Research Article
BibTex RIS Cite

Manyetik Alan Altinda Nanoakişkanlarin Akiş Karakteristiklerinin İncelenmesi

Year 2022, Volume: 25 Issue: 3, 1309 - 1317, 01.10.2022
https://doi.org/10.2339/politeknik.1147953

Abstract

Uydu soğutma uygulamalarında olduğu gibi, harici olarak indüklenen bir manyetik alanın varlığı/uygulanması, nanoakışkanlarla kullanıldığında ısı transferinde bir azalmaya neden olur. Sunulan çalışma, laminar rejim altında dış bir manyetik alana maruz kalan su, alumina nanoakışkanı ve kobalt ferrit nanoakışkanının akış davranışlarını ve hız profillerini incelemektedir. Analizler ANSYS Fluent MHD modülü kullanılarak gerçekleştirilmiştir. Nanoakışkanların konsantrasyonları %2, Reynolds sayısı 10, ve Hartmann sayısı da 25, 50, ve 150 olarak alınmıştır. Hız profilleri ve akış karakteristikleri, manyetik alan büyüklüğü dışındaki tüm değişkenler sabit tutularak incelenmiştir. Sonuç olarak, dış bir manyetik alan uygulamasının nanoakışkanların, özellikle de kobalt ferrit nanoakışkanının, hız profillerinde bozulmaya sebep olduğu, ancak su üzerinde kritik bir etkisinin bulunmadığı görülmüştür. Manyetik alan büyüklüğü 2 katına çıkarıldığında akışkan hızının %6 azaldığı, 0 Tesla olan manyetik alan büyüklüğü 50 Tesla’ya çıkarıldığında ise akışkan hızının %9 azaldığı görülmüştür. Bu doğrultuda, manyetik alan büyüklüğünü artırmanın etkisinin, manyetik alanı ilk kez uygulamanın etkisinden daha az olduğu saptanmıştır. Ayrıca, 50 Tesla için kıyaslama yapıldığında, elde edilen maksimum hızın alumina nanoakışkanı için suyunkinden %5.1, kobalt ferrit nanoakışkanı için de %28.57 daha az olduğu görülmüştür.

