Research Article
BibTex RIS Cite

Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi

Year 2021, Volume: 24 Issue: 3, 1219 - 1226, 01.09.2021
https://doi.org/10.2339/politeknik.845804

Abstract

Rüzgâr türbinlerinde kanat modelleri yüksek performans için büyük öneme haizdir. Bu çalışmada, rüzgâr türbini kanat profili yaygın olarak kullanılan NACA 2412 modelinde kiriş yapısının aerodinamik performansa etkisi sayısal olarak incelenmiştir. RHİNOCEROS programı ile modellenen kanat profilleri ANSYS FLUENT programı ile akış analizleri yapılmıştır. Sayısal analizler, 3,24x105 Reynolds sayısında (Re) ve k-ε realizable türbülans modeli kullanılarak gerçekleştirilmiştir. 0,25 m veter uzunluğuna bağlı olarak kanat profillerinin açıklık oranı 5’tir. Serbest hava akım hızının 20 m/s olduğu çalışmada kanat profilleri kaldırma (CL), sürüklenme (CD) katsayıları ve aerodinamik performansı (CL / CD) incelenmiştir. Düz kanat profili (K0), maksimum kaldırma katsayısına 22,5° hücum açısında ulaşırken, kiriş yapısı ile modifiye edilmiş kanat (K1) profili 25° hücum açısında ulaşmıştır. K1 kanadının maksimum CL değeri 1,1462 olup K0 kanadının maksimum değerinden %1 fazladır. İrtifa kaybı sonrası, K1 kanat profilinin ortalama CL / CD değeri K0 kanadının ortalama değerinden %5 fazla olarak gerçekleşmiştir. Kiriş yapısı yüksek hücum açılarında, aerodinamik performansa olumlu yönde etkisi bulunmaktadır.

