns of nutrient and energy-expenditure in female common eiders nesting in the high Arctic”, The Auk, 107: 660–668, (1990)
  • [50] Meijer T., Drent R., “Re-examination of the capital and income dichotomy in breeding birds”, Ibis, 141: 399–414,(1999)
  • [51] Desholm M., Fox A.D., Beasley P.D.L., Kahlert J., “Remote techniques for counting and estimating the number of bird-wind turbine collisions at sea: a review”, Ibis, 148:76–89, (2006)
  • [52] Huppop O., Dierschke J., Exo K.M., Fredrich E., Hill R., “Bird migration studies and potential collision risk with offshore wind turbines”, Ibis, 148:90–109, (2006)
  • [53] Arnett E. B., Brown W.K., Erickson W.P., Fiedler J.K., Hamilton B.L., Henry T.H., Jain A., Johnson G.D., Kerns J., Koford R.R., Nicholson C.P., O’Connell T. J., Piorkowski M. D., Tankersley R. D., “Patterns of bat fatalities at wind energy facilities in North America”, Journal of Wildlife Management, 72:61–78, (2008)
  • [54] Piorkowski M.D., O’Connell T.J., “Spatial patterns of summer bat mortality from collisions with wind turbines in mixed-grass prairie”, American Midland Naturalist, 164:260–269,(2010)
  • [55] Kuvlesky W.P., Brennan L.A., Morrison M.L., Ballard K.K., Bryant F.C., “Wind energy development and wildlife conservation: challenges and opportunities”, Journal of Wildlife Management, 71:2487–2498,(2007)
  • [56] Erickson W.P., Johnson G.D., Strickland M.D., Young D.P., Sernka K.J., Good R.E., “Avian collisions with wind turbines: a summary of existing studies and comparisons to other sources of avian collision mortality in the United States”, Prepared by W.E.S.T., Inc. for the National Wind Coordinating Collaborative (NWCC), (2001)
  • [57] Anderson R. L., Morrison M., Sinclair K., Strickland M.D., “Studying wind energy-bird interactions: a guidance document”, Prepared for Avian subcommittee and National Wind Coordinating Committee,(1999)
  • [58] Kunz T.H., Arnett E.B., Cooper B.M., Erickson W.P., Larkin R.P., Mabee T., Morrison M.L., Strickland M.D., Szewczak J.M., “Assessing impacts of wind-energy development on nocturnally active birds and bats: a guidance document”, Journal of Wildlife Management, 71:2449–2486, (2007)
  • [59] Bright J., Langston R., Bullman R., Evans R., Gardner S., Pearce-Higgins J., “Map of bird sensitivities to wind farms in Scotland: a tool to aid planning and conservation”, Biological Conservation, 14:2342–2356,(2008)
  • [60] Desholm M., “Avian sensitivity to mortality: prioritizing migratory bird species for assessment at proposed wind farms”, Journal of Environmental Management, 90:2672–2679, (2009)
  • [61] Kerlinger P., Hatch J., “Preliminary avian risk assessment for the Cape Wind Energy Project”, Prepared by Curry & Kerlinger, L.L.C. for Cape Wind Associates, L.L.C. and Environmental Science Service, Inc., (2001)
  • [62] Allison T.D., Jedrey E., Perkins S., “Avian issues for offshore wind development”, Marine Technology Society Journal, 42(2):28–38, (2008)
  • [63] Kunz T.H., Arnett E.B., Erickson W.P., Hoar A.R., Johnson G.D., Larkin R.P., Strickland M.D., Thresher R.W., Tuttle M.D., Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses, Frontier in Ecology and the Environment, 5:315–324, (2007)
  • [64] Kerlinger P., Gehring J.L., Erickson W.P., Curry R., Jain A., Guarnaccia J., “Night migrant fatalities and obstruction lighting at wind turbines in North America”, Wilson Journal of Ornithology, 122:744–754,(2010)
  • [65] Huso M.M.P., “An estimator of wildlife fatality from observed carcasses”, Environmetrics 22:318–329, (2011)
  • [66] Ferreira D., Freixo C., Cabral J.A., Santos R., Santos M., “Do habitat characteristics determine mortality risk for bats at wind farms? Modelling susceptible species activity patterns and anticipating possible mortality events”, Ecol. Inf., 28: 7-18, (2015)
  • [67] Baerwald E.F.F., Patterson W.P., Barclay R.M.R., “Origins and migratory patterns of bats killed by wind turbines in southern Alberta: evidence from stable isotopes”, Ecosphere, 5: 1-17,(2014)
