Research Article
BibTex RIS Cite

Investigation of Thermal Performance of Aluminum Nanoparticle Coolant in VVER-1000 Reactor

Year 2021, Volume: 24 Issue: 3, 1009 - 1015, 01.09.2021
https://doi.org/10.2339/politeknik.777890

Abstract

Thermal analysis is of great importance when examining the safety and design features of nuclear power reactors. The aim of this study is to examine the effect of pure and containing Al2O3 nanoparticles coolant on VVER -1000 nuclear reactor thermal performance. In this study, the VVER-1000 reactor is in steady state and BOC (begining of cycle) condition, relative power density distributions varying according to 3.7% enrichment UO2 fuel were obtained with the MCNP code and then, thermal analyzes were made with the COBRA code and DNBR value, which is very important for the safety criteria of the reactor, was examined. In addition, with the COBRA code, thermal values such as temperature, enthalpy, density, and temperature values of the fuel and clad regions, which are of great importance for the reactor, were calculated. As a result of the analyzes, it was determined that the most efficient rate of 0.1% Al2O3 in the heat transfer of the reactor in the use of nano fluid.

References

  • [1] William J.Kinsella, “Extracting Uranium’s futures: Nuclear wastes, toxic temporalities, and uncertain decisions ”, The Extractive Industries and Society, Available online 8 February (2020)
  • [2] Christophe Poinssot, Christine Rostaing, Pascal Baron, Dominique Warin, Bernard Boullis, “Main Results of the French Program on Partitioning of Minor Actinides, a Significant Improvement Towards Nuclear Waste Reduction”, Procedia Chemistry, 7, 358-366, (2012)
  • [3] The VVER Today, Evolution, Design, Safety, ROSATOM Overseas Report
  • [4] Zarifi E., Jahanfarnia G., Veysi F., “Neutronic Simulation of water-based nanofluids as a coolant in VVER-1000 reactor”,Progress in Nuclear energy (65),32-41, (2013)
  • [5] Hadad K.,Hajizadeh A., Jafarpour K.,Ganapol B.D.,”Neutronic study of nanofluids application to VVER-1000”,Annals of Nuclear Energy (37),1447-1455,(2010)
  • [6] Abuqudaira, T. M., Stogov, Y. V., “Neutronic calculations for the VVER-1000 LEU and MOX assembly computational benchmark using the GETERA code ”, Journal of Physics: Conference Series, 1133: 1-10, (2018).
  • [7] Louis, H. K., “Investigation of the Pin-By-Pin Fission Rate Distributions for VVER MOX and LEU Fuel Assemblies Using MCNPX Code”, International Journal of Science, Engineering and Technology Research (IJSETR), 5(9): 2926 – 2931, (2016)
  • [8] OECD NEA, A VVER-1000 LEU and MOX Assembly Computational Benchmark: Specification and Results, (2002)
  • [9] JitkaVojackova, Filip Novotny, Karel Katovsky,” Safety analyses of reactor VVER 1000”, Energy Procedia, 127,352-359 , September (2017)
  • [10] Mohammed S.Dwiddar, Alya A.Badawi, Hanaa H.Abou-Gabal, Ibrahim A.El-Osery, Investigation of different scenarios of thorium–uranium fuel distribution in the VVER-1200 first core, Annals of Nuclear Energy, 85, 605-612, November (2015)
  • [11] Martin K., Boran K., “Isı borulu havadan havaya ısı değiştiricisinde CuO+Fe/Saf Su ve CuO/Saf su nano akışkanlarının kullanımının ısıl performansa etkisinin incelenmesi”, Politeknik Dergisi, *(*): *, (*). (Erken Görünüm)
  • [12] Akkaya M., Menlik T. and Sözen A., “Performance enhancement of a vapor compression cooling system: an application of POE/Al2O3”, Journal of Polytechnic, *(*): *, (*). (Erken Görünüm)
  • [13] Sayantan Mukherjee, Sayan Jana, PurnaChandra Mishra, Paritosh Chaudhuri, ShantaChakrabarty, “Experimental investigation on thermo-physical properties and subcooled flow boiling performance of Al2O3/water nanofluids in a horizontal tube”, International Journal of Thermal Sciences, 159, (2021).
  • [14] Zarifi E., Jahanfarnia G., Veysi F.,”Thermal hydraulic modeling of nanofluids as the coolant in VVER-1000 reactor core by the porous media approach”, Annals of Nuclear Energy, 51, 203-212, (2013)
  • [15] Hassan Saadati, Kamal Hadad, Ataollah Rabiee, “Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid”, Nuclear Engineering and Technology, 50: 639-647,(2018)
  • [16] F. Faghihi, S.M. Mirvakili, S. Safaei, S. Bagheri, “Neutronics and sub-channel thermal-hydraulics analysis of the Iranian VVER-1000 fuel bundle”, Progress in Nuclear Energy 87: 39-46, (2016)
  • [17] O. Safarzadeh, A.S. Shirani, A. Minuchehr, F. Saadatian,” Coupled neutronic/thermo-hydraulic analysis of water/Al2O3 nanofluids in a VVER-1000 reactor”, Annals of Nuclear Energy 65: 72–77, (2014)
  • [18] COBRA-IV PC: A Personal Computer Versıon Of Cobra-Iv-I For Thermal-Hydraulıc Analysıs Of Rod Bundle Nuclear Fuel Elements And Cores, U.S. Department of Energy under Contract DE-AC06-76RLO 1830, B. Webb January, (1988)
  • [19] X-5 Monte Carlo Team, 2005. MCNP-A General Monte Carlo N-Particle TransportCode, Version 5, vol. II: User’s Guide, LA-CP-03-0245, Los Alamos National Laboratory. [20] Muhammad Arshad, “Study Of Xenon And Samarıum Behavıour In The Leu PARR-1 Cores” Reactor Physics Group,Nuclear Engineering Division Pakistan Institute of Nuclear Science & Technology, October, (1994)
  • [21] Elif Begüm ELÇİOĞLU, Almıla GÜVENÇ YAZICIOĞLU,Sadık KAKAÇ,” Nanoakışkan Viskozitesinin Karşılaştırmalı Değerlendirmesi”, Isı Bilimi ve Tekniği Dergisi, 34, 1, 137-151,( 2014)
  • [22] Velagapudi, V., Konijeti, R.K., Aduru, C.S., Empirical correlation to predict thermophysical and heat transfer characteristics of nanofluids. Therm. Sci. 12(2): 27–37,(2008)
  • [23] Maïga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microst. 35(3): 543–557,(2004)
  • [24] Pak, B.C., Cho, Y.I., Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer 11(2): 151–170, (1998)
  • [25] Seyed Mohammad Mousavizadeh, Gholam Reza Ansarifar, Mansour Talebi, “Assessment of the TiO2/water nanofluid effects on heat transfer characteristics in VVER-1000 nuclear reactor using CFD modeling”, Nuclear Engineering and Technology, 47(7): 814-826 December (2015)
  • [26] Westinghouse Technology Systems Manual Section 2.2, Power Distribution Limits

