Araştırma Makalesi
BibTex RIS Kaynak Göster

FDM Yöntemi ile Üretilen Kovan Yatakların Titreşimi Sönümleme Kabiliyetlerinin Deneysel Analizi

Yıl 2022, Cilt: 25 Sayı: 1, 137 - 143, 01.03.2022
https://doi.org/10.2339/politeknik.643842

Öz

Bu çalışmada, Ergiyik Depolayarak Modelleme (Fused Deposition Modelling - FDM) yöntemi ile üretilen kovan yatakların desteklediği milin titreşimlere karşı sönümleme kabiliyetleri deneysel olarak analiz edilmiştir. Çalışmada, PA12 (Nylon) filament malzeme kullanılarak farklı doldurma şekillerinde (Honeycomb, 3D Honeycomb, Gyroid, Hilbert curve, Archimed cords) ve doluluk oranlarında (% 10, 30 ve 50) toplam 30 adet kovan yatak üretilmiştir. Kovan yatakları analiz etmek için mil-yatak sisteminde aynı çalışma şartlarında 900 dev/dak mil dönme hızında deneysel çalışma gerçekleştirilmiş, kovan yatakların desteklerine bağlanan ivmeölçerler ile titreşim verileri toplanmıştır. Elde edilen sonuçlara göre, kovan yatakların titreşimi sönümleme kabiliyetlerinde önemli farklılıklar olduğu ve genel olarak doluluk oranları arttıkça titreşim genlik değerlerinin daha düşük olduğu görülmüştür.

Destekleyen Kurum

Düzce Üniversitesi

Proje Numarası

Proje No: BAP - 2018.22.01.773

Teşekkür

Bu çalışma, Düzce Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü (Proje No: BAP - 2018.22.01.773) tarafından desteklenmiştir.

