Research Article
BibTex RIS Cite

Determination of Trace Level Antimony(III) After Preconcentration Process by Liquid-Liquid Microextraction Using Digital Imaging Based Colorimetric Analysis Method

Year 2022, Volume: 25 Issue: 4, 1827 - 1833, 16.12.2022
https://doi.org/10.2339/politeknik.1195273

Abstract

In this study, a method for the colorimetric determination of antimony(III) was developed using a uniquely designed digital imaging box after the samples to be analyzed were preconcentrated with liquid-liquid microextraction. In the preconcentration phase, dithizone was used as a ligand in order to form a complex with the antimony in the sample. Colourful samples obtained after preconcentration were placed in a digital imaging box and colorimetric analysis was performed using an application that can be downloaded to smartphones. Before starting the analyzes, optimization studies were carried out for the distance of the quartz cuvette placed in the digital imaging box to the lens, the location of the point where the colorimetric determination will be made on the quartz cuvette, and the radius of the point to be analyzed. As a result of the analysis of antimony samples with different concentrations under optimum conditions, a linear region in the range of 1-4 mg/L was obtained and the limit of detection (LOD) for antimony was calculated as 0.71 mg/L. In the study, the percent relative standard deviation for the lowest concentration was 0.33% (n=8). This value indicates that the analysis has high sensitivity.

