Research Article
BibTex RIS Cite

Immobilization of Propolis Extract on PET Fabric for Biomedical Applications

Year 2022, Volume: 25 Issue: 3, 1299 - 1307, 01.10.2022
https://doi.org/10.2339/politeknik.1059724

Abstract

Propolis has biological activity due to its wide variety of phenolic compound content. Propolis usage in many areas such as cosmetics, food, medicine, and biomedicals is becoming widespread day by day due to its antibacterial, antifungal, antiviral properties. In this study, phenolics extracted from propolis were covalently bonded and immobilized on the surface of polyethylene terephthalate (PET) fabric with the aim of developing a technical textile for biomedical applications. To do so, PET fabric was aminated, and then the phenolics were immobilized using polyethylene glycol diglycidyl ether (PEGDGE) as the crosslinking agent. Formation of amine groups in PET structure and immobilization of the phenolics were proved by ATR-FTIR spectrums. Water contact angle of PET being 121° decreased to 110° and 97° after the amination and the immobilization, respectively. Optical microscope images were taken to monitor morphological changes after the processes. DSC results revealed a new endothermic peak at around 40 °C for modified PET. Tensile tests showed that tensile strength of the fabric weakens upon modification, while a healing effect occurs during immobilization. Antibacterial tests revealed that propolis extract immobilized fabric has an antibacterial activity against gram negative (E. coli) bacteria.

