Research Article
BibTex RIS Cite

Ortam Bağıl Nemi ve Sıcaklığının Taş Yünü Yalıtım Malzemesinin Performansı Üzerine Etkileri

Year 2022, Volume: 25 Issue: 2, 723 - 731, 01.06.2022
https://doi.org/10.2339/politeknik.793362

Abstract

Konutlarda enerji tasarrufu amaçlı yalıtım uygulaması oldukça yaygındır. Taş yünü malzemesi de birçok avantajından dolayı yalıtım uygulamalarında tercih edilen yalıtım malzemelerinden biridir. Bu çalışmada farklı bağıl nem ve sıcaklık değerlerinde tutulan ortam koşullarında taş yünü yalıtım malzemesinin performansı deneysel olarak incelenmiştir. Deney düzeneği olarak sabit bağıl nem ve sıcaklıkta tutulan bir kontrol hacmi ve kontrol hacmi içerisinde, içinde buz bulunan huni şeklinde bir depo kullanılmıştır. Böylece huni içerisine geçen ısı ile birlikte buz erimiş, damlama miktarları hassas bir tartı ile ölçülmüş ve değişen parametrelerin ergime miktarını nasıl değiştirdiği saptanmıştır. Ortam koşulları olarak bağıl nem değerleri %33-90 aralığında ve sıcaklık değerleri 25-35 oC aralığında seçilmiştir. Sonuçlar ısı transferi, yalıtım kalınlığı ve ısı iletim katsayısı cinsinden kıyaslanmıştır. Çözümler için tek boyutlu ısıl direnç ağları kullanılmıştır. Ayrıca elde edilen ısı iletim katsayıları belirli koşullar altında literatür ile doğrulanmıştır. Sonuçlar incelendiğinde yalıtım malzemesine geçen maksimum ısı transferi miktarı bağıl nem değişimine bağlı olarak %70, sıcaklığa bağlı olarak %34 arttığı, Isıl iletkenliğin ise bağıl nemin artışına bağlı olarak maksimum %90, sıcaklık artışına bağlı olarak %30 arttığı görülmüştür. Son olarak yalıtım kalınlığı incelendiğinde ise bağıl nem ve sıcaklığa bağlı olarak yalıtım kalınlığı yaklaşık 2 katına çıkarıldığında aynı yalıtım performansını verdiği belirlenmiştir.

