Menadione Tek Kristalinde Radyasyon Hasar Merkezlerinin Elektron Paramanyetik Rezonans Çalışması
Year 2022,
Volume: 25 Issue: 1, 299 - 312, 01.03.2022
Ali Cengiz Çalışkan
Betül Çalışkan
Abstract
60Co- ışınları ile ışınlanmış menadion (2-metil-1,4-naftokinon; K3 vitamini; C11H8O2) tek kristallerindeki radyasyon hasar merkezleri, 120 K'de Elektron Paramanyetik Rezonans (EPR) spektroskopisi ile incelenmiştir. Bileşikte, iki radikalin varlığı tespit edilmiştir. Her iki radikal de karbon-merkezli radikaldir. Üç farklı eksen boyunca gama ışınlanmış menadion tek kristallerinin EPR spektrumlarının analizi, bileşiğin C(11)-H(19) bağının kırıldığını göstermiştir. Eşlenmemiş elektronun, C(11) atomu üzerinde bulunduğu belirlenmiştir. Menadion tek kristalinde gözlenen radyasyon hasar merkezlerinin g değerleri ve aşırı ince yapı sabitleri elde edilmiştir. Simülasyon çalışması ile, deneysel verilerin doğruluğu gözlenmiştir.
Supporting Institution
Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü (BAP)
Project Number
2012FBE037
References
- [1] Epel B., Niklas J., Sinnecker S., Zimmermann H. and Lubitz W., ‘‘Phylloquinone and related radical anions studied by pulse electron nuclear double resonance spectroscopy at 34 GHz and density functional theory’’, J. Phys. Chem. B, 110 (23): 11549-11560, (2006). DOI:10.1021/jp060548d.
- [2] Matusis I. I. and Bogdanov N. T., ‘‘Vitaminy’’, Smirnov M. I. (Ed.), Meditsina, Moscow, (in Russian), 151-172, (1974).
- [3] Shearer M. J. and Seghatchian M. J. (Ed.) ‘‘Vitamin K and vitamin K-dependent proteins: Analytical, physiological, and clinical aspects’’ , CRC Press: Boca Raton, FL:, (1993).
- [4] Blankenship, R. E., ‘‘Molecular mechanisms of photosynthesis’’, (1st Ed.) Malden, MA : Blackwell Science, Oxford, U. K., (2002).
- [5] Trumpower B. L. (Ed.), ‘‘Function of quinones in energy conserving systems’’, Academic Press, New York, (1982).
- [6] Voet, D. and Voet J. G., ‘‘Biochemistry’’, (3rd ed), John Wiley & Sons, New York, (2004).
- [7] Jordan P., Fromme P., Witt H. T., Klukas O., Saenger W. and Krauss N., ‘‘Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution’’, Nature, 411 (6840): 909-917, (2001). DOI:10.1038/35082000.
- [8] Imhoff J. F. and Bias-Imhoff U. ‘‘Lipids, quinones and fatty acids of anoxygenic phototrophic bacteria. In anoxygenic photosynthetic bacteria’’, Blankenship R. E., Madigan M. T., Bauer C. E., (Eds.), Kluwer Academic Publishers: Dordrecht, The Netherlands, pp 179-205, (1995).
- [9] Hakli Ö., Karapire C., Posokhov Y. and İçli S., ‘‘A study on photophysical properties of some Vitamin K3 derivatives’’, Photochem. Photobio. A: Chem., 162 (2-3): 283-288, (2004).
- [10] Pshezhetskii S. Y., Kotov A. G., Milinchuk V. K., Roginskii V. A. and Tupikov V. I., ‘‘EPR of free radicals in radiation chemistry", John Wiley Sons, New York, (1974).
- [11] Caliskan B. and Caliskan A. C., ‘‘EPR study of free radical in gamma-irradiated bis(cyclopentadienyl)zirconium dichloride single crystal’’, Radiat. Eff. and Deff. in Sol., 172 (5-6): 507-516, (2017). DOI:10.1080/10420150.2017.1346652.
- [12] Caliskan B., Caliskan A. C. and Yerli R., ‘‘Electron paramagnetic resonance study of radiation damage in isonipecotic acid single crystal’’, J. Mol. Struc., 1075: 12-16, (2014). DOI:10.1016/j.mol.struc.2014.06.030.
- [13] Caliskan B. and Tokgoz H., ‘‘Electron paramagnetic resonance study of gamma-irradiated phenidone single crystal’’, Radiat. Eff. and Deff. in Sol., 169 (3): 225-231, (2014). DOI:10.1080/10420150.2013.834903.
- [14] Caliskan B. and Caliskan A. C., ‘‘Electron paramagnetic resonance study of the radiation damage in phosphoryethanolamine single crystal’’, J. Mol. Struc., 1173: 781-791, (2018). DOI:10.1016/j.molstruc.2018.07.045.