References

  • [1] Choi, S., “Enhancing thermal conductivity of fluids with nanoparticles”, In: Proceedings of the 1995 ASME, International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, 12–17, 99–105, (1995).
  • [2] Wang, G., Zhang, Z., Wang, R. and Zhu, Z., “A Review on Heat Transfer of Nanofluids by Applied Electric Field or Magnetic Field”, Nanomaterials, 10, 2386, (2020).
  • [3] Aybar, H., Sharifpur, M., Azizian, M., Mehrabi, M. and Meyer, J., “A review of thermal conductivity models for nanofluids”, Heat Transfer Engineering, 36 (13), 1085-1110, (2015).
  • [4] Joubert, J., “Influence of a magnetic field on magnetic nanofluids for the purpose of enhancing natural convection heat transfer”. MSc. Thesis, University of Pretoria, (2017).
  • [5] Ramadan M.R.I., El-Sebaii A.A., Aboul-Enein S. and El-Bialy E., “Thermal performance of a packed bed double-pass solar air heater”, Energy, 32: 1524–1535, (2007).
  • [6] Hatamia, N., Kazemnejad Banaria, A., Malekzadehb, A. and Pouranfardc, A.R., “The effect of magnetic field on nanofluids heat transfer through a uniformly heated horizontal tube”, Physics Letters A, 381, 510–515, (2017).
  • [7] Shafiee, H., Nikzadeh Abbasi, E. and Soltani, M., “Numerical Study of the Effect of Magnetic Field on Nanofluid Heat Transfer in Metal Foam Environment”, Hindawi Geofluids, Volume 2021, (2021).
  • [8] Li, Q. and Xuan, Y., “Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field”, Experimental Thermal and Fluid Science, 33, 591–596, (2009).
  • [9] Syam Sundar, L., Singh, M. K. and Sousa, A. C. M., “Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications”, International Communications in Heat and Mass Transfer, Volume 44, 7-14, (2013).
  • [10] Giwa, S.O., Sharifpur, M., Ahmadi, M.H. et al., “A review of magnetic field influence on natural convection heat transfer performance of nanofluids in square cavities”, J Therm Anal Calorim, 145, 2581–2623, (2021).
  • [11] Hariri, S., Mokhtari, M., Gerdroodbary, M.B. et al., “Numerical investigation of the heat transfer of a ferrofluid inside a tube in the presence of a non-uniform magnetic field”, Eur. Phys. J. Plus, 132, 65, (2017).
  • [12] Rezaei Gorjaei, A., Joda, F. and Khoshkhoo, H. R., “Heat transfer and entropy generation of water–Fe3O4 nanofluid under magnetic field by Euler–Lagrange method”, J Therm Anal Calorim, 139, 2023–2034, (2020).
  • [13] Kikura, H., Sawada, T. and Tanahashi, T., “Natural convection of a magnetic fluid in a cubic enclosure”, Journal of Magnetism and Magnetic Materials, 122, 315-318, (1993).
  • [14] Yamaguchi, H., Kobori, I., Uehata, Y. and Shimada, K., “Natural convection of magnetic fluid in a rectangular box”, Journal of Magnetism and Magnetic Materials, 201, 264-267, (1999).
  • [15] Yamaguchi, H., Zhang, Z., Shuchi, S. and Shimada, K., “Heat transfer characteristics of magnetic fluid in a partitioned rectangular box”, Journal of Magnetism and Magnetic Materials, 252, 203- 205, (2002).
  • [16] Tangthieng, C., Finlayson, B. A., Maulbetsch, J. and Cader, T., “Heat transfer enhancement in ferro#uids subjected to steady magnetic fields”, Journal of Magnetism and Magnetic Materials, 201, 252-255, (1999).
  • [17] Krakov, M. S. and Nikiforov, I. V., “To the influence of uniform magnetic field on thermomagnetic convection in square cavity”, Journal of Magnetism and Magnetic Materials, 252, 209-211, (2002).
  • [18] Snyder, S. M., Cader, T. and Finlayson B. A., “Finite element model of magnetoconvection of a ferrofluid”, Journal of Magnetism and Magnetic Materials, 262, 269-279, (2003).
  • [19] Ganguly, R., Sen, S. and Puri, I. K., “Thermomagnetic convection in a square enclosure using a line-dipole”. Physics of Fluids, 16, 2228-2236, (2004).
  • [20] Hezaveh, H., Fazlali, A. and Noshadi, I., “Synthesis, rheological properties and magnetoviscos effect of Fe2O3/paraffin ferrofluids”, J Taiwan Inst Chem Eng., 43:159–64, (2012).
  • [21] Shima, P. D., Philip, J. and Raj, B., “Magnetically controllable nanofluid with tunable thermal conductivity and viscosity”, Appl Phys Lett., 95:1–4, (2009).
  • [22] Shima, P. D. and Philip, J., “Tuning of thermal conductivity and rheology of nanofluids using an external stimulus”, J Phys Chem C, (2011).
  • [23] Shahsavar, A., Salimpour, M. R., Saghafian, M. and Shafii, M. B., “Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes”, J Mech Sci Technol, 30:809–15, (2016).
  • [24] Karimi, A., Goharkhah, M., Ashjaee, M. and Shafii, M. B., “Thermal conductivity of Fe2O3 and Fe3O4 magnetic nanofluids under the influence of magnetic field”, Int J Thermophys, 36:2720–39, (2013).
  • [25] Patel, J., Parekh, K. and Upadhyay, R. V., “Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields”, J Appl Phys., 117:1–8, (2015).
  • [26] Pastoriza-Gallego, M. J., Lugo, L., Legido, J. L. and Pineiro, M. M., “Enhancement of thermal conductivity and volumetric behavior of FexOy nanofluids”, J Appl Phys, 110:1–9, (2011).
  • [27] Zhao, G., Jian, Y., Chang, L. and Buren, M., “Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field”, J Magn Magn Mater, 387; 111-117, (2015).
  • [28] Yousofvand, R., Derakhshan, S., Ghasemi, K. and Siavashi, M., “MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation”, Int J Mech Sci, 133; 73-90, (2017).
  • [29] Ganji, D. D. and Malvandi, A., “Natural convection of nanofluids inside a vertical enclosure in the presence of a uniform magnetic field”, Powder Technology, 263:50–57, (2014).
  • [30] Bhatti, S., Kumar, V., Singh, N., Sambyal, V., Singh, J., Katnoria, J. and Nagpal, A., “Physico-chemical Properties and Heavy Metal Contents of Soils and Kharif Crops of Punjab, India”, Procedia Environmental Sciences, 35, 801-808, (2016).
  • [31] Asirvatham, L. G., “Nanofluid heat transfer and applications”, Journal of Thermal Engineering, Yildiz Technical University Press, Vol. 1, No. 2, 113-115, (2015).
  • [32] Vassberg, J., DeHaan, M. and Sclafani, T., “Grid generation requirements for accurate drag predictions based on overflow calculations”, 16th AIAA computational fluid dynamics conference, 4124, (2003).
  • [33] Ahmad, M., Ismail, K. A. and Mat, F., “Convergence of Finite Element Model for Crushing of a Conical Thin-walled Tube”, Procedia Engineering, 53, 586-593, (2013).
  • [34] ANSYS Fluent Theory Guide, ANSYS Inc., (2017).
  • [35] ANSYS MHD Module Guide, ANSYS Inc., (2019).
  • [36] Kharat, P. B., Humbe, A. V., Kounsalye, J. S. and Jadhav, K.J.J.o.S., “Thermophysical investigations of ultrasonically assisted magnetic nanofluids for heat transfer”, Journal of Superconducttivity and Novel Magnetism, 32, 1307-1317, (2019).
  • [37] Zeeshan, A., Ellahi, R. and Hassan, M., “Magnetohydrodynamic flow of water/ethylene glycol based nanofluids with natural convection through porous medium”, European Physical Journal Plus, 129 (261):1-10, (2014).