VVER-1000 Reaktöründe Alüminyum Nanoparçacıklı Soğutucunun Termal Performansının İncelenmesi

Year 2021, Volume: 24 Issue: 3, 1009 - 1015, 01.09.2021
https://doi.org/10.2339/politeknik.777890

Abstract

Nükleer güç reaktörlerinin güvenlik ve tasarım özellikleri incelenirken termal analizlerin önemi büyüktür. Bu çalışmada amaç, saf ve Al2O3 nano parçacık içeren soğutucu akışkanların VVER -1000 nükleer reaktör termal performansına etkisinin incelenmesidir. Bu amaçla, VVER-1000 reaktörünün denge durumunda (sürekli rejimde) ve BOC (döngü başlangıcı) koşulunda, 3.7 % zenginlikte ki UO2 yakıt için bağıl güç yoğunluk dağılımları MCNP kodu ile elde edilmiş ve daha sonra COBRA kodu ile termal analizler yapılarak, reaktörün güvenlik kriterleri için önem arzeden DNBR (departure from nucleate boiling ratio) değeri incelenmiştir. Ayrıca COBRA kodu ile reaktörde kullanılan soğutucu akışkanlara ait sıcaklık, entalpi, yoğunluk gibi termal değerler ve yakıt ve zarf bölgelerine ait sıcaklık değerleri hesaplanmıştır. Yapılan analizler sonucu, nano akışkan kullanımında reaktörün ısı iletiminde en verimli oranın % 0.1 oranında Al2O3 olduğu belirlenmiştir.