References

  • [1] Jurasz, J., Canales, F. A., Kies, A., Guezgouz, M., ve Beluco, A. “A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions” Solar Energy, 195, 703-724, (2020)
  • [2] Wagner, H. J. “Introduction to wind energy systems. In EPJ Web of Conferences” Vol. 189, p. 00005, EDP Sciences, (2018).
  • [3] Schlichting, H. ve Gersten, K. “Boundary-layer theory”, Springer, 9th Edition, Berlin (2017)
  • [4] Saha, S. K., ve Alam, M. M. “Numerical and Experimental Investigation Of The Influence Of Serrated Gurney Flap Over a NACA 2412 Airfoil.”, Mechanical Engineering Research Journal, Vol. 11, pp. 7–12, (2018)
  • [5] Mohamed, M. A. R., Guven, U., ve Yadav, R. “Flow separation control of NACA-2412 airfoil with bio-inspired nose.” Aircraft Engineering and Aerospace Technology, Vol. 91 No. 7, pp. 1058-1066, (2019)
  • [6] Hao, W., ve Li, C.” Performance improvement of adaptive flap on flow separation control and its effect on VAWT”, Energy, 213, 118809, (2020)
  • [7] Arra, A., Anekar, N., ve Nimbalkar, S. “Aerodynamic effects of leading edge (LE) slats and slotted trailing edge (TE) flaps on NACA-2412 airfoil in prospect of optimization.” Materials Today: Proceedings, (2020)
  • [8] Tanürün, H. E., Ata İ., Canli, M.E., ve Acir A. “Farklı açıklık oranlarındaki NACA-0018 rüzgâr türbini kanat modeli performansının sayısal ve deneysel incelenmesi.” Politeknik Dergisi, 23(2), 371-381. (2020)
  • [9] Dwivedi, Y. D., Bhargava, V., Rao, P. M. V., ve Jagadeesh, D. “Aerodynamic Performance of Micro Aerial Wing Structures at Low Reynolds Number.” INCAS Bulletin, 11(1), 107-120. (2019)
  • [10] Venkatesan, S. P., Kumar, V. P., Kumar, M. S., ve Kumar, S. “Computational Analysis of Aerodynamic Characteristics of Dimple Airfoil NACA 2412 at Various Angles of Attack.” International Journal of Mechanical Engineering and Technology, Volume 9, Issue 9, September 2018, pp. 41–49, (2018)
  • [11] Raiesi, H., Piomelli, U., ve Pollard, A. “Evaluation of turbulence models using direct numerical and large-eddy simulation data”, ASME Journal of Fluids Engineering 133(2): 021203, (2011)
  • [12] A. Tools, “NACA 4 digit airfoil generator,” National Advisory Committee for Aeronautics, 2015. http://airfoiltools.com/airfoil/naca4digit (accessed Jul. 12, 2020).
  • [13] Jin, J. Y., ve Virk, M. S. “Study of ice accretion along symmetric and asymmetric airfoils” Journal of Wind Engineering and Industrial Aerodynamics, 179, 240-249, (2018)
  • [14] Castelli, M. R., Giulia, S., ve Ernesto, B. “Numerical analysis of the influence of airfoil asymmetry on VAWT performance”, World Academy of Science, Engineering and Technology, 61, 312-321, (2012)
  • [15] Yılmaz, M., Köten, H., Çetinkaya, E., ve Coşar, Z. “A comparative CFD analysis of NACA0012 and NACA4412 airfoils” Journal of Energy Systems, 2(4), 145-159, (2018)
  • [16] Yousefi, K., ve Saleh, R. “The effects of trailing edge blowing on aerodynamic characteristics of the NACA 0012 airfoil and optimization of the blowing slot geometry" Journal of Theorical and Applied Mechanics, 52, 165-179, (2014)
  • [17] Almohammadi, K. M., Ingham, D. B., Ma, L., ve Pourkashan, M. “Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine” Energy, 58, 483-493, (2013)
  • [18] Garimella, R. V., Shashkov, M. J., ve Knupp, P. M. “Triangular and quadrilateral surface mesh quality optimization using local parametrization” Computer Methods in Applied Mechanics and Engineering, 193(9-11), 913-928, (2004).
  • [19] Egorova, O., Kojekine, N., Hagiwara, I., Savchenko, M., Semenova, I., ve Savchenko, V. “Improvement of mesh quality using a statistical approach” In Proceedings of the 3rd IASTED International Conference on Visualization, Imaging and Image Processing (VIIP), Spain (Vol. 2, pp. 1016-1021), (2003)
  • [20] Shukla, I., Tupkari, S. S., Raman, A. K., ve Mullick, A. N. “Wall Y+ approach for dealing with turbulent flow through a constant area duct” AIP Conference Proceedings (Vol. 1440, No. 1, pp. 144-153). American Institute of Physics. (2012)
  • [21] Tanürün, H. E., ve Acir A. “Modifiye edilmiş NACA-0015 kanat yapısında tüberkül etkisinin sayısal analizi” Politeknik Dergisi, 22(1), 185-195i (2019)
  • [22] Siddiqui, M. S., Rasheed, A., Kvamsdal, T., ve Tabib, M. “Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine” Energy Procedia, 80, 312-320, (2015)
  • [23] Şahin, İ., ve Acir, A. “Numerical and experimental investigations of lift and drag performances of NACA 0015 wind turbine airfoil” International Journal of Materials, Mechanics and Manufacturing, 3(1), 22-25. (2015)
  • [24] Song, C., Zheng, Y., Zhao, Z., Zhang, Y., Li, C., ve Jiang, H. “Investigation of meshing strategies and turbulence models of computational fluid dynamics simulations of vertical axis wind turbines” Journal of Renewable and Sustainable Energy, 7(3), 033111, (2015)
  • [25] Kaya A.F., Tanürün H.E. and Acır A., “Numerical investigation of radius dependent solidity effect on H-type vertical axis wind turbines”, Politeknik Dergisi, doi: 10.2339/politeknik.799767
  • [26] Ives, R., Bassey, E., ve Hamad, F. A. “Investigation of the flow around an aircraft wing of section NACA 2412 utilising ANSYS fluent” INCAS Bulletin, Volume 10, Issue 1/ 2018, pp. 95 – 104, (2018)
  • [27] Meghani, P. “A 2D Aerodynamic Study on Morphing in The NACA 2412 Aerofoil” 13th Research and Education in Aircraft Design Conference, Brno, Czech Republic, (2018)

Numerical Investigation of Rib Structure Effects On Performance of Wind Turbines

Year 2021, Volume: 24 Issue: 3, 1219 - 1226, 01.09.2021
https://doi.org/10.2339/politeknik.845804

Abstract

In order to achieve high aerodynamic performance in wind, airfoil profile geometries have significant effect. In this study, NACA 2412 airfoil which is widely used for wind turbines was investigated numerically. Technical drawings were drawn by sing CAD program RHINOCEROS and flow analysis was performed by using ANSYS FLUENT. In our study, Reynolds number was 3,24x105 and k-ε realizable was chosen as turbulence model solver. Chord length is 0,25 m and spanwise is 5. Airfoil models were investigated in terms of lift (CL) and drag (CD) coefficient while free stream air velocity is 20 m/s. Smooth blade profile reached its maximum lift coefficient at 22,5° on the other hand modified profile reached its maximum value of lift coefficient at 25° angle of attack. K1 airfoil profile has reached its maximum value as 1,1462 and this value is %1 more than K0’s value. It was observed that K1 profile’s average CL / CD is %5 more than K0’s average value after stall. Triangular rib structure contributes positively on aerodynamic performance during high angle of attack.