The Investigation of Flow Characteristics in Nanofluids Under Magnetic Field

Year 2022, Volume: 25 Issue: 3, 1309 - 1317, 01.10.2022
https://doi.org/10.2339/politeknik.1147953

Abstract

The existence/application of an externally induced magnetic field, like in satellite cooling applications, causes a decrement in heat transfer when used with nanofluids. This study investigates the flow characteristics and velocity profile of distilled water, alumina nanofluid, and cobalt ferrite ferrofluid in a horizontal cylindrical heat pipe flowing in a laminar regime and being exposed to an external magnetic field. All of the simulations were performed with ANSYS Fluent MHD module, for a concentration of 2%, Reynolds number of 10, and Hartmann numbers of 25, 50, and 150. The velocity profiles, pressure drops, and flow characteristics are examined by varying the magnetic field intensity while keeping all other parameters constant. It is concluded that an external magnetic field causes a deterioration in the velocity profiles of the nanofluid, especially in cobalt ferrite, while it does not have a significant effect on water. When the magnitude of the magnetic field is increased by 2 times, it is seen that the velocity of the fluid decreases by 6% and increasing the magnetic field from 0 to 50 Tesla causes a deceleration rate of 9%, which leads to the conclusion that application of a magnetic field for the first time has a more significant slowing effect when comparing it to increasing the magnetic field. In addition, when a magnetic field of 50 Tesla is considered, the maximum velocity of alumina is lower than that of water by 5.10%, and the maximum velocity of cobalt ferrite is lower by 28.57%.