References

  • [1] Anjum, S.I., Ullah, A., Khan, K.A., Attaullah, M., Khan, H., Ali, H., Bashir, M.A., Tahir, M., Ansari, M.J., Ghramh, H.A., Adgaba, N., Dash, C.K., ''Composition and functional properties of propolis (bee glue): A review'', Saudi Journal of Biological Sciences, 26:1695-1703, (2019).
  • [2] Galeotti, F., Maccari, F., Fachini, A., Volpi, N., ''Chemical Composition and Antioxidant Activity of Propolis Prepared in Different Forms and in Different Solvents Useful for Finished Products'', Foods, 7:41, (2018).
  • [3] Siheri, W., Alenezi, S., Tusiimire, J., Watson, D.G., The Chemical and Biological Properties of Propolis, in: J.M. Alvarez-Suarez (Ed.) Bee Products - Chemical and Biological Properties, Springer International Publishing, Cham,137-178,(2017).
  • [4] Wagh, V.D., ''Propolis: A Wonder Bees Product and Its Pharmacological Potentials'', Advances in Pharmacological Sciences, 2013:308249, (2013).
  • [5] Kocot, J., Kiełczykowska, M., Luchowska-Kocot, D., Kurzepa, J., Musik, I., ''Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application'', Oxidative Medicine and Cellular Longevity, 2018:7074209, (2018).
  • [6] Boufadi, M.Y., Soubhye, J., Van Antwerpen, P., ''Anti-inflammatory, antioxidant effects, and bioaccessibility of Tigzirt propolis'', Journal of Food Biochemistry, 45,(2021).
  • [7] Yosri, N., Abd El-Wahed, A.A., Ghonaim, R., Khattab, O.M., Sabry, A., Ibrahim, M.A.A., Moustafa, M.F., Guo, Z.M., Zou, X.B., Algethami, A.F.M., Masry, S.H.D., AlAjmi, M.F., Afifi, H.S., Khalifa, S.A.M., El-Seedi, H.R., ''Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2'', Foods, 10,(2021).
  • [8] Torlak, E., Sert, D., ''Antibacterial effectiveness of chitosan–propolis coated polypropylene films against foodborne pathogens'', International Journal of Biological Macromolecules, 60:52-55, (2013).
  • [9] Walgrave, S.E., Warshaw, E.M., Glesne, L.A., ''Allergic contact dermatitis from propolis'', Dermatitis, 16:209-215, (2005).
  • [10] Khacha-Ananda, S., Tragoolpua, K., Chantawannakul, P., Tragoolpua, Y., ''Antioxidant and Anti-cancer Cell Proliferation Activity of Propolis Extracts from Two Extraction Methods'', Asian Pacific Journal of Cancer Prevention, 14:6991-6995, (2013).
  • [11] Li, Y.J., Lin, J.L., Yang, C.W., Yu, C.C., ''Acute renal failure induced by a Brazilian variety of propolis'', American Journal of Kidney Diseases, 46,(2005).
  • [12] Fernandez-Calderon, M.C., Hernandez-Gonzalez, L., Gomez-Navia, C., Blanco-Blanco, M.T., Sanchez-Silos, R., Lucio, L., Perez-Giraldo, C., ''Antifungal and anti-biofilm activity of a new Spanish extract of propolis against Candida glabrata'', Bmc Complementary Medicine and Therapies, 21,(2021).
  • [13] Diaz-Carballo, D., Malak, S., Bardenheuer, W., Freistuehler, M., Reusch, H.P., ''The contribution of plukenetione A to the anti-tumoral activity of Cuban propolis'', Bioorganic & Medicinal Chemistry, 16:9635-9643, (2008).
  • [14] Tohamy, A.A., Abdella, E.M., Ahmed, R.R., Ahmed, Y.K., ''Assessment of anti-mutagenic, anti-histopathologic and antioxidant capacities of Egyptian bee pollen and propolis extracts'', Cytotechnology, 66:283-297, (2014).
  • [15] Ahangari, Z., Naseri, M., Vatandoost, F., ''Propolis: Chemical Composition and Its Applications in Endodontics'', Iran Endod J, 13:285-292, (2018).
  • [16] Przybylek, I., Karpinski, T.M., ''Antibacterial Properties of Propolis'', Molecules, 24,(2019).
  • [17] Šuran, J., Cepanec, I., Mašek, T., Radić, B., Radić, S., Tlak Gajger, I., Vlainić, J., ''Propolis Extract and Its Bioactive Compounds—From Traditional to Modern Extraction Technologies'', Molecules, 26:2930, (2021).
  • [18] Soleimanifard, M., Feizy, J., Maestrelli, F., ''Nanoencapsulation of propolis extract by sodium caseinate-maltodextrin complexes'', Food and Bioproducts Processing, 128:177-185, (2021).
  • [19] Wozniak, M., Mania, P., Roszyk, E., Ratajczak, I., ''Bending Strength of Wood Treated with Propolis Extract and Silicon Compounds'', Materials, 14,(2021).
  • [20] Reyes, L.M., Landgraf, M., Sobral, P.J.A., ''Gelatin-based films activated with red propolis ethanolic extract and essential oils'', Food Packaging and Shelf Life, 27,(2021).
  • [21] Khodabakhshi, D., Eskandarinia, A., Kefayat, A., Rafienia, M., Navid, S., Karbasi, S., Moshtaghian, J., ''In vitro and in vivo performance of a propolis-coated polyurethane wound dressing with high porosity and antibacterial efficacy'', Colloids and Surfaces B-Biointerfaces, 178:177-184, (2019).
  • [22] Rogina-Car, B., Rogina, J., Bajsic, E.G., Budimir, A., ''Propolis - Eco-friendly natural antibacterial finish for nonwoven fabrics for medical application'', Journal of Industrial Textiles, 49:1100-1119, (2020).
  • [23] Sharaf, S., El-Naggar, M.E., ''Wound dressing properties of cationized cotton fabric treated with carrageenan/cyclodextrin hydrogel loaded with honey bee propolis extract'', International Journal of Biological Macromolecules, 133:583-591, (2019).