References

  • [1] Jurasz, J., Canales, F. A., Kies, A., Guezgouz, M., ve Beluco, A. “A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions” Solar Energy, 195, 703-724, (2020)
  • [2] Wagner, H. J. “Introduction to wind energy systems. In EPJ Web of Conferences” Vol. 189, p. 00005, EDP Sciences, (2018).
  • [3] Schlichting, H. ve Gersten, K. “Boundary-layer theory”, Springer, 9th Edition, Berlin (2017)
  • [4] Saha, S. K., ve Alam, M. M. “Numerical and Experimental Investigation Of The Influence Of Serrated Gurney Flap Over a NACA 2412 Airfoil.”, Mechanical Engineering Research Journal, Vol. 11, pp. 7–12, (2018)
  • [5] Mohamed, M. A. R., Guven, U., ve Yadav, R. “Flow separation control of NACA-2412 airfoil with bio-inspired nose.” Aircraft Engineering and Aerospace Technology, Vol. 91 No. 7, pp. 1058-1066, (2019)
  • [6] Hao, W., ve Li, C.” Performance improvement of adaptive flap on flow separation control and its effect on VAWT”, Energy, 213, 118809, (2020)
  • [7] Arra, A., Anekar, N., ve Nimbalkar, S. “Aerodynamic effects of leading edge (LE) slats and slotted trailing edge (TE) flaps on NACA-2412 airfoil in prospect of optimization.” Materials Today: Proceedings, (2020)
  • [8] Tanürün, H. E., Ata İ., Canli, M.E., ve Acir A. “Farklı açıklık oranlarındaki NACA-0018 rüzgâr türbini kanat modeli performansının sayısal ve deneysel incelenmesi.” Politeknik Dergisi, 23(2), 371-381. (2020)
  • [9] Dwivedi, Y. D., Bhargava, V., Rao, P. M. V., ve Jagadeesh, D. “Aerodynamic Performance of Micro Aerial Wing Structures at Low Reynolds Number.” INCAS Bulletin, 11(1), 107-120. (2019)
  • [10] Venkatesan, S. P., Kumar, V. P., Kumar, M. S., ve Kumar, S. “Computational Analysis of Aerodynamic Characteristics of Dimple Airfoil NACA 2412 at Various Angles of Attack.” International Journal of Mechanical Engineering and Technology, Volume 9, Issue 9, September 2018, pp. 41–49, (2018)
  • [11] Raiesi, H., Piomelli, U., ve Pollard, A. “Evaluation of turbulence models using direct numerical and large-eddy simulation data”, ASME Journal of Fluids Engineering 133(2): 021203, (2011)
  • [12] A. Tools, “NACA 4 digit airfoil generator,” National Advisory Committee for Aeronautics, 2015. http://airfoiltools.com/airfoil/naca4digit (accessed Jul. 12, 2020).
  • [13] Jin, J. Y., ve Virk, M. S. “Study of ice accretion along symmetric and asymmetric airfoils” Journal of Wind Engineering and Industrial Aerodynamics, 179, 240-249, (2018)
  • [14] Castelli, M. R., Giulia, S., ve Ernesto, B. “Numerical analysis of the influence of airfoil asymmetry on VAWT performance”, World Academy of Science, Engineering and Technology, 61, 312-321, (2012)
  • [15] Yılmaz, M., Köten, H., Çetinkaya, E., ve Coşar, Z. “A comparative CFD analysis of NACA0012 and NACA4412 airfoils” Journal of Energy Systems, 2(4), 145-159, (2018)
  • [16] Yousefi, K., ve Saleh, R. “The effects of trailing edge blowing on aerodynamic characteristics of the NACA 0012 airfoil and optimization of the blowing slot geometry" Journal of Theorical and Applied Mechanics, 52, 165-179, (2014)
  • [17] Almohammadi, K. M., Ingham, D. B., Ma, L., ve Pourkashan, M. “Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine” Energy, 58, 483-493, (2013)
  • [18] Garimella, R. V., Shashkov, M. J., ve Knupp, P. M. “Triangular and quadrilateral surface mesh quality optimization using local parametrization” Computer Methods in Applied Mechanics and Engineering, 193(9-11), 913-928, (2004).
  • [19] Egorova, O., Kojekine, N., Hagiwara, I., Savchenko, M., Semenova, I., ve Savchenko, V. “Improvement of mesh quality using a statistical approach” In Proceedings of the 3rd IASTED International Conference on Visualization, Imaging and Image Processing (VIIP), Spain (Vol. 2, pp. 1016-1021), (2003)
  • [20] Shukla, I., Tupkari, S. S., Raman, A. K., ve Mullick, A. N. “Wall Y+ approach for dealing with turbulent flow through a constant area duct” AIP Conference Proceedings (Vol. 1440, No. 1, pp. 144-153). American Institute of Physics. (2012)
  • [21] Tanürün, H. E., ve Acir A. “Modifiye edilmiş NACA-0015 kanat yapısında tüberkül etkisinin sayısal analizi” Politeknik Dergisi, 22(1), 185-195i (2019)
  • [22] Siddiqui, M. S., Rasheed, A., Kvamsdal, T., ve Tabib, M. “Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine” Energy Procedia, 80, 312-320, (2015)
  • [23] Şahin, İ., ve Acir, A. “Numerical and experimental investigations of lift and drag performances of NACA 0015 wind turbine airfoil” International Journal of Materials, Mechanics and Manufacturing, 3(1), 22-25. (2015)
  • [24] Song, C., Zheng, Y., Zhao, Z., Zhang, Y., Li, C., ve Jiang, H. “Investigation of meshing strategies and turbulence models of computational fluid dynamics simulations of vertical axis wind turbines” Journal of Renewable and Sustainable Energy, 7(3), 033111, (2015)
  • [25] Kaya A.F., Tanürün H.E. and Acır A., “Numerical investigation of radius dependent solidity effect on H-type vertical axis wind turbines”, Politeknik Dergisi, doi: 10.2339/politeknik.799767
  • [26] Ives, R., Bassey, E., ve Hamad, F. A. “Investigation of the flow around an aircraft wing of section NACA 2412 utilising ANSYS fluent” INCAS Bulletin, Volume 10, Issue 1/ 2018, pp. 95 – 104, (2018)
  • [27] Meghani, P. “A 2D Aerodynamic Study on Morphing in The NACA 2412 Aerofoil” 13th Research and Education in Aircraft Design Conference, Brno, Czech Republic, (2018)
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Himmet Erdi Tanürün 0000-0001-7814-7043