References

  • [1] Choi, S., “Enhancing thermal conductivity of fluids with nanoparticles”, In: Proceedings of the 1995 ASME, International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, 12–17, 99–105, (1995).
  • [2] Wang, G., Zhang, Z., Wang, R. and Zhu, Z., “A Review on Heat Transfer of Nanofluids by Applied Electric Field or Magnetic Field”, Nanomaterials, 10, 2386, (2020).
  • [3] Aybar, H., Sharifpur, M., Azizian, M., Mehrabi, M. and Meyer, J., “A review of thermal conductivity models for nanofluids”, Heat Transfer Engineering, 36 (13), 1085-1110, (2015).
  • [4] Joubert, J., “Influence of a magnetic field on magnetic nanofluids for the purpose of enhancing natural convection heat transfer”. MSc. Thesis, University of Pretoria, (2017).
  • [5] Ramadan M.R.I., El-Sebaii A.A., Aboul-Enein S. and El-Bialy E., “Thermal performance of a packed bed double-pass solar air heater”, Energy, 32: 1524–1535, (2007).
  • [6] Hatamia, N., Kazemnejad Banaria, A., Malekzadehb, A. and Pouranfardc, A.R., “The effect of magnetic field on nanofluids heat transfer through a uniformly heated horizontal tube”, Physics Letters A, 381, 510–515, (2017).
  • [7] Shafiee, H., Nikzadeh Abbasi, E. and Soltani, M., “Numerical Study of the Effect of Magnetic Field on Nanofluid Heat Transfer in Metal Foam Environment”, Hindawi Geofluids, Volume 2021, (2021).
  • [8] Li, Q. and Xuan, Y., “Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field”, Experimental Thermal and Fluid Science, 33, 591–596, (2009).
  • [9] Syam Sundar, L., Singh, M. K. and Sousa, A. C. M., “Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications”, International Communications in Heat and Mass Transfer, Volume 44, 7-14, (2013).
  • [10] Giwa, S.O., Sharifpur, M., Ahmadi, M.H. et al., “A review of magnetic field influence on natural convection heat transfer performance of nanofluids in square cavities”, J Therm Anal Calorim, 145, 2581–2623, (2021).
  • [11] Hariri, S., Mokhtari, M., Gerdroodbary, M.B. et al., “Numerical investigation of the heat transfer of a ferrofluid inside a tube in the presence of a non-uniform magnetic field”, Eur. Phys. J. Plus, 132, 65, (2017).
  • [12] Rezaei Gorjaei, A., Joda, F. and Khoshkhoo, H. R., “Heat transfer and entropy generation of water–Fe3O4 nanofluid under magnetic field by Euler–Lagrange method”, J Therm Anal Calorim, 139, 2023–2034, (2020).
  • [13] Kikura, H., Sawada, T. and Tanahashi, T., “Natural convection of a magnetic fluid in a cubic enclosure”, Journal of Magnetism and Magnetic Materials, 122, 315-318, (1993).
  • [14] Yamaguchi, H., Kobori, I., Uehata, Y. and Shimada, K., “Natural convection of magnetic fluid in a rectangular box”, Journal of Magnetism and Magnetic Materials, 201, 264-267, (1999).
  • [15] Yamaguchi, H., Zhang, Z., Shuchi, S. and Shimada, K., “Heat transfer characteristics of magnetic fluid in a partitioned rectangular box”, Journal of Magnetism and Magnetic Materials, 252, 203- 205, (2002).
  • [16] Tangthieng, C., Finlayson, B. A., Maulbetsch, J. and Cader, T., “Heat transfer enhancement in ferro#uids subjected to steady magnetic fields”, Journal of Magnetism and Magnetic Materials, 201, 252-255, (1999).
  • [17] Krakov, M. S. and Nikiforov, I. V., “To the influence of uniform magnetic field on thermomagnetic convection in square cavity”, Journal of Magnetism and Magnetic Materials, 252, 209-211, (2002).
  • [18] Snyder, S. M., Cader, T. and Finlayson B. A., “Finite element model of magnetoconvection of a ferrofluid”, Journal of Magnetism and Magnetic Materials, 262, 269-279, (2003).
  • [19] Ganguly, R., Sen, S. and Puri, I. K., “Thermomagnetic convection in a square enclosure using a line-dipole”. Physics of Fluids, 16, 2228-2236, (2004).
  • [20] Hezaveh, H., Fazlali, A. and Noshadi, I., “Synthesis, rheological properties and magnetoviscos effect of Fe2O3/paraffin ferrofluids”, J Taiwan Inst Chem Eng., 43:159–64, (2012).
  • [21] Shima, P. D., Philip, J. and Raj, B., “Magnetically controllable nanofluid with tunable thermal conductivity and viscosity”, Appl Phys Lett., 95:1–4, (2009).
  • [22] Shima, P. D. and Philip, J., “Tuning of thermal conductivity and rheology of nanofluids using an external stimulus”, J Phys Chem C, (2011).
  • [23] Shahsavar, A., Salimpour, M. R., Saghafian, M. and Shafii, M. B., “Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes”, J Mech Sci Technol, 30:809–15, (2016).
  • [24] Karimi, A., Goharkhah, M., Ashjaee, M. and Shafii, M. B., “Thermal conductivity of Fe2O3 and Fe3O4 magnetic nanofluids under the influence of magnetic field”, Int J Thermophys, 36:2720–39, (2013).
  • [25] Patel, J., Parekh, K. and Upadhyay, R. V., “Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields”, J Appl Phys., 117:1–8, (2015).
  • [26] Pastoriza-Gallego, M. J., Lugo, L., Legido, J. L. and Pineiro, M. M., “Enhancement of thermal conductivity and volumetric behavior of FexOy nanofluids”, J Appl Phys, 110:1–9, (2011).
  • [27] Zhao, G., Jian, Y., Chang, L. and Buren, M., “Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field”, J Magn Magn Mater, 387; 111-117, (2015).
  • [28] Yousofvand, R., Derakhshan, S., Ghasemi, K. and Siavashi, M., “MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation”, Int J Mech Sci, 133; 73-90, (2017).
  • [29] Ganji, D. D. and Malvandi, A., “Natural convection of nanofluids inside a vertical enclosure in the presence of a uniform magnetic field”, Powder Technology, 263:50–57, (2014).
  • [30] Bhatti, S., Kumar, V., Singh, N., Sambyal, V., Singh, J., Katnoria, J. and Nagpal, A., “Physico-chemical Properties and Heavy Metal Contents of Soils and Kharif Crops of Punjab, India”, Procedia Environmental Sciences, 35, 801-808, (2016).
  • [31] Asirvatham, L. G., “Nanofluid heat transfer and applications”, Journal of Thermal Engineering, Yildiz Technical University Press, Vol. 1, No. 2, 113-115, (2015).
  • [32] Vassberg, J., DeHaan, M. and Sclafani, T., “Grid generation requirements for accurate drag predictions based on overflow calculations”, 16th AIAA computational fluid dynamics conference, 4124, (2003).
  • [33] Ahmad, M., Ismail, K. A. and Mat, F., “Convergence of Finite Element Model for Crushing of a Conical Thin-walled Tube”, Procedia Engineering, 53, 586-593, (2013).
  • [34] ANSYS Fluent Theory Guide, ANSYS Inc., (2017).
  • [35] ANSYS MHD Module Guide, ANSYS Inc., (2019).
  • [36] Kharat, P. B., Humbe, A. V., Kounsalye, J. S. and Jadhav, K.J.J.o.S., “Thermophysical investigations of ultrasonically assisted magnetic nanofluids for heat transfer”, Journal of Superconducttivity and Novel Magnetism, 32, 1307-1317, (2019).
  • [37] Zeeshan, A., Ellahi, R. and Hassan, M., “Magnetohydrodynamic flow of water/ethylene glycol based nanofluids with natural convection through porous medium”, European Physical Journal Plus, 129 (261):1-10, (2014).
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Zeynep Aytaç 0000-0003-0717-5287