References

  • [1] Hoseini A.and Bahrami M., "Effects of humidity on thermal performance of aerogel insulation blankets", Journal of Building Engineering, 13:107-115, (2017).
  • [2] Pérez-Lombard, L., Ortiz J., and Pout C., "A review on buildings energy consumption information", Energy and Buildings, 40(3): 394-398, (2008).
  • [3] Vrána T., and Gudmundsson, K., "Comparison of fibrous insulations–Cellulose and stone wool in terms of moisture properties resulting from condensation and ice formation", Construction and Building Materials, 24(7): 1151-1157, (2010).
  • [4] Karamanos A., Hadiarakou S. and Papadopoulos, A. M., "The impact of temperature and moisture on the thermal performance of stone wool", Energy and Buildings, 40(8): 1402-1411, (2008).
  • [5] Schiavoni S., Bianchi F. and Asdrubali, F. "Insulation materials for the building sector: A review and comparative analysis", Renewable and Sustainable Energy Reviews, 62, 988-1011, (2016).
  • [6] Danovska M., Pernigotto G., Baratieri M., Baggio P. and Gasparella, A. "Influence of moisture content, temperature and absorbed solar radiation on the thermal performance of a spruce XLAM wall in the Italian climates", In Journal of Physics: Conference Series, 1599(1): 12028, (2020).
  • [7] Abdou, A. and Budaiwi, I. "The variation of thermal conductivity of fibrous insulation materials under different levels of moisture content", Construction and Building materials, 43: 533-544, (2013).
  • [8] Abdou, A. A., and Budaiwi, I. M., "Comparison of thermal conductivity measurements of building insulation materials under various operating temperatures", Journal of building physics, 29(2): 171-184, (2005).
  • [9] Khoukhi, M., Fezzioui, N., Draoui, B. and Salah, L., "The impact of changes in thermal conductivity of polystyrene insulation material under different operating temperatures on the heat transfer through the building envelope", Applied Thermal Engineering, 105: 669-674, (2016).
  • [10] Cabeza L. F., Castell A., Medrano M., Martorell I., Pérez G. and Fernández I., "Experimental study on the performance of insulation materials in Mediterranean construction", Energy and Buildings, 42(5): 630-636, (2010).
  • [11] Vrána T. and Björk F. A., "Laboratory equipment for the study of moisture processes in thermal insulation materials when placed in a temperature field", Construction and Building Materials, 22(12): 2335-2344, (2008).
  • [12] Pavlík Z. and Černý R., "Hygrothermal performance study of an innovative interior thermal insulation system", Applied Thermal Engineering, 29(10): 1941-1946, (2009).
  • [13] Latif E., Ciupala M. A., and Wijeyesekera D. C. "The comparative in situ hygrothermal performance of Hemp and Stone Wool insulations in vapour open timber frame wall panels", Construction and Building Materials, 73: 205-213, (2014).
  • [14] Latif E., Tucker S., Ciupala M. A., Wijeyesekera D. C., Newport D. J. and Pruteanu, M., "Quasi steady state and dynamic hygrothermal performance of fibrous Hemp and Stone Wool insulations: Two innovative laboratory based investigations", Building and Environment, 95: 391-404, (2016).
  • [15] Jerman M., and Černý R., "Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials", Energy and Buildings, 53: 39-46, (2012).
  • [16] Nagy B., Simon T. K. and Nemes, R., "Effect of built-in mineral wool insulations durability on its thermal and mechanical performance", Journal of Thermal Analysis and Calorimetry, 139(1): 169-181,(2020).
  • [17]https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf., " Sıcaklık sensörü teknik özellikleri"
  • [18] Liu T., "Digital-output relative humidity & temperature sensor/module DHT22 (DHT22 also named as AM2302)", Aosong Electronics.[En línea]. Disponible: https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22, (2013).
  • [19] Bonales L. J., Rodríguez A. C. and Sanz, P. D., "Thermal conductivity of ice prepared under different conditions", International journal of food properties, 20(1): 610-619, (2017).
  • [20]https://www.sd3d.com/wpcontent/uploads/2017/06/MaterialTDS-PLA_01.pdf ,"Technical Data Sheet".
  • [21] Yunus A. Çengel and Ghajar A. J., "Heat and Mass Transfer: Fundamentals & Applications", McGraw Hill Education, (2015).
  • [22] Moffat, R. J.," Describing the uncertainties in experimental results", Experimental thermal and fluid science, 1(1): 3-17, (1988).

Effects of Ambient Relative Humidity and Temperature on the Performance of Rock Wool Insulation Material

Year 2022, Volume: 25 Issue: 2, 723 - 731, 01.06.2022
https://doi.org/10.2339/politeknik.793362

Abstract

Insulation is a quite common application used in residential. Also rock wool material is one of the preferred insulation materials in insulation applications due to its many advantages. In this study, the performance of rock wool insulation material has been investigated experimentally under ambient conditions kept at different relative humidity and temperature values. As an experimental setup, a control volume kept at constant relative humidity and temperature and a cone-shaped tank with ice in it were used. Thus, the ice melted together with the heat transferred into the funnel, and drip amounts were measured with a precision weighing. Relative humidity values were selected between 33-90% and temperature values between 25-35 oC as ambient conditions. The results were compared in terms of heat transfer, insulation thickness, and thermal conductivity. When the results are examined, it was seen that the maximum heat transfer amount to the insulation material increased by 70% depending on the relative humidity change, 34% depending on the temperature, and it was seen that the maximum thermal conductivity of the insulation material increased by 90% depending on the relative humidity change, 30% depending on the temperature. Finally, when the insulation thickness was examined, it was determined that when the insulation thickness was doubled depending on the relative humidity and temperature, it gives the same insulation performance.