  • [68] Thompson M., Beston J.A., Etterson M., Diffendorfer J.E., Loss S.R., “Factors associated with bat mortality at wind energy facilities in the United States”, Biol. Conserv. 215: 241-245, (2017)
  • [69] Reiskind M.H., Wund M.A., “Experimental assessment of the impacts of northern long-eared bats on ovipositing Culex (Diptera: Culicidae) mosquitoes”, J. Med. Entomol, 46: 1037-1044,(2009)
  • [70] Kuvlesky W.P., Brennan L.A., Morrison M.L., Boydston K.K., Ballard B.M., Bryant F.C.,“Wind energy development and wildlife conservation: challenges and opportunities”, Wildl. Res. ,71:2487-2498, (2007)
  • [71] Arnett E.B., Brown W.K., Erickson W.P., Fiedler J.K., Hamilton B.L., Henry T.H., Jain A., Johnson G.D., Kerns J., Koford R.R., Nicholson C.P., O’Connell T.J., Piorkowski M.D., Tankersley R.D.,. Patterns of bat fatalities at wind energy facilities in North America, J. Wildl. Manag., 72: 61-78,(2008)
  • [72] Arnett E.B., Baerwald E.F., “Impacts of wind energy development on bats: implications for conservation In: Adams, R.A., Pedersen, S.C. (Eds.), Bat Evolution, Ecology, and Conservation”, Springer Science Business Media, New York, NY, 435-456, (2013)
  • [73] Hayes M.A., “Bats killed in large numbers at United States wind energy facilities”,Bioscience, 63: 975-979, (2013)
  • [74] Kunz T.H., Arnett E.B., Erickson W.P., Hoar A.R., Johnson G.D., Larkin R.P., Strickland M.D., Thresher R.W., Tuttle M.D., “Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses”, Front. Ecol. Environ, 5: 315-324,(2007)
  • [75] Orloff S., Flannery A., “Wind Turbine Effects on Avian Activity, Habitat Use, and Mortality in Altamont Pass and Solano County Wind Resource areas: 1989-1991”, A report prepared for the California Energy Commission, 1-199, (1992)
  • [76] Smallwood K.S., “Comparing bird and bat fatality-rate estimates among North American wind-energy projects”, Wildl. Soc. Bull., 37: 19-33, (2013)
  • [77] Frick W.F., Baerwald E.F., Pollock J.F., Barclay R.M.R., Szymanski J.A.,Weller T.J., Russell A.L., Loeb S.C., Medellin R.A., McGuire L.P., “Fatalities at wind turbines may threaten population viability of a migratory bat”, Biol. Conserv., 209: 172-177, (2017)
  • [78] Lomolino M.V., “Elevation gradients of species-density: historical and prospective views”, Glob. Ecol. Biogeogr, 10: 3-13, (2011)
  • [79] Willdenow K.L., “The Principles of Botany, and Vegetable Physiology”, Blackwood, Cadell and Davies, London, (1805)
  • [80] Pustkowiak S., Banaszak-Cibicka W., Mielczarek Ł.E., Tryjanowski P., Skórka P, “The association of windmills with conservation of pollinating insects and wild plants in homogeneous farmland of western Poland”, Environmental Science and Pollution Research, 25(7): 6273–6284, (2017)
  • [81] Corten G.P., Veldkamp H.F., “Insects can halve wind-turbine power”, Nature, 412: 42-43, (2001).
  • [82] Martin G., “Understanding bird collisions with man-made objects: A sensory ecology approach”, Ibis ,153: 239–254, (2011)
  • [83] Mouritsen H. “Long-distance navigation and magnetoreception in migratory animals”, Nature, 558: 50-59, (2018)
  • [84] Sterner D., “A roadmap for PIER research on avian collisions with wind turbines in California”, California Energy Commission (unpublished), (2002)
  • [85] Huppop O., Dierschke J., Exo K.M., Fredrich E., Hill R., “Bird migration studies and potential collision risk with offshore wind turbines”, Ibis, 148: 90–109, (2006)
  • [86] Rebke M., Dierschke V., Weiner C.N., Aumüller R., Hill K., Hill R., “Attraction of nocturnally migrating birds to artificial light: The influence of colour, intensity and blinking mode under different cloud cover conditions”, Biological Conservation, 233: 220-227,(2019)
  • [87] Minderman J., Pendlebury C.J., Pearce-Higgins J.W., Park K.J., “Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity”, PLoS ONE, 7: 41177, (2012)
  • [88] WWF ITALIA. Eolico e biodiversità: linee guida per la realizzazione di impianti eolici industriali in Italia; 2009. Available at: http://regionali.wwf.it.
There are 88 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review Article
Authors