  • [24] Turan, N.Y., Turker, E., Insaatci, O., ''Microparticles loaded with propolis to make antibacterial cotton'', Cellulose, 28:4469-4483, (2021).
  • [25] Abramiuc, D., Ciobanu, L., Muresan, R., Chiosac, M., Muresan, A., ''Antibacterial Finishing of Cotton Fabrics Using Biologically Active Natural Compounds'', Fibers and Polymers, 14:1826-1833, (2013).
  • [26] Sharaf, S., Higazy, A., Hebeish, A., ''Propolis induced antibacterial activity and other technical properties of cotton textiles'', International Journal of Biological Macromolecules, 59:408-416, (2013).
  • [27] Radu, C.D., Salariu, M., Avadanei, M., Ghiciuc, C., Foia, L., Lupusoru, E.C., Ferri, A., Ulea, E., Lipsa, F., ''Cotton-made cellulose support for anti-allergic pajamas'', Carbohydrate Polymers, 95:479-486, (2013).
  • [28] Abramiuc, D., Cerempei, A., Muresan, E., Ciobanu, L., Development Of New Materıals Wıth Aroma And Therapeutıcal Characterıstıcs, 7th International Conference on Management of Technological Changes, Alexandroupolis, GREECE, 1-4,(2011).
  • [29] Evlen, H., Ozdemir, M.A., Caliskan, A., ''Effects of Filling Percentage on Mechanical Properties of PLA and PET Materials'', Journal of Polytechnic-Politeknik Dergisi, 22:1031-1037, (2019).
  • [30] Geckil, T., Onal, Y., Ince, C.B., ''Moisture Resistance of Bituminous Hot Mixtures Modified with Waste PET'', Journal of Polytechnic-Politeknik Dergisi, 24:461-471, (2021).
  • [31] Zhang, H., Li, X., Mao, N.T., Sun, R.J., Xu, J., ''Fabrication of magnetized polyester fabric grafted with -cyclodextrin for controlled release of menthol'', Journal of Industrial Textiles, 47:1060-1082, (2018).
  • [32] Mracek, A., Lehocky, M., Smolka, P., Grulich, O., Velebny, V., ''The Allylamine Grafting on the Plasma Pre-treated Polyester Nonwoven Fabric: Preparation, Characterization and Utilization'', Fibers and Polymers, 11:1106-1110, (2010).
  • [33] Li, Q., Zhang, S., Mahmood, K., Jin, Y., Huang, C., Huang, Z., Zhang, S., Ming, W., ''Fabrication of multifunctional PET fabrics with flame retardant, antibacterial and superhydrophobic properties'', Progress in Organic Coatings, 157:106296, (2021).
  • [34] Korpayev, S., Kavakli, C., Colak, S., Kavakli, P.A., ''Preparation and characterization of ethylenediamine modified glycidyl methacrylate-grafted nonwoven cotton fabric adsorbent'', Cellulose, 25:813-828, (2018).
  • [35] Anjos, O., Guine, R.P.F., Santos, A.J.A., Paula, V.B., Pereira, H., Estevinho, L.M., ''Evaluation of FT-Raman and FTIR-ATR spectroscopy for the quality evaluation of Lavandula spp. Honey'', Open Agriculture, 6:47-56, (2021).
  • [36] Patle, T.K., Shrivas, K., Kurrey, R., Upadhyay, S., Jangde, R., Chauhan, R., ''Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spectroscopy'', Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 242:118717, (2020).
  • [37] Cordoba, A., Satue, M., Gomez-Florit, M., Hierro-Oliva, M., Petzold, C., Lyngstadaas, S.P., Gonzalez-Martin, M.L., Monjo, M., Ramis, J.M., ''Flavonoid-Modified Surfaces: Multifunctional Bioactive Biomaterials with Osteopromotive, Anti-Inflammatory, and Anti-Fibrotic Potential'', Advanced Healthcare Materials, 4:540-549, (2015).
  • [38] Liu, G., Wang, Z., Bao, B., Ouyang, Z., Du, C., Liu, F., Wang, W., Yu, D., ''Construction of sustainable and multifunctional polyester fabrics via an efficiently and eco-friendly spray-drying layer-by-layer strategy'', Journal of Colloid and Interface Science, 588:50-61, (2021).
  • [39] O'Driscoll, K., Sanayei, R.A., ''Chain-length dependence of the glass transition temperature'', Macromolecules, 24:4479-4480, (1991).
  • [40] Rodrigues, A., Figueiredo, L., Diogo, H., Bordado, J.C., ''Mechanical behavior of PET fibers and textiles for Stent-Grafts using video extensometry and image analysis'', Science and Technology of Materials, (2018).
  • [41] Mendes, L.C., Pereira, P.S.C., ''Solid State Polymerization: Its Action on Thermal and Rheological Properties of PET/PC Reactive Blends'', Polimeros-Ciencia E Tecnologia, 23:298-304, (2013).
  • [42] Batur, Z., Akyildiz, H.I., ''Effect of the TiO2 Concentration on the Photocatalytic Self-Cleaning Properties of Polyethylene Terephthalate Fibers'', Journal of Polytechnic-Politeknik Dergisi, 24:121-129, (2021).
  • [43] Deng, T., Zhang, W., Jiang, W., Zhou, H., Huang, Z., Peng, X., Zhou, H., Li, D., ''A hybrid lamination model for simulation of woven fabric reinforced thermoplastic composites solid-state thermo-stamping'', Materials & Design, 200:109419, (2021).
  • [44] Lai, Y., Guo, Y., Xu, L., Chang, X., Zhang, X., Xu, G., Shi, J., ''Plasma Enhanced Fluorine-Free Superhydrophobic Polyester (PET) Fabric with Ultra-Robust Antibacterial and Antibacterial Adhesion Properties'', Coatings, 11:15, (2021).