References

  • [1] William J.Kinsella, “Extracting Uranium’s futures: Nuclear wastes, toxic temporalities, and uncertain decisions ”, The Extractive Industries and Society, Available online 8 February (2020)
  • [2] Christophe Poinssot, Christine Rostaing, Pascal Baron, Dominique Warin, Bernard Boullis, “Main Results of the French Program on Partitioning of Minor Actinides, a Significant Improvement Towards Nuclear Waste Reduction”, Procedia Chemistry, 7, 358-366, (2012)
  • [3] The VVER Today, Evolution, Design, Safety, ROSATOM Overseas Report
  • [4] Zarifi E., Jahanfarnia G., Veysi F., “Neutronic Simulation of water-based nanofluids as a coolant in VVER-1000 reactor”,Progress in Nuclear energy (65),32-41, (2013)
  • [5] Hadad K.,Hajizadeh A., Jafarpour K.,Ganapol B.D.,”Neutronic study of nanofluids application to VVER-1000”,Annals of Nuclear Energy (37),1447-1455,(2010)
  • [6] Abuqudaira, T. M., Stogov, Y. V., “Neutronic calculations for the VVER-1000 LEU and MOX assembly computational benchmark using the GETERA code ”, Journal of Physics: Conference Series, 1133: 1-10, (2018).
  • [7] Louis, H. K., “Investigation of the Pin-By-Pin Fission Rate Distributions for VVER MOX and LEU Fuel Assemblies Using MCNPX Code”, International Journal of Science, Engineering and Technology Research (IJSETR), 5(9): 2926 – 2931, (2016)
  • [8] OECD NEA, A VVER-1000 LEU and MOX Assembly Computational Benchmark: Specification and Results, (2002)
  • [9] JitkaVojackova, Filip Novotny, Karel Katovsky,” Safety analyses of reactor VVER 1000”, Energy Procedia, 127,352-359 , September (2017)
  • [10] Mohammed S.Dwiddar, Alya A.Badawi, Hanaa H.Abou-Gabal, Ibrahim A.El-Osery, Investigation of different scenarios of thorium–uranium fuel distribution in the VVER-1200 first core, Annals of Nuclear Energy, 85, 605-612, November (2015)
  • [11] Martin K., Boran K., “Isı borulu havadan havaya ısı değiştiricisinde CuO+Fe/Saf Su ve CuO/Saf su nano akışkanlarının kullanımının ısıl performansa etkisinin incelenmesi”, Politeknik Dergisi, *(*): *, (*). (Erken Görünüm)
  • [12] Akkaya M., Menlik T. and Sözen A., “Performance enhancement of a vapor compression cooling system: an application of POE/Al2O3”, Journal of Polytechnic, *(*): *, (*). (Erken Görünüm)
  • [13] Sayantan Mukherjee, Sayan Jana, PurnaChandra Mishra, Paritosh Chaudhuri, ShantaChakrabarty, “Experimental investigation on thermo-physical properties and subcooled flow boiling performance of Al2O3/water nanofluids in a horizontal tube”, International Journal of Thermal Sciences, 159, (2021).
  • [14] Zarifi E., Jahanfarnia G., Veysi F.,”Thermal hydraulic modeling of nanofluids as the coolant in VVER-1000 reactor core by the porous media approach”, Annals of Nuclear Energy, 51, 203-212, (2013)
  • [15] Hassan Saadati, Kamal Hadad, Ataollah Rabiee, “Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid”, Nuclear Engineering and Technology, 50: 639-647,(2018)
  • [16] F. Faghihi, S.M. Mirvakili, S. Safaei, S. Bagheri, “Neutronics and sub-channel thermal-hydraulics analysis of the Iranian VVER-1000 fuel bundle”, Progress in Nuclear Energy 87: 39-46, (2016)
  • [17] O. Safarzadeh, A.S. Shirani, A. Minuchehr, F. Saadatian,” Coupled neutronic/thermo-hydraulic analysis of water/Al2O3 nanofluids in a VVER-1000 reactor”, Annals of Nuclear Energy 65: 72–77, (2014)
  • [18] COBRA-IV PC: A Personal Computer Versıon Of Cobra-Iv-I For Thermal-Hydraulıc Analysıs Of Rod Bundle Nuclear Fuel Elements And Cores, U.S. Department of Energy under Contract DE-AC06-76RLO 1830, B. Webb January, (1988)
  • [19] X-5 Monte Carlo Team, 2005. MCNP-A General Monte Carlo N-Particle TransportCode, Version 5, vol. II: User’s Guide, LA-CP-03-0245, Los Alamos National Laboratory. [20] Muhammad Arshad, “Study Of Xenon And Samarıum Behavıour In The Leu PARR-1 Cores” Reactor Physics Group,Nuclear Engineering Division Pakistan Institute of Nuclear Science & Technology, October, (1994)
  • [21] Elif Begüm ELÇİOĞLU, Almıla GÜVENÇ YAZICIOĞLU,Sadık KAKAÇ,” Nanoakışkan Viskozitesinin Karşılaştırmalı Değerlendirmesi”, Isı Bilimi ve Tekniği Dergisi, 34, 1, 137-151,( 2014)
  • [22] Velagapudi, V., Konijeti, R.K., Aduru, C.S., Empirical correlation to predict thermophysical and heat transfer characteristics of nanofluids. Therm. Sci. 12(2): 27–37,(2008)
  • [23] Maïga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices Microst. 35(3): 543–557,(2004)
  • [24] Pak, B.C., Cho, Y.I., Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer 11(2): 151–170, (1998)
  • [25] Seyed Mohammad Mousavizadeh, Gholam Reza Ansarifar, Mansour Talebi, “Assessment of the TiO2/water nanofluid effects on heat transfer characteristics in VVER-1000 nuclear reactor using CFD modeling”, Nuclear Engineering and Technology, 47(7): 814-826 December (2015)
  • [26] Westinghouse Technology Systems Manual Section 2.2, Power Distribution Limits
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Sinem Uzun 0000-0002-2814-1062