Ahmet Giray Akın 0000-0003-4802-5613

Adem Acır 0000-0002-9856-3623

Publication Date September 1, 2021
Submission Date December 24, 2020
Published in Issue Year 2021 Volume: 24 Issue: 3

Cite

APA Tanürün, H. E., Akın, A. G., & Acır, A. (2021). Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi. Politeknik Dergisi, 24(3), 1219-1226. https://doi.org/10.2339/politeknik.845804
AMA Tanürün HE, Akın AG, Acır A. Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi. Politeknik Dergisi. September 2021;24(3):1219-1226. doi:10.2339/politeknik.845804
Chicago Tanürün, Himmet Erdi, Ahmet Giray Akın, and Adem Acır. “Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi”. Politeknik Dergisi 24, no. 3 (September 2021): 1219-26. https://doi.org/10.2339/politeknik.845804.
EndNote Tanürün HE, Akın AG, Acır A (September 1, 2021) Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi. Politeknik Dergisi 24 3 1219–1226.
IEEE H. E. Tanürün, A. G. Akın, and A. Acır, “Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi”, Politeknik Dergisi, vol. 24, no. 3, pp. 1219–1226, 2021, doi: 10.2339/politeknik.845804.
ISNAD Tanürün, Himmet Erdi et al. “Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi”. Politeknik Dergisi 24/3 (September 2021), 1219-1226. https://doi.org/10.2339/politeknik.845804.
JAMA Tanürün HE, Akın AG, Acır A. Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi. Politeknik Dergisi. 2021;24:1219–1226.
MLA Tanürün, Himmet Erdi et al. “Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi”. Politeknik Dergisi, vol. 24, no. 3, 2021, pp. 1219-26, doi:10.2339/politeknik.845804.
Vancouver Tanürün HE, Akın AG, Acır A. Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak İncelenmesi. Politeknik Dergisi. 2021;24(3):1219-26.