- [15] Nowell H. and Attfield J. P., ‘‘X-ray and neutron powder diffraction studies of the crystal structure of vitamin K3’’, New J. Chem., 28 (3): 406-411, (2004). DOI: 10.1039/B306072A.
- [16] Caliskan B., Civi M. and Birey M., ‘‘Electron paramagnetic resonance characterization of gamma irradiation damage centers in S-butyrylthiocholine iodide single crystal’’, Radiat. Eff. and Deff. in Sol., 162 (2): 87-93, (2007). DOI:10.1080/10420150600907632.
- [17] Caliskan B., ‘‘EPR study of gamma irradiated cholestanone single crystal’’, Acta Phys. Pol. A, 125 (1): 135-138, (2014). DOI: 10.12693/APhysPolA.125.135.
- [18] Caliskan B., Aras E., Asik B., Buyum M. and Birey M., ‘‘EPR of gamma irradiated single crystals of cholesteryl benzoate’’, Radiat. Eff. and Deff. in Sol., 159 (1): 1-5, (2004). DOI: 10.1080/10420150310001604101.
- [19] Caliskan B. and Caliskan A. C., ‘‘Electron paramagnetic resonance study of the paramagnetic center in gamma-irradiated sulfanilic acid single crystal’’, Acta Phys. Pol. A, 135 (3): 480-484, (2019). DOI:10.12693/APhysPolA.135.480.
- [20] Caliskan B., Caliskan A. C. and Er E., ‘‘Electron paramagnetic resonance study of radiation-induced paramagnetic centers in succinic anhydride single crystal’’, J. Mol. Struc., 1144: 421-431, (2017). DOI:10.1016/j.molstruc.2017.05.039.
- [21] Caliskan B., Caliskan A. C. and Er E., ‘‘Electron paramagnetic resonance study of gamma-irradiated potassium hydroquinone monosulfonate single crystal’’, Radiat. Eff. and Deff. in Sol., 171 (5-6): 440-450, (2016). DOI:10.1080/10420150.2016.1203924.
- [22] Caliskan B. and Caliskan A. C., ‘‘Electron paramagnetic resonance study of the radiation damage in trans-chalcone single crystal’’, Acta Phys. Pol., A 136 (1): 92-100, (2019). DOI: 10.12693/APhysPolA.136.92.
- [23] Caliskan B. and Caliskan A. C., ‘‘EPR study of radiation damage in gamma irradiated 3-nitroacetophenone single crystal’’, Radiat. Eff. and Deff. in Sol., 172 (5-6): 398-410, (2017). DOI:10.1080/10420150.2017.1320800.
- [24] Caliskan B., Civi M. and Birey M., ‘‘Electron paramagnetic resonance analysis of gamma irradiated 4-nitropyridine N-oxide single crystal’’, Radiat. Eff. and Deff. in Sol., 161 (5): 313-317, (2006). DOI:10.1080/10420150600576049.
- [25] Aras E., Asik B., Caliskan B., Buyum M. and Birey M., ‘‘Electron paramagnetic resonance study of irradiated tetramethyl-4-piperidion’’, Radiat. Eff. and Deff. in Sol., 159 (6): 353-358, (2004). DOI:10.1080/10420150410001731820.
- [26] Asik B., Aras E., Caliskan B., Eken M. and Birey M., ‘‘EPR study of irradiated 4-chloromethyl pyridinium chloride’’, Radiat. Eff. and Deff. in Sol., 159 (1): 55-60, (2004). DOI:10.1080/10420150310001639770.
- [27] Okazaki M., Sakata S., Konaka R. and Shiga T., ‘‘Product yield-detected ESR on magnetic field-dependent photoreduction of quinones in SDS micellar solution’’, J. Chem. Phys., 86 (12): 6792-6800, (1987). DOI:10.1063/1.452378.
- [28] Astashkin A. V. and Sakaguchi Y., ‘‘Electron spin echo detection of the microwave-induced recombination of transient radical pairs produced in photochemical reactions’’, J. Chem. Phys., 106 (22): 9190-9200, (1997). DOI:10.1063/1.474022.
- [29] Hollocher T. C. and Weber M. M., ‘‘An electron spin resonance study of the alkaline degradation of 2-methyl-l,4-naphthoquinone’’, Nature, 195 (4838): 247-249, (1962). DOI:10.1038/195247a0.
- [30] Hollocher T. C. and Weber M. M., ‘‘The identity and mechanism of formation of free radicals in electron transport particles from Mycobacterium phlei’’, J. Biol. Chem., 240 (4): 1783-1787, (1965).