Yasin Genç 0000-0002-2786-4824

Adem Acır 0000-0002-9856-3623

Publication Date September 1, 2021
Submission Date August 7, 2020
Published in Issue Year 2021 Volume: 24 Issue: 3

Cite

APA Uzun, S., Genç, Y., & Acır, A. (2021). VVER-1000 Reaktöründe Alüminyum Nanoparçacıklı Soğutucunun Termal Performansının İncelenmesi. Politeknik Dergisi, 24(3), 1009-1015. https://doi.org/10.2339/politeknik.777890
AMA Uzun S, Genç Y, Acır A. VVER-1000 Reaktöründe Alüminyum Nanoparçacıklı Soğutucunun Termal Performansının İncelenmesi. Politeknik Dergisi. September 2021;24(3):1009-1015. doi:10.2339/politeknik.777890
Chicago Uzun, Sinem, Yasin Genç, and Adem Acır. “VVER-1000 Reaktöründe Alüminyum Nanoparçacıklı Soğutucunun Termal Performansının İncelenmesi”. Politeknik Dergisi 24, no. 3 (September 2021): 1009-15. https://doi.org/10.2339/politeknik.777890.
EndNote Uzun S, Genç Y, Acır A (September 1, 2021) VVER-1000 Reaktöründe Alüminyum Nanoparçacıklı Soğutucunun Termal Performansının İncelenmesi. Politeknik Dergisi 24 3 1009–1015.
IEEE S. Uzun, Y. Genç, and A. Acır, “VVER-1000 Reaktöründe Alüminyum Nanoparçacıklı Soğutucunun Termal Performansının İncelenmesi”, Politeknik Dergisi, vol. 24, no. 3, pp. 1009–1015, 2021, doi: 10.2339/politeknik.777890.
ISNAD Uzun, Sinem et al. “VVER-1000 Reaktöründe Alüminyum Nanoparçacıklı Soğutucunun Termal Performansının İncelenmesi”. Politeknik Dergisi 24/3 (September 2021), 1009-1015. https://doi.org/10.2339/politeknik.777890.
JAMA Uzun S, Genç Y, Acır A. VVER-1000 Reaktöründe Alüminyum Nanoparçacıklı Soğutucunun Termal Performansının İncelenmesi. Politeknik Dergisi. 2021;24:1009–1015.
MLA Uzun, Sinem et al. “VVER-1000 Reaktöründe Alüminyum Nanoparçacıklı Soğutucunun Termal Performansının İncelenmesi”. Politeknik Dergisi, vol. 24, no. 3, 2021, pp. 1009-15, doi:10.2339/politeknik.777890.
Vancouver Uzun S, Genç Y, Acır A. VVER-1000 Reaktöründe Alüminyum Nanoparçacıklı Soğutucunun Termal Performansının İncelenmesi. Politeknik Dergisi. 2021;24(3):1009-15.