Biyomedikal Uygulamalar için Propolis Ekstresinin PET Kumaş Üzerine İmmobilizasyonu

Year 2022, Volume: 25 Issue: 3, 1299 - 1307, 01.10.2022
https://doi.org/10.2339/politeknik.1059724

Abstract

Propolis, çok çeşitli fenolik bileşik içeriği nedeniyle biyolojik aktiviteye sahiptir. Propolisin antibakteriyel, antifungal, antiviral özellikleri nedeniyle kozmetik, gıda, ilaç, biyomedikal gibi birçok alanda kullanımı her geçen gün yaygınlaşmaktadır. Bu çalışmada, biyomedikal uygulamalar için teknik bir tekstil geliştirmek amacıyla propolisten ekstrakte edilen fenolikler polietilen tereftalat (PET) kumaş yüzeyine kovalent olarak bağlanmış ve immobilize edilmiştir. Bunu yapmak için, PET kumaş aminlendi ve daha sonra fenolikler, polietilen glikol diglisidil eter (PEGDGE) çapraz bağlama ajanı kullanılarak kumaş üzerin immobilize edildi. PET yapısında amin gruplarının oluşumu ve fenoliklerin immobilizasyonu ATR-FTIR spektrumları ile kanıtlanmıştır. 121° olan PET'in su temas açısı aminasyon ve immobilizasyon sonrasında sırasıyla 110° ve 97°'ye düşmüştür. İşlemlerden sonraki morfolojik değişiklikleri izlemek için optik mikroskop görüntüleri alındı. DSC sonuçları, modifiye edilmiş PET için yaklaşık 40 °C'de yeni bir endotermik pik ortaya çıkardı. Çekme testleri, kumaşın mukavemetinin modifikasyon üzerine zayıfladığını, immobilizasyon sırasında ise onarıcı bir etki meydana geldiğini göstermiştir. Antibakteriyel testler, propolis ekstresi immobilize edilmiş kumaşın gram negatif (E. coli) bakterilere karşı antibakteriyel aktiviteye sahip olduğunu ortaya koymuştur.