References

  • [1] Tylenda, C.A., Tomei Torres, F.A. and Sullivan, D.W., “Antimony”, Handbook on the Toxicology of Metals: Fifth Edition, Vol. 2: 23–40, (2021).
  • [2] Briffa, J., Sinagra, E. and Blundell, R., “Heavy metal pollution in the environment and their toxicological effects on humans” Heliyon, Volume 6: e04691, (2020).
  • [3] Fu, Z. and Xi, S., “The effects of heavy metals on human metabolism”, Toxicology Mechanisms and Methods, 30: 167-176, (2020).
  • [4] Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. and Beeregowda, K.N., “Toxicity, mechanism and health effects of some heavy metals”, Interdisciplinary Toxicology, 7: 60-72, (2014).
  • [5] Rai, P.K., Lee, S.S., Zhang, M., Tsang, Y.F. and Kim, K.H., “Heavy metals in food crops: Health risks, fate, mechanisms, and management”, Environment International, 125: 365-385, (2019).
  • [6] E.M.A Krista, Ş. Turhan, A. Kurnaz, A. Hançerlioğullari, “Distribution of elemental compositions of muscovite quarries in Turkey”, Politeknik Dergisi, 25(3): 1271-1279, (2022).
  • [7] Uslu, H., Büyükpınar, Ç., Unutkan, T., Serbest, H., SAN, N., Turak, F. and Bakırdere, S., “A novel analytical method for sensitive determination of lead: Hydrogen assisted T-shape slotted quartz tube- atom trap-flame atomic absorption spectrometry”, Microchemical Journal, 137: 155–159, (2018).
  • [8] Hasan, M.B., Al-Tameemi, I.M. and Abbas, M.N., “Orange Peels as a Sustainable Material for Treating Water Polluted with Antimony”, Journal of Ecological Engineering, 22(2): 25–35, (2021).
  • [9] Sundar, S. and Chakravarty, J., “Antimony toxicity”, International Journal of Environmental Research and Public Health, 7(12): 4267-4277, (2010).
  • [10] Wei, Q., Yang, J., Zhang, Y., Chang, G. and Du, B., “Determination of antimony(III) in environmental water samples in microemulsion system by the fluorescence quenching method”, Talanta, 58(3): 419–426, (2002).
  • [11] Gallignani, M., Ayala, C., Brunetto, M.R., Burguera, M., and Burguera, J.L., “Flow analysis-hydride generation-Fourier transform infrared spectrometric determination of antimony in pharmaceuticals”, Talanta, 59(5): 923–934, (2003).
  • [12] Zhu, Z., Yang, C., Yu, P., Zheng, H., Liu, Z., Xing, Z. and Hu, S., “Determination of antimony in water samples by hydride generation coupled with atmospheric pressure glow discharge atomic emission spectrometry”, Journal of Analytical Atomic Spectrometry, 34(2): 331–337, (2019).
  • [13] Rahman, L., Corns, W.T., Bryce, D.W. and Stockwell, P.B., “Determination of mercury, selenium, bismuth, arsenic and antimony in human hair by microwave digestion atomic fluorescence spectrometry”, Talanta, 52: 833–843, (2000).
  • [14] Yazıcı, E., Büyükpınar, Ç., Bodur, S., San, N., Komesli, O.T. and Bakırdere, S., “An accurate analytical method for the determination of antimony in tea and tap water samples: photochemical vapor generation-atom trapping prior to FAAS measurement”, Chemical Papers, 75: 3309–3316, (2021).
  • [15] Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F. and Berijani, S., “Determination of organic compounds in water using dispersive liquid-liquid microextraction”, Journal of Chromatography A, 1116(1–2): 1–9, (2006).
  • [16] Bodur, S. and Bakırdere, E.G., “Simultaneous determination of selected herbicides in dam lake, river and well water samples by gas chromatography mass spectrometry after vortex assisted binary solvent liquid phase microextraction”, Microchem. J., 145: 168–172, (2019).
  • [17] Pedersen-Bjergaard, S. and Rasmussen, K.E., “Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis”, Analytical Chemistry, 71(14): 2650– 2656, (1999).
  • [18] Jeannot, M.A. and Cantwell, F.F., “Solvent microextraction into a single drop”, Analytical Chemistry, 68(13): 2236–2240, (1996).
  • [19] Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F. and Berijani, S., “Determination of organic compounds in water using dispersive liquid-liquid microextraction”, Journal of Chromatography A, 1116(1–2): 1–9, (2006).
  • [20] Arthur, C.L. and Pawliszyn, J., “Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers”, Analytical Chemistry, 19: 2145-2148, (1990).
  • [21] Berijani, S., Assadi, Y., Anbia, M., Milani Hosseini, M.R. and Aghaee, E., “Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection. Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water”, Journal of Chromatography A, 1123(1): 1–9, (2006).
  • [22] Jeannot, M.A. and Cantwell, F.F., “Solvent microextraction into a single drop”, Analytical Chemistry, 68(13): 2236–2240, (1996).
  • [23] Hassan, M., Erbas, Z., Alshana, U. and Soylak, M., “Ligandless reversed-phase switchable-hydrophilicity solvent liquid–liquid microextraction combined with flame-atomic absorption spectrometry for the determination of copper in oil samples”, Microchem. J., 156: 104868, (2020).
  • [24] Martinez, A.W., Phillips, S.T., Carrilho, E., Thomas, S.W., Sindi, H. and Whitesides, G.M., “Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis”, Analytical Chemistry, 80(10): 3699–3707, (2008).
  • [25] Balasubramanian, S., Udayabhanu, A., Kumar, P.S., Muthamilselvi, P., Eswari, C., Vasantavada, A. and Kapoor, A., “Digital colorimetric analysis for estimation of iron in water with smartphone- assisted microfluidic paper-based analytical devices”, International Journal of Environmental Analytical Chemistry, 1–18, (2021).
  • [26] Fan, Y., Li, J., Guo, Y., Xie, L. and Zhang, G., “Digital image colorimetry on smartphone for chemical analysis: A review”, Measurement, 171: 108829, (2021).
  • [27] Firdaus, M.L., Saputra, E., Ginting, S.M., Wyantuti, S., Eddy, D.R., Rahmidar, L. and Yuliarto, B., “Smartphone-based digital image colorimetry for non-enzymatic detection of glucose using gold nanoparticles”, Sensing and Bio-Sensing Research, 35: 108829, (2022).
  • [28] Masawat, P., Harfield, A. and Namwong, A., “An iPhone-based digital image colorimeter for detecting tetracycline in milk”, Food Chemistry, 184: 23–29, (2015).
  • [29] Silva, A.F.S. and Rocha, F.R.P., “A novel approach to detect milk adulteration based on the determination of protein content by smartphone-based digital image colorimetry”, Food Control, 115: 108829, (2020).
  • [30] Yağmuroğlu, O., “Accurate and sensitive determination of Sb(III) in water samples using UV–VIS spectrophotometry after simultaneous complexation and preconcentration with deep eutectic solvent/DTZ probe-based liquid–liquid microextraction”, Environ Monit Assess, 195: 191, (2023).