Emine Yağiz Gürbüz 0000-0002-5200-8536

Ayça Altıntaş 0000-0003-1578-1754

Berk Sürücü 0000-0003-2211-7077

Azim Doğuş Tuncer 0000-0002-8098-6417

Project Number 2209-A 1919B011902278
Publication Date September 1, 2021
Submission Date May 23, 2020
Published in Issue Year 2021 Volume: 24 Issue: 3

Cite

APA Gürbüz, E. Y., Altıntaş, A., Sürücü, B., Tuncer, A. D. (2021). Rüzgar Türbinlerinin Yaban Hayatına Etkilerinin İncelenmesi. Politeknik Dergisi, 24(3), 953-962. https://doi.org/10.2339/politeknik.741965
AMA Gürbüz EY, Altıntaş A, Sürücü B, Tuncer AD. Rüzgar Türbinlerinin Yaban Hayatına Etkilerinin İncelenmesi. Politeknik Dergisi. September 2021;24(3):953-962. doi:10.2339/politeknik.741965
Chicago Gürbüz, Emine Yağiz, Ayça Altıntaş, Berk Sürücü, and Azim Doğuş Tuncer. “Rüzgar Türbinlerinin Yaban Hayatına Etkilerinin İncelenmesi”. Politeknik Dergisi 24, no. 3 (September 2021): 953-62. https://doi.org/10.2339/politeknik.741965.
EndNote Gürbüz EY, Altıntaş A, Sürücü B, Tuncer AD (September 1, 2021) Rüzgar Türbinlerinin Yaban Hayatına Etkilerinin İncelenmesi. Politeknik Dergisi 24 3 953–962.
IEEE E. Y. Gürbüz, A. Altıntaş, B. Sürücü, and A. D. Tuncer, “Rüzgar Türbinlerinin Yaban Hayatına Etkilerinin İncelenmesi”, Politeknik Dergisi, vol. 24, no. 3, pp. 953–962, 2021, doi: 10.2339/politeknik.741965.
ISNAD Gürbüz, Emine Yağiz et al. “Rüzgar Türbinlerinin Yaban Hayatına Etkilerinin İncelenmesi”. Politeknik Dergisi 24/3 (September 2021), 953-962. https://doi.org/10.2339/politeknik.741965.
JAMA Gürbüz EY, Altıntaş A, Sürücü B, Tuncer AD. Rüzgar Türbinlerinin Yaban Hayatına Etkilerinin İncelenmesi. Politeknik Dergisi. 2021;24:953–962.
MLA Gürbüz, Emine Yağiz et al. “Rüzgar Türbinlerinin Yaban Hayatına Etkilerinin İncelenmesi”. Politeknik Dergisi, vol. 24, no. 3, 2021, pp. 953-62, doi:10.2339/politeknik.741965.
Vancouver Gürbüz EY, Altıntaş A, Sürücü B, Tuncer AD. Rüzgar Türbinlerinin Yaban Hayatına Etkilerinin İncelenmesi. Politeknik Dergisi. 2021;24(3):953-62.