Kaynakça

  • [1] Kruth J. P., Levy G., Klocke F. and Childs T. H. C. “Consolidation phenomena in laser and powder-bed based layered manufacturing”, CIRP annals, 56(2): 730-759, (2007).
  • [2] Bourell D. L., Leu M. and Rosen D. “A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking ahead”, Proceedings of RapidTech, 24-25, (2009).
  • [3] Huang, Y., Leu, M. C., Mazumder, J. and Donmez, A. “Additive manufacturing: current state, future potential, gaps and needs, and recommendations”, Journal of Manufacturing Science and Engineering, 137(1): 014001, (2015).
  • [4] İpekçi A., Kam M. and Saruhan H. “Investigation of 3D printing occupancy rates effect on mechanical properties and surface roughness of PET-G material products”, Journal of New Results in Science, 7(2): 1-8, (2018).
  • [5] Kam M., İpekçi A. and Saruhan H. “Investigation of 3D printing filling structures effect on mechanical properties and surface roughness of PET-G material products”, Gaziosmanpaşa Bilimsel Araştırma Dergisi. 6(ISMSIT2017): 114-121, (2017).
  • [6] Kam M., Saruhan H. and İpekçi A. “Investigation the effects of 3d printer system vibrations on mechanical properties of the printed products”, Sigma Journal of Engineering and Natural Sciences, 36(3): 655-666, (2018).
  • [7] Kam M., Saruhan H. and İpekçi A. “Investigation the Effect of 3D Printer System Vibrations on Surface Roughness of the Printed Products”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(2): 147-157, (2019).
  • [8] Kam M., Saruhan H. ve İpekçi A. “Farklı Doldurma Şekillerinin Üç Boyutlu Yazıcılarda Üretilen Ürünlerin Mukavemetine Etkisi”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(3): 951-960, (2019).
  • [9] Bagsik A. and Schöppner V. “Mechanical properties of fused deposition modeling parts manufactured with Ultem 9085”, Proceedings of ANTEC, (2011).
  • [10] Özdemir M. A., Evlen H., ve Çalışkan A. “Doluluk oranının PLA ve PET malzemelerin mekanik özellikleri üzerine etkisi”, 3B Baskı Teknolojileri Uluslararası Sempozyumu, İstanbul, (2016).
  • [11] Sood A. K., Ohdar R. K. and Mahapatra, S. S. “Parametric appraisal of mechanical property of fused deposition modelling processed parts”, Materials and Design, 31(1): 287-295, (2010).
  • [12] Onwubolu G. C. and Rayegani F. “Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process”, International Journal of Manufacturing Engineering, 1-13, (2014).
  • [13] Smith W. C. and Dean R. W. “Structural characteristics of fused deposition modeling polycarbonate material”, Polymer testing, 32(8): 1306-1312, (2013).
  • [14] Durgun I. and Ertan R. “Experimental investigation of FDM process for improvement of mechanical properties and production cost”, Rapid Prototyping Journal, 20(3): 228-235, (2014).
  • [15] Torrado A.R.,and Roberson D.A. “Failure analysis and anisotropy evaluation of 3D-printed tensile test specimens of different geometries and print raster patterns”, Journal of Failure Analysis and Prevention, 16, 154-164, (2016).
  • [16] Mohamed O.A., Masood S. H., Bhowmik J. L., Nikzad M. and Azadmanjiri J. “Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment”, Journal of Materials Engineering and Performance, 1-14, (2016).
  • [17] Gray R. W., Baird D. G. and Helge Bøhn J. “Effects of processing conditions on short TLCP fiber reinforced FDM parts”, Rapid Prototyping Journal, 4,(1): 14-25, (1998).
  • [18] Es-Said O. S., Foyos J., Noorani R., Mendelson M., Marloth R. and Pregger B. A. “Effect of layer orientation on mechanical properties of rapid prototyped samples”, Materials and Manufacturing Processes, 15(1): 107-122, (2000).
  • [19] Domingo-Espin M., Borros S., Agullo N., Garcia-Granada A. A. and Reyes G., “Influence of building parameters on the dynamic mechanical properties of polycarbonate fused deposition modeling parts”, 3D Printing and Additive Manufacturing, 1(2): 70-77, (2014).
  • [20] Chin Ang K., Fai Leong K., Kai Chua C. and Chandrasekaran M. “Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures”, Rapid Prototyping Journal, 12(2): 100-105, (2006).
  • [21] Riza, E. I., Budiyantoro, C., Nugroho, A. W. “Peningkatan kekuatan lentur produk 3D printing berbahan PetG dengan optimasi parameter proses menggunakan metode taguchi, Media Mesin: Majalah Teknik Mesin, 21(2): 66-75, (2020).
  • [22] Saruhan H. and Kam M. “Experimental spectral analysis of split sleeve bearing clearance effect on a rotating shaft system”, Makine Teknolojileri Elektronik Dergisi, 13(4): 1-8, (2016).
  • [23] Kam, M. Kriyojenik işlem görmüş millerin dinamik davranışlarının deneysel analizi. Doktora Tezi, Düzce Üniversitesi Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim dalı, Düzce, (2016).
  • [24] Kam, M., Saruhan, H. and İpekçi, A. Investigation of surface treatment effect on mechanical properties of printed products by fused deposition modelling method, IV. International Academic Research Congress, (2018).
  • [25] Kam, M., Saruhan, H. and İpekçi, A. Surface treatments effect on surface roughness of printed products by fused deposition modelling method. IV. International Academic Research Congress, (2018).
  • [26] Kam, M., Saruhan, H. and İpekçi, A. “Determination of optimum printing parameters of printed products by open and closed type of 3D printer systems with different filament materials”, IV. International Academic Research Congress, (2018).
  • [27] EOS Material (2015), PA 12 (PA 2200 Balance 1.0), 21.04.2019 tarihinde EOS Material Date Center sitesi:http://eos.materialdatacenter.com/eo/standard/main/ds.

Experimental Analysis of Vibration Damping Capabilities of Sleeve Bearings Printed Using FDM Method

Yıl 2022, Cilt: 25 Sayı: 1, 137 - 143, 01.03.2022
https://doi.org/10.2339/politeknik.643842

Öz

In this study, vibration damping capabilities of sleeve bearing printed from PA12 (Nylon) filament material using Fused Deposition Modeling (FDM) method was experimentally analyzed. A total of a pair of 15 sleeve bearings samples for supporting rotating shaft were printed in different filling structures (Honeycomb, 3D Honeycomb, Gyroid, Hilbert curve, Archimed cords) with different occupancy rates (10, 30 and 50 %). The experiments were performed for rotating shaft running speed of 900 rpm. Vibration amplitude values were collected with accelerometers mounted on the sleeve bearing supports. The results showed that filling structures and occupancy rates had very important role in damping capabilities of sleeve bearings. 