References

  • [1] Hoseini A.and Bahrami M., "Effects of humidity on thermal performance of aerogel insulation blankets", Journal of Building Engineering, 13:107-115, (2017).
  • [2] Pérez-Lombard, L., Ortiz J., and Pout C., "A review on buildings energy consumption information", Energy and Buildings, 40(3): 394-398, (2008).
  • [3] Vrána T., and Gudmundsson, K., "Comparison of fibrous insulations–Cellulose and stone wool in terms of moisture properties resulting from condensation and ice formation", Construction and Building Materials, 24(7): 1151-1157, (2010).
  • [4] Karamanos A., Hadiarakou S. and Papadopoulos, A. M., "The impact of temperature and moisture on the thermal performance of stone wool", Energy and Buildings, 40(8): 1402-1411, (2008).
  • [5] Schiavoni S., Bianchi F. and Asdrubali, F. "Insulation materials for the building sector: A review and comparative analysis", Renewable and Sustainable Energy Reviews, 62, 988-1011, (2016).
  • [6] Danovska M., Pernigotto G., Baratieri M., Baggio P. and Gasparella, A. "Influence of moisture content, temperature and absorbed solar radiation on the thermal performance of a spruce XLAM wall in the Italian climates", In Journal of Physics: Conference Series, 1599(1): 12028, (2020).
  • [7] Abdou, A. and Budaiwi, I. "The variation of thermal conductivity of fibrous insulation materials under different levels of moisture content", Construction and Building materials, 43: 533-544, (2013).
  • [8] Abdou, A. A., and Budaiwi, I. M., "Comparison of thermal conductivity measurements of building insulation materials under various operating temperatures", Journal of building physics, 29(2): 171-184, (2005).
  • [9] Khoukhi, M., Fezzioui, N., Draoui, B. and Salah, L., "The impact of changes in thermal conductivity of polystyrene insulation material under different operating temperatures on the heat transfer through the building envelope", Applied Thermal Engineering, 105: 669-674, (2016).
  • [10] Cabeza L. F., Castell A., Medrano M., Martorell I., Pérez G. and Fernández I., "Experimental study on the performance of insulation materials in Mediterranean construction", Energy and Buildings, 42(5): 630-636, (2010).
  • [11] Vrána T. and Björk F. A., "Laboratory equipment for the study of moisture processes in thermal insulation materials when placed in a temperature field", Construction and Building Materials, 22(12): 2335-2344, (2008).
  • [12] Pavlík Z. and Černý R., "Hygrothermal performance study of an innovative interior thermal insulation system", Applied Thermal Engineering, 29(10): 1941-1946, (2009).
  • [13] Latif E., Ciupala M. A., and Wijeyesekera D. C. "The comparative in situ hygrothermal performance of Hemp and Stone Wool insulations in vapour open timber frame wall panels", Construction and Building Materials, 73: 205-213, (2014).
  • [14] Latif E., Tucker S., Ciupala M. A., Wijeyesekera D. C., Newport D. J. and Pruteanu, M., "Quasi steady state and dynamic hygrothermal performance of fibrous Hemp and Stone Wool insulations: Two innovative laboratory based investigations", Building and Environment, 95: 391-404, (2016).
  • [15] Jerman M., and Černý R., "Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials", Energy and Buildings, 53: 39-46, (2012).
  • [16] Nagy B., Simon T. K. and Nemes, R., "Effect of built-in mineral wool insulations durability on its thermal and mechanical performance", Journal of Thermal Analysis and Calorimetry, 139(1): 169-181,(2020).
  • [17]https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf., " Sıcaklık sensörü teknik özellikleri"
  • [18] Liu T., "Digital-output relative humidity & temperature sensor/module DHT22 (DHT22 also named as AM2302)", Aosong Electronics.[En línea]. Disponible: https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22, (2013).
  • [19] Bonales L. J., Rodríguez A. C. and Sanz, P. D., "Thermal conductivity of ice prepared under different conditions", International journal of food properties, 20(1): 610-619, (2017).
  • [20]https://www.sd3d.com/wpcontent/uploads/2017/06/MaterialTDS-PLA_01.pdf ,"Technical Data Sheet".
  • [21] Yunus A. Çengel and Ghajar A. J., "Heat and Mass Transfer: Fundamentals & Applications", McGraw Hill Education, (2015).
  • [22] Moffat, R. J.," Describing the uncertainties in experimental results", Experimental thermal and fluid science, 1(1): 3-17, (1988).
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Korhan Ökten 0000-0002-8728-8785