References

  • [1] Anjum, S.I., Ullah, A., Khan, K.A., Attaullah, M., Khan, H., Ali, H., Bashir, M.A., Tahir, M., Ansari, M.J., Ghramh, H.A., Adgaba, N., Dash, C.K., ''Composition and functional properties of propolis (bee glue): A review'', Saudi Journal of Biological Sciences, 26:1695-1703, (2019).
  • [2] Galeotti, F., Maccari, F., Fachini, A., Volpi, N., ''Chemical Composition and Antioxidant Activity of Propolis Prepared in Different Forms and in Different Solvents Useful for Finished Products'', Foods, 7:41, (2018).
  • [3] Siheri, W., Alenezi, S., Tusiimire, J., Watson, D.G., The Chemical and Biological Properties of Propolis, in: J.M. Alvarez-Suarez (Ed.) Bee Products - Chemical and Biological Properties, Springer International Publishing, Cham,137-178,(2017).
  • [4] Wagh, V.D., ''Propolis: A Wonder Bees Product and Its Pharmacological Potentials'', Advances in Pharmacological Sciences, 2013:308249, (2013).
  • [5] Kocot, J., Kiełczykowska, M., Luchowska-Kocot, D., Kurzepa, J., Musik, I., ''Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application'', Oxidative Medicine and Cellular Longevity, 2018:7074209, (2018).
  • [6] Boufadi, M.Y., Soubhye, J., Van Antwerpen, P., ''Anti-inflammatory, antioxidant effects, and bioaccessibility of Tigzirt propolis'', Journal of Food Biochemistry, 45,(2021).
  • [7] Yosri, N., Abd El-Wahed, A.A., Ghonaim, R., Khattab, O.M., Sabry, A., Ibrahim, M.A.A., Moustafa, M.F., Guo, Z.M., Zou, X.B., Algethami, A.F.M., Masry, S.H.D., AlAjmi, M.F., Afifi, H.S., Khalifa, S.A.M., El-Seedi, H.R., ''Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2'', Foods, 10,(2021).
  • [8] Torlak, E., Sert, D., ''Antibacterial effectiveness of chitosan–propolis coated polypropylene films against foodborne pathogens'', International Journal of Biological Macromolecules, 60:52-55, (2013).
  • [9] Walgrave, S.E., Warshaw, E.M., Glesne, L.A., ''Allergic contact dermatitis from propolis'', Dermatitis, 16:209-215, (2005).
  • [10] Khacha-Ananda, S., Tragoolpua, K., Chantawannakul, P., Tragoolpua, Y., ''Antioxidant and Anti-cancer Cell Proliferation Activity of Propolis Extracts from Two Extraction Methods'', Asian Pacific Journal of Cancer Prevention, 14:6991-6995, (2013).
  • [11] Li, Y.J., Lin, J.L., Yang, C.W., Yu, C.C., ''Acute renal failure induced by a Brazilian variety of propolis'', American Journal of Kidney Diseases, 46,(2005).
  • [12] Fernandez-Calderon, M.C., Hernandez-Gonzalez, L., Gomez-Navia, C., Blanco-Blanco, M.T., Sanchez-Silos, R., Lucio, L., Perez-Giraldo, C., ''Antifungal and anti-biofilm activity of a new Spanish extract of propolis against Candida glabrata'', Bmc Complementary Medicine and Therapies, 21,(2021).
  • [13] Diaz-Carballo, D., Malak, S., Bardenheuer, W., Freistuehler, M., Reusch, H.P., ''The contribution of plukenetione A to the anti-tumoral activity of Cuban propolis'', Bioorganic & Medicinal Chemistry, 16:9635-9643, (2008).
  • [14] Tohamy, A.A., Abdella, E.M., Ahmed, R.R., Ahmed, Y.K., ''Assessment of anti-mutagenic, anti-histopathologic and antioxidant capacities of Egyptian bee pollen and propolis extracts'', Cytotechnology, 66:283-297, (2014).
  • [15] Ahangari, Z., Naseri, M., Vatandoost, F., ''Propolis: Chemical Composition and Its Applications in Endodontics'', Iran Endod J, 13:285-292, (2018).
  • [16] Przybylek, I., Karpinski, T.M., ''Antibacterial Properties of Propolis'', Molecules, 24,(2019).
  • [17] Šuran, J., Cepanec, I., Mašek, T., Radić, B., Radić, S., Tlak Gajger, I., Vlainić, J., ''Propolis Extract and Its Bioactive Compounds—From Traditional to Modern Extraction Technologies'', Molecules, 26:2930, (2021).
  • [18] Soleimanifard, M., Feizy, J., Maestrelli, F., ''Nanoencapsulation of propolis extract by sodium caseinate-maltodextrin complexes'', Food and Bioproducts Processing, 128:177-185, (2021).
  • [19] Wozniak, M., Mania, P., Roszyk, E., Ratajczak, I., ''Bending Strength of Wood Treated with Propolis Extract and Silicon Compounds'', Materials, 14,(2021).
  • [20] Reyes, L.M., Landgraf, M., Sobral, P.J.A., ''Gelatin-based films activated with red propolis ethanolic extract and essential oils'', Food Packaging and Shelf Life, 27,(2021).
  • [21] Khodabakhshi, D., Eskandarinia, A., Kefayat, A., Rafienia, M., Navid, S., Karbasi, S., Moshtaghian, J., ''In vitro and in vivo performance of a propolis-coated polyurethane wound dressing with high porosity and antibacterial efficacy'', Colloids and Surfaces B-Biointerfaces, 178:177-184, (2019).
  • [22] Rogina-Car, B., Rogina, J., Bajsic, E.G., Budimir, A., ''Propolis - Eco-friendly natural antibacterial finish for nonwoven fabrics for medical application'', Journal of Industrial Textiles, 49:1100-1119, (2020).
  • [23] Sharaf, S., El-Naggar, M.E., ''Wound dressing properties of cationized cotton fabric treated with carrageenan/cyclodextrin hydrogel loaded with honey bee propolis extract'', International Journal of Biological Macromolecules, 133:583-591, (2019).