Proje Numarası

Proje No: BAP - 2018.22.01.773

Kaynakça

  • [1] Kruth J. P., Levy G., Klocke F. and Childs T. H. C. “Consolidation phenomena in laser and powder-bed based layered manufacturing”, CIRP annals, 56(2): 730-759, (2007).
  • [2] Bourell D. L., Leu M. and Rosen D. “A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking ahead”, Proceedings of RapidTech, 24-25, (2009).
  • [3] Huang, Y., Leu, M. C., Mazumder, J. and Donmez, A. “Additive manufacturing: current state, future potential, gaps and needs, and recommendations”, Journal of Manufacturing Science and Engineering, 137(1): 014001, (2015).
  • [4] İpekçi A., Kam M. and Saruhan H. “Investigation of 3D printing occupancy rates effect on mechanical properties and surface roughness of PET-G material products”, Journal of New Results in Science, 7(2): 1-8, (2018).
  • [5] Kam M., İpekçi A. and Saruhan H. “Investigation of 3D printing filling structures effect on mechanical properties and surface roughness of PET-G material products”, Gaziosmanpaşa Bilimsel Araştırma Dergisi. 6(ISMSIT2017): 114-121, (2017).
  • [6] Kam M., Saruhan H. and İpekçi A. “Investigation the effects of 3d printer system vibrations on mechanical properties of the printed products”, Sigma Journal of Engineering and Natural Sciences, 36(3): 655-666, (2018).
  • [7] Kam M., Saruhan H. and İpekçi A. “Investigation the Effect of 3D Printer System Vibrations on Surface Roughness of the Printed Products”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(2): 147-157, (2019).
  • [8] Kam M., Saruhan H. ve İpekçi A. “Farklı Doldurma Şekillerinin Üç Boyutlu Yazıcılarda Üretilen Ürünlerin Mukavemetine Etkisi”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(3): 951-960, (2019).
  • [9] Bagsik A. and Schöppner V. “Mechanical properties of fused deposition modeling parts manufactured with Ultem 9085”, Proceedings of ANTEC, (2011).
  • [10] Özdemir M. A., Evlen H., ve Çalışkan A. “Doluluk oranının PLA ve PET malzemelerin mekanik özellikleri üzerine etkisi”, 3B Baskı Teknolojileri Uluslararası Sempozyumu, İstanbul, (2016).
  • [11] Sood A. K., Ohdar R. K. and Mahapatra, S. S. “Parametric appraisal of mechanical property of fused deposition modelling processed parts”, Materials and Design, 31(1): 287-295, (2010).
  • [12] Onwubolu G. C. and Rayegani F. “Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process”, International Journal of Manufacturing Engineering, 1-13, (2014).
  • [13] Smith W. C. and Dean R. W. “Structural characteristics of fused deposition modeling polycarbonate material”, Polymer testing, 32(8): 1306-1312, (2013).
  • [14] Durgun I. and Ertan R. “Experimental investigation of FDM process for improvement of mechanical properties and production cost”, Rapid Prototyping Journal, 20(3): 228-235, (2014).
  • [15] Torrado A.R.,and Roberson D.A. “Failure analysis and anisotropy evaluation of 3D-printed tensile test specimens of different geometries and print raster patterns”, Journal of Failure Analysis and Prevention, 16, 154-164, (2016).
  • [16] Mohamed O.A., Masood S. H., Bhowmik J. L., Nikzad M. and Azadmanjiri J. “Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment”, Journal of Materials Engineering and Performance, 1-14, (2016).
  • [17] Gray R. W., Baird D. G. and Helge Bøhn J. “Effects of processing conditions on short TLCP fiber reinforced FDM parts”, Rapid Prototyping Journal, 4,(1): 14-25, (1998).
  • [18] Es-Said O. S., Foyos J., Noorani R., Mendelson M., Marloth R. and Pregger B. A. “Effect of layer orientation on mechanical properties of rapid prototyped samples”, Materials and Manufacturing Processes, 15(1): 107-122, (2000).
  • [19] Domingo-Espin M., Borros S., Agullo N., Garcia-Granada A. A. and Reyes G., “Influence of building parameters on the dynamic mechanical properties of polycarbonate fused deposition modeling parts”, 3D Printing and Additive Manufacturing, 1(2): 70-77, (2014).
  • [20] Chin Ang K., Fai Leong K., Kai Chua C. and Chandrasekaran M. “Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures”, Rapid Prototyping Journal, 12(2): 100-105, (2006).
  • [21] Riza, E. I., Budiyantoro, C., Nugroho, A. W. “Peningkatan kekuatan lentur produk 3D printing berbahan PetG dengan optimasi parameter proses menggunakan metode taguchi, Media Mesin: Majalah Teknik Mesin, 21(2): 66-75, (2020).
  • [22] Saruhan H. and Kam M. “Experimental spectral analysis of split sleeve bearing clearance effect on a rotating shaft system”, Makine Teknolojileri Elektronik Dergisi, 13(4): 1-8, (2016).
  • [23] Kam, M. Kriyojenik işlem görmüş millerin dinamik davranışlarının deneysel analizi. Doktora Tezi, Düzce Üniversitesi Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim dalı, Düzce, (2016).
  • [24] Kam, M., Saruhan, H. and İpekçi, A. Investigation of surface treatment effect on mechanical properties of printed products by fused deposition modelling method, IV. International Academic Research Congress, (2018).
  • [25] Kam, M., Saruhan, H. and İpekçi, A. Surface treatments effect on surface roughness of printed products by fused deposition modelling method. IV. International Academic Research Congress, (2018).
  • [26] Kam, M., Saruhan, H. and İpekçi, A. “Determination of optimum printing parameters of printed products by open and closed type of 3D printer systems with different filament materials”, IV. International Academic Research Congress, (2018).
  • [27] EOS Material (2015), PA 12 (PA 2200 Balance 1.0), 21.04.2019 tarihinde EOS Material Date Center sitesi:http://eos.materialdatacenter.com/eo/standard/main/ds.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Menderes Kam 0000-0002-9813-559X