- [31] Srinivasan N. and Golbeck J. H., ‘‘Protein-cofactor interactions in bioenergetic complexes: The role of the A1A and A1B phylloquinones in Photosystem I’’, Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1787 (9): 1057-1088, (2009). DOI:10.1016/j.bbabio.2009.04.010.
Electron Paramagnetic Resonance Study of the Radiation Damage Centers in Menadione Single Crystal
Year 2022,
Volume: 25 Issue: 1, 299 - 312, 01.03.2022
Ali Cengiz Çalışkan
Betül Çalışkan
Abstract
The radiation damage centers in the 60Co- rays irradiated menadione (2-methyl-1,4-naphthoquinone; Vitamin K3; C11H8O2 ) single crystals were examined at 120 K by Electron Paramagnetic Resonance (EPR) spectroscopy. The presence of two radicals was detected in the compound. Both radicals are carbon centered radicals. Analysis of the EPR spectra of gamma-irradiated menadione single crystals along three different axes showed that the C(11)-H(19) bond of the compound was broken. It was determined that the unpaired electron located on the C(11) atom. The g values and the hyperfine structure constants of the radiation damage centers observed in menadione single crystal were obtained. Accuracy of experimental data was observed by simulation study.
Project Number
2012FBE037
References
- [1] Epel B., Niklas J., Sinnecker S., Zimmermann H. and Lubitz W., ‘‘Phylloquinone and related radical anions studied by pulse electron nuclear double resonance spectroscopy at 34 GHz and density functional theory’’, J. Phys. Chem. B, 110 (23): 11549-11560, (2006). DOI:10.1021/jp060548d.
- [2] Matusis I. I. and Bogdanov N. T., ‘‘Vitaminy’’, Smirnov M. I. (Ed.), Meditsina, Moscow, (in Russian), 151-172, (1974).
- [3] Shearer M. J. and Seghatchian M. J. (Ed.) ‘‘Vitamin K and vitamin K-dependent proteins: Analytical, physiological, and clinical aspects’’ , CRC Press: Boca Raton, FL:, (1993).
- [4] Blankenship, R. E., ‘‘Molecular mechanisms of photosynthesis’’, (1st Ed.) Malden, MA : Blackwell Science, Oxford, U. K., (2002).
- [5] Trumpower B. L. (Ed.), ‘‘Function of quinones in energy conserving systems’’, Academic Press, New York, (1982).
- [6] Voet, D. and Voet J. G., ‘‘Biochemistry’’, (3rd ed), John Wiley & Sons, New York, (2004).
- [7] Jordan P., Fromme P., Witt H. T., Klukas O., Saenger W. and Krauss N., ‘‘Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution’’, Nature, 411 (6840): 909-917, (2001). DOI:10.1038/35082000.
- [8] Imhoff J. F. and Bias-Imhoff U. ‘‘Lipids, quinones and fatty acids of anoxygenic phototrophic bacteria. In anoxygenic photosynthetic bacteria’’, Blankenship R. E., Madigan M. T., Bauer C. E., (Eds.), Kluwer Academic Publishers: Dordrecht, The Netherlands, pp 179-205, (1995).
- [9] Hakli Ö., Karapire C., Posokhov Y. and İçli S., ‘‘A study on photophysical properties of some Vitamin K3 derivatives’’, Photochem. Photobio. A: Chem., 162 (2-3): 283-288, (2004).
- [10] Pshezhetskii S. Y., Kotov A. G., Milinchuk V. K., Roginskii V. A. and Tupikov V. I., ‘‘EPR of free radicals in radiation chemistry", John Wiley Sons, New York, (1974).
- [11] Caliskan B. and Caliskan A. C., ‘‘EPR study of free radical in gamma-irradiated bis(cyclopentadienyl)zirconium dichloride single crystal’’, Radiat. Eff. and Deff. in Sol., 172 (5-6): 507-516, (2017). DOI:10.1080/10420150.2017.1346652.
- [12] Caliskan B., Caliskan A. C. and Yerli R., ‘‘Electron paramagnetic resonance study of radiation damage in isonipecotic acid single crystal’’, J. Mol. Struc., 1075: 12-16, (2014). DOI:10.1016/j.mol.struc.2014.06.030.
- [13] Caliskan B. and Tokgoz H., ‘‘Electron paramagnetic resonance study of gamma-irradiated phenidone single crystal’’, Radiat. Eff. and Deff. in Sol., 169 (3): 225-231, (2014). DOI:10.1080/10420150.2013.834903.
- [14] Caliskan B. and Caliskan A. C., ‘‘Electron paramagnetic resonance study of the radiation damage in phosphoryethanolamine single crystal’’, J. Mol. Struc., 1173: 781-791, (2018). DOI:10.1016/j.molstruc.2018.07.045.