  • [24] Turan, N.Y., Turker, E., Insaatci, O., ''Microparticles loaded with propolis to make antibacterial cotton'', Cellulose, 28:4469-4483, (2021).
  • [25] Abramiuc, D., Ciobanu, L., Muresan, R., Chiosac, M., Muresan, A., ''Antibacterial Finishing of Cotton Fabrics Using Biologically Active Natural Compounds'', Fibers and Polymers, 14:1826-1833, (2013).
  • [26] Sharaf, S., Higazy, A., Hebeish, A., ''Propolis induced antibacterial activity and other technical properties of cotton textiles'', International Journal of Biological Macromolecules, 59:408-416, (2013).
  • [27] Radu, C.D., Salariu, M., Avadanei, M., Ghiciuc, C., Foia, L., Lupusoru, E.C., Ferri, A., Ulea, E., Lipsa, F., ''Cotton-made cellulose support for anti-allergic pajamas'', Carbohydrate Polymers, 95:479-486, (2013).
  • [28] Abramiuc, D., Cerempei, A., Muresan, E., Ciobanu, L., Development Of New Materıals Wıth Aroma And Therapeutıcal Characterıstıcs, 7th International Conference on Management of Technological Changes, Alexandroupolis, GREECE, 1-4,(2011).
  • [29] Evlen, H., Ozdemir, M.A., Caliskan, A., ''Effects of Filling Percentage on Mechanical Properties of PLA and PET Materials'', Journal of Polytechnic-Politeknik Dergisi, 22:1031-1037, (2019).
  • [30] Geckil, T., Onal, Y., Ince, C.B., ''Moisture Resistance of Bituminous Hot Mixtures Modified with Waste PET'', Journal of Polytechnic-Politeknik Dergisi, 24:461-471, (2021).
  • [31] Zhang, H., Li, X., Mao, N.T., Sun, R.J., Xu, J., ''Fabrication of magnetized polyester fabric grafted with -cyclodextrin for controlled release of menthol'', Journal of Industrial Textiles, 47:1060-1082, (2018).
  • [32] Mracek, A., Lehocky, M., Smolka, P., Grulich, O., Velebny, V., ''The Allylamine Grafting on the Plasma Pre-treated Polyester Nonwoven Fabric: Preparation, Characterization and Utilization'', Fibers and Polymers, 11:1106-1110, (2010).
  • [33] Li, Q., Zhang, S., Mahmood, K., Jin, Y., Huang, C., Huang, Z., Zhang, S., Ming, W., ''Fabrication of multifunctional PET fabrics with flame retardant, antibacterial and superhydrophobic properties'', Progress in Organic Coatings, 157:106296, (2021).
  • [34] Korpayev, S., Kavakli, C., Colak, S., Kavakli, P.A., ''Preparation and characterization of ethylenediamine modified glycidyl methacrylate-grafted nonwoven cotton fabric adsorbent'', Cellulose, 25:813-828, (2018).
  • [35] Anjos, O., Guine, R.P.F., Santos, A.J.A., Paula, V.B., Pereira, H., Estevinho, L.M., ''Evaluation of FT-Raman and FTIR-ATR spectroscopy for the quality evaluation of Lavandula spp. Honey'', Open Agriculture, 6:47-56, (2021).
  • [36] Patle, T.K., Shrivas, K., Kurrey, R., Upadhyay, S., Jangde, R., Chauhan, R., ''Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spectroscopy'', Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 242:118717, (2020).
  • [37] Cordoba, A., Satue, M., Gomez-Florit, M., Hierro-Oliva, M., Petzold, C., Lyngstadaas, S.P., Gonzalez-Martin, M.L., Monjo, M., Ramis, J.M., ''Flavonoid-Modified Surfaces: Multifunctional Bioactive Biomaterials with Osteopromotive, Anti-Inflammatory, and Anti-Fibrotic Potential'', Advanced Healthcare Materials, 4:540-549, (2015).
  • [38] Liu, G., Wang, Z., Bao, B., Ouyang, Z., Du, C., Liu, F., Wang, W., Yu, D., ''Construction of sustainable and multifunctional polyester fabrics via an efficiently and eco-friendly spray-drying layer-by-layer strategy'', Journal of Colloid and Interface Science, 588:50-61, (2021).
  • [39] O'Driscoll, K., Sanayei, R.A., ''Chain-length dependence of the glass transition temperature'', Macromolecules, 24:4479-4480, (1991).
  • [40] Rodrigues, A., Figueiredo, L., Diogo, H., Bordado, J.C., ''Mechanical behavior of PET fibers and textiles for Stent-Grafts using video extensometry and image analysis'', Science and Technology of Materials, (2018).
  • [41] Mendes, L.C., Pereira, P.S.C., ''Solid State Polymerization: Its Action on Thermal and Rheological Properties of PET/PC Reactive Blends'', Polimeros-Ciencia E Tecnologia, 23:298-304, (2013).
  • [42] Batur, Z., Akyildiz, H.I., ''Effect of the TiO2 Concentration on the Photocatalytic Self-Cleaning Properties of Polyethylene Terephthalate Fibers'', Journal of Polytechnic-Politeknik Dergisi, 24:121-129, (2021).
  • [43] Deng, T., Zhang, W., Jiang, W., Zhou, H., Huang, Z., Peng, X., Zhou, H., Li, D., ''A hybrid lamination model for simulation of woven fabric reinforced thermoplastic composites solid-state thermo-stamping'', Materials & Design, 200:109419, (2021).
  • [44] Lai, Y., Guo, Y., Xu, L., Chang, X., Zhang, X., Xu, G., Shi, J., ''Plasma Enhanced Fluorine-Free Superhydrophobic Polyester (PET) Fabric with Ultra-Robust Antibacterial and Antibacterial Adhesion Properties'', Coatings, 11:15, (2021).
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ömer Yunus Gümüş 0000-0002-3361-6528