Hamit Saruhan 0000-0002-6428-8117

Ahmet İpekçi 0000-0001-9525-0536

Proje Numarası Proje No: BAP - 2018.22.01.773
Yayımlanma Tarihi 1 Mart 2022
Gönderilme Tarihi 6 Kasım 2019
Yayımlandığı Sayı Yıl 2022 Cilt: 25 Sayı: 1

Kaynak Göster

APA Kam, M., Saruhan, H., & İpekçi, A. (2022). FDM Yöntemi ile Üretilen Kovan Yatakların Titreşimi Sönümleme Kabiliyetlerinin Deneysel Analizi. Politeknik Dergisi, 25(1), 137-143. https://doi.org/10.2339/politeknik.643842
AMA Kam M, Saruhan H, İpekçi A. FDM Yöntemi ile Üretilen Kovan Yatakların Titreşimi Sönümleme Kabiliyetlerinin Deneysel Analizi. Politeknik Dergisi. Mart 2022;25(1):137-143. doi:10.2339/politeknik.643842
Chicago Kam, Menderes, Hamit Saruhan, ve Ahmet İpekçi. “FDM Yöntemi Ile Üretilen Kovan Yatakların Titreşimi Sönümleme Kabiliyetlerinin Deneysel Analizi”. Politeknik Dergisi 25, sy. 1 (Mart 2022): 137-43. https://doi.org/10.2339/politeknik.643842.
EndNote Kam M, Saruhan H, İpekçi A (01 Mart 2022) FDM Yöntemi ile Üretilen Kovan Yatakların Titreşimi Sönümleme Kabiliyetlerinin Deneysel Analizi. Politeknik Dergisi 25 1 137–143.
IEEE M. Kam, H. Saruhan, ve A. İpekçi, “FDM Yöntemi ile Üretilen Kovan Yatakların Titreşimi Sönümleme Kabiliyetlerinin Deneysel Analizi”, Politeknik Dergisi, c. 25, sy. 1, ss. 137–143, 2022, doi: 10.2339/politeknik.643842.
ISNAD Kam, Menderes vd. “FDM Yöntemi Ile Üretilen Kovan Yatakların Titreşimi Sönümleme Kabiliyetlerinin Deneysel Analizi”. Politeknik Dergisi 25/1 (Mart 2022), 137-143. https://doi.org/10.2339/politeknik.643842.
JAMA Kam M, Saruhan H, İpekçi A. FDM Yöntemi ile Üretilen Kovan Yatakların Titreşimi Sönümleme Kabiliyetlerinin Deneysel Analizi. Politeknik Dergisi. 2022;25:137–143.
MLA Kam, Menderes vd. “FDM Yöntemi Ile Üretilen Kovan Yatakların Titreşimi Sönümleme Kabiliyetlerinin Deneysel Analizi”. Politeknik Dergisi, c. 25, sy. 1, 2022, ss. 137-43, doi:10.2339/politeknik.643842.
Vancouver Kam M, Saruhan H, İpekçi A. FDM Yöntemi ile Üretilen Kovan Yatakların Titreşimi Sönümleme Kabiliyetlerinin Deneysel Analizi. Politeknik Dergisi. 2022;25(1):137-43.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.