- [15] Nowell H. and Attfield J. P., ‘‘X-ray and neutron powder diffraction studies of the crystal structure of vitamin K3’’, New J. Chem., 28 (3): 406-411, (2004). DOI: 10.1039/B306072A.
- [16] Caliskan B., Civi M. and Birey M., ‘‘Electron paramagnetic resonance characterization of gamma irradiation damage centers in S-butyrylthiocholine iodide single crystal’’, Radiat. Eff. and Deff. in Sol., 162 (2): 87-93, (2007). DOI:10.1080/10420150600907632.
- [17] Caliskan B., ‘‘EPR study of gamma irradiated cholestanone single crystal’’, Acta Phys. Pol. A, 125 (1): 135-138, (2014). DOI: 10.12693/APhysPolA.125.135.
- [18] Caliskan B., Aras E., Asik B., Buyum M. and Birey M., ‘‘EPR of gamma irradiated single crystals of cholesteryl benzoate’’, Radiat. Eff. and Deff. in Sol., 159 (1): 1-5, (2004). DOI: 10.1080/10420150310001604101.
- [19] Caliskan B. and Caliskan A. C., ‘‘Electron paramagnetic resonance study of the paramagnetic center in gamma-irradiated sulfanilic acid single crystal’’, Acta Phys. Pol. A, 135 (3): 480-484, (2019). DOI:10.12693/APhysPolA.135.480.
- [20] Caliskan B., Caliskan A. C. and Er E., ‘‘Electron paramagnetic resonance study of radiation-induced paramagnetic centers in succinic anhydride single crystal’’, J. Mol. Struc., 1144: 421-431, (2017). DOI:10.1016/j.molstruc.2017.05.039.
- [21] Caliskan B., Caliskan A. C. and Er E., ‘‘Electron paramagnetic resonance study of gamma-irradiated potassium hydroquinone monosulfonate single crystal’’, Radiat. Eff. and Deff. in Sol., 171 (5-6): 440-450, (2016). DOI:10.1080/10420150.2016.1203924.
- [22] Caliskan B. and Caliskan A. C., ‘‘Electron paramagnetic resonance study of the radiation damage in trans-chalcone single crystal’’, Acta Phys. Pol., A 136 (1): 92-100, (2019). DOI: 10.12693/APhysPolA.136.92.
- [23] Caliskan B. and Caliskan A. C., ‘‘EPR study of radiation damage in gamma irradiated 3-nitroacetophenone single crystal’’, Radiat. Eff. and Deff. in Sol., 172 (5-6): 398-410, (2017). DOI:10.1080/10420150.2017.1320800.
- [24] Caliskan B., Civi M. and Birey M., ‘‘Electron paramagnetic resonance analysis of gamma irradiated 4-nitropyridine N-oxide single crystal’’, Radiat. Eff. and Deff. in Sol., 161 (5): 313-317, (2006). DOI:10.1080/10420150600576049.
- [25] Aras E., Asik B., Caliskan B., Buyum M. and Birey M., ‘‘Electron paramagnetic resonance study of irradiated tetramethyl-4-piperidion’’, Radiat. Eff. and Deff. in Sol., 159 (6): 353-358, (2004). DOI:10.1080/10420150410001731820.
- [26] Asik B., Aras E., Caliskan B., Eken M. and Birey M., ‘‘EPR study of irradiated 4-chloromethyl pyridinium chloride’’, Radiat. Eff. and Deff. in Sol., 159 (1): 55-60, (2004). DOI:10.1080/10420150310001639770.
- [27] Okazaki M., Sakata S., Konaka R. and Shiga T., ‘‘Product yield-detected ESR on magnetic field-dependent photoreduction of quinones in SDS micellar solution’’, J. Chem. Phys., 86 (12): 6792-6800, (1987). DOI:10.1063/1.452378.
- [28] Astashkin A. V. and Sakaguchi Y., ‘‘Electron spin echo detection of the microwave-induced recombination of transient radical pairs produced in photochemical reactions’’, J. Chem. Phys., 106 (22): 9190-9200, (1997). DOI:10.1063/1.474022.
- [29] Hollocher T. C. and Weber M. M., ‘‘An electron spin resonance study of the alkaline degradation of 2-methyl-l,4-naphthoquinone’’, Nature, 195 (4838): 247-249, (1962). DOI:10.1038/195247a0.
- [30] Hollocher T. C. and Weber M. M., ‘‘The identity and mechanism of formation of free radicals in electron transport particles from Mycobacterium phlei’’, J. Biol. Chem., 240 (4): 1783-1787, (1965).
- [31] Srinivasan N. and Golbeck J. H., ‘‘Protein-cofactor interactions in bioenergetic complexes: The role of the A1A and A1B phylloquinones in Photosystem I’’, Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1787 (9): 1057-1088, (2009). DOI:10.1016/j.bbabio.2009.04.010.