Ismahane Yssaad 0000-0003-2482-068X

Publication Date October 1, 2022
Submission Date January 18, 2022
Published in Issue Year 2022 Volume: 25 Issue: 3

Cite

APA Gümüş, Ö. Y., & Yssaad, I. (2022). Immobilization of Propolis Extract on PET Fabric for Biomedical Applications. Politeknik Dergisi, 25(3), 1299-1307. https://doi.org/10.2339/politeknik.1059724
AMA Gümüş ÖY, Yssaad I. Immobilization of Propolis Extract on PET Fabric for Biomedical Applications. Politeknik Dergisi. October 2022;25(3):1299-1307. doi:10.2339/politeknik.1059724
Chicago Gümüş, Ömer Yunus, and Ismahane Yssaad. “Immobilization of Propolis Extract on PET Fabric for Biomedical Applications”. Politeknik Dergisi 25, no. 3 (October 2022): 1299-1307. https://doi.org/10.2339/politeknik.1059724.
EndNote Gümüş ÖY, Yssaad I (October 1, 2022) Immobilization of Propolis Extract on PET Fabric for Biomedical Applications. Politeknik Dergisi 25 3 1299–1307.
IEEE Ö. Y. Gümüş and I. Yssaad, “Immobilization of Propolis Extract on PET Fabric for Biomedical Applications”, Politeknik Dergisi, vol. 25, no. 3, pp. 1299–1307, 2022, doi: 10.2339/politeknik.1059724.
ISNAD Gümüş, Ömer Yunus - Yssaad, Ismahane. “Immobilization of Propolis Extract on PET Fabric for Biomedical Applications”. Politeknik Dergisi 25/3 (October 2022), 1299-1307. https://doi.org/10.2339/politeknik.1059724.
JAMA Gümüş ÖY, Yssaad I. Immobilization of Propolis Extract on PET Fabric for Biomedical Applications. Politeknik Dergisi. 2022;25:1299–1307.
MLA Gümüş, Ömer Yunus and Ismahane Yssaad. “Immobilization of Propolis Extract on PET Fabric for Biomedical Applications”. Politeknik Dergisi, vol. 25, no. 3, 2022, pp. 1299-07, doi:10.2339/politeknik.1059724.
Vancouver Gümüş ÖY, Yssaad I. Immobilization of Propolis Extract on PET Fabric for Biomedical Applications. Politeknik Dergisi. 2022;25(3):1299-307.