Publication Date October 1, 2022
Submission Date July 24, 2022
Published in Issue Year 2022 Volume: 25 Issue: 3

Cite

APA Aytaç, Z. (2022). The Investigation of Flow Characteristics in Nanofluids Under Magnetic Field. Politeknik Dergisi, 25(3), 1309-1317. https://doi.org/10.2339/politeknik.1147953
AMA Aytaç Z. The Investigation of Flow Characteristics in Nanofluids Under Magnetic Field. Politeknik Dergisi. October 2022;25(3):1309-1317. doi:10.2339/politeknik.1147953
Chicago Aytaç, Zeynep. “The Investigation of Flow Characteristics in Nanofluids Under Magnetic Field”. Politeknik Dergisi 25, no. 3 (October 2022): 1309-17. https://doi.org/10.2339/politeknik.1147953.
EndNote Aytaç Z (October 1, 2022) The Investigation of Flow Characteristics in Nanofluids Under Magnetic Field. Politeknik Dergisi 25 3 1309–1317.
IEEE Z. Aytaç, “The Investigation of Flow Characteristics in Nanofluids Under Magnetic Field”, Politeknik Dergisi, vol. 25, no. 3, pp. 1309–1317, 2022, doi: 10.2339/politeknik.1147953.
ISNAD Aytaç, Zeynep. “The Investigation of Flow Characteristics in Nanofluids Under Magnetic Field”. Politeknik Dergisi 25/3 (October 2022), 1309-1317. https://doi.org/10.2339/politeknik.1147953.
JAMA Aytaç Z. The Investigation of Flow Characteristics in Nanofluids Under Magnetic Field. Politeknik Dergisi. 2022;25:1309–1317.
MLA Aytaç, Zeynep. “The Investigation of Flow Characteristics in Nanofluids Under Magnetic Field”. Politeknik Dergisi, vol. 25, no. 3, 2022, pp. 1309-17, doi:10.2339/politeknik.1147953.
Vancouver Aytaç Z. The Investigation of Flow Characteristics in Nanofluids Under Magnetic Field. Politeknik Dergisi. 2022;25(3):1309-17.