Adem Oğuzhan Özdemir This is me 0000-0001-6733-2796

Ertuğrul Öztürk This is me 0000-0003-1072-8284

Hatice Demir 0000-0003-2519-1512

Mustafa Özdemir

Publication Date June 1, 2022
Submission Date September 10, 2020
Published in Issue Year 2022 Volume: 25 Issue: 2

Cite

APA Ökten, K., Özdemir, A. O., Öztürk, E., Demir, H., et al. (2022). Ortam Bağıl Nemi ve Sıcaklığının Taş Yünü Yalıtım Malzemesinin Performansı Üzerine Etkileri. Politeknik Dergisi, 25(2), 723-731. https://doi.org/10.2339/politeknik.793362
AMA Ökten K, Özdemir AO, Öztürk E, Demir H, Özdemir M. Ortam Bağıl Nemi ve Sıcaklığının Taş Yünü Yalıtım Malzemesinin Performansı Üzerine Etkileri. Politeknik Dergisi. June 2022;25(2):723-731. doi:10.2339/politeknik.793362
Chicago Ökten, Korhan, Adem Oğuzhan Özdemir, Ertuğrul Öztürk, Hatice Demir, and Mustafa Özdemir. “Ortam Bağıl Nemi Ve Sıcaklığının Taş Yünü Yalıtım Malzemesinin Performansı Üzerine Etkileri”. Politeknik Dergisi 25, no. 2 (June 2022): 723-31. https://doi.org/10.2339/politeknik.793362.
EndNote Ökten K, Özdemir AO, Öztürk E, Demir H, Özdemir M (June 1, 2022) Ortam Bağıl Nemi ve Sıcaklığının Taş Yünü Yalıtım Malzemesinin Performansı Üzerine Etkileri. Politeknik Dergisi 25 2 723–731.
IEEE K. Ökten, A. O. Özdemir, E. Öztürk, H. Demir, and M. Özdemir, “Ortam Bağıl Nemi ve Sıcaklığının Taş Yünü Yalıtım Malzemesinin Performansı Üzerine Etkileri”, Politeknik Dergisi, vol. 25, no. 2, pp. 723–731, 2022, doi: 10.2339/politeknik.793362.
ISNAD Ökten, Korhan et al. “Ortam Bağıl Nemi Ve Sıcaklığının Taş Yünü Yalıtım Malzemesinin Performansı Üzerine Etkileri”. Politeknik Dergisi 25/2 (June 2022), 723-731. https://doi.org/10.2339/politeknik.793362.
JAMA Ökten K, Özdemir AO, Öztürk E, Demir H, Özdemir M. Ortam Bağıl Nemi ve Sıcaklığının Taş Yünü Yalıtım Malzemesinin Performansı Üzerine Etkileri. Politeknik Dergisi. 2022;25:723–731.
MLA Ökten, Korhan et al. “Ortam Bağıl Nemi Ve Sıcaklığının Taş Yünü Yalıtım Malzemesinin Performansı Üzerine Etkileri”. Politeknik Dergisi, vol. 25, no. 2, 2022, pp. 723-31, doi:10.2339/politeknik.793362.
Vancouver Ökten K, Özdemir AO, Öztürk E, Demir H, Özdemir M. Ortam Bağıl Nemi ve Sıcaklığının Taş Yünü Yalıtım Malzemesinin Performansı Üzerine Etkileri. Politeknik Dergisi. 2022;25(2):723-31.