Dijital Görüntüleme Temelli Kolorimetrik Analiz Yöntemi Kullanılarak Sıvı-Sıvı Mikroekstraksiyon ile Önderiştirme İşleminden Sonra Eser Seviyede Antimon(III) Tayini

Year 2022, Volume: 25 Issue: 4, 1827 - 1833, 16.12.2022
https://doi.org/10.2339/politeknik.1195273

Abstract

Bu çalışmada, analizi yapılacak numunelerin sıvı-sıvı mikroekstraksiyon ile önderiştirilmelerinin ardından özgün tasarımlı dijital görüntüleme kutusu kullanılarak antimonun(III) kolorimetrik tayinine yönelik yöntem geliştirilmiştir. Önderiştirme aşamasında numune içerisindeki antimon ile kompleks oluşturması amacıyla ditizon ligand olarak kullanılmıştır. Önderiştime işleminden sonra elde edilen renkli örnekler dijital görüntüleme kutusu içerisine yerleştirilmiş ve akıllı telefonlara yüklenebilen bir uygulama kullanılarak kolorimetrik analiz gerçekleştirilmiştir. Analizlere başlanmadan önce dijital görüntüleme kutusu içerisine yerleştirilen kuvars küvetin merceğe olan uzaklığı, kuvars küvet üzerinde kolorimetrik tayinin yapılacağı noktanın konumu ve analiz edilecek noktanın yarıçapına yönelik optimizasyon çalışması yapılmıştır. Optimum koşullar altında farklı derişimlere sahip antimon numelerinin analizi sonucunda 1-4 mg/L aralığında lineer bölge elde edilmiş ve antimon için tayin limiti (LOD) 0,71 mg/L olarak hesaplanmıştır. Çalışmada en düşük konsantrasyon için yüzde bağıl standart sapma %0,33 (n=8) olarak bulunmuştur. Bu değer, yapılan analizin yüksek hassasiyete sahip olduğunu göstermektedir. 

References

  • [1] Tylenda, C.A., Tomei Torres, F.A. and Sullivan, D.W., “Antimony”, Handbook on the Toxicology of Metals: Fifth Edition, Vol. 2: 23–40, (2021).
  • [2] Briffa, J., Sinagra, E. and Blundell, R., “Heavy metal pollution in the environment and their toxicological effects on humans” Heliyon, Volume 6: e04691, (2020).
  • [3] Fu, Z. and Xi, S., “The effects of heavy metals on human metabolism”, Toxicology Mechanisms and Methods, 30: 167-176, (2020).
  • [4] Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. and Beeregowda, K.N., “Toxicity, mechanism and health effects of some heavy metals”, Interdisciplinary Toxicology, 7: 60-72, (2014).
  • [5] Rai, P.K., Lee, S.S., Zhang, M., Tsang, Y.F. and Kim, K.H., “Heavy metals in food crops: Health risks, fate, mechanisms, and management”, Environment International, 125: 365-385, (2019).
  • [6] E.M.A Krista, Ş. Turhan, A. Kurnaz, A. Hançerlioğullari, “Distribution of elemental compositions of muscovite quarries in Turkey”, Politeknik Dergisi, 25(3): 1271-1279, (2022).
  • [7] Uslu, H., Büyükpınar, Ç., Unutkan, T., Serbest, H., SAN, N., Turak, F. and Bakırdere, S., “A novel analytical method for sensitive determination of lead: Hydrogen assisted T-shape slotted quartz tube- atom trap-flame atomic absorption spectrometry”, Microchemical Journal, 137: 155–159, (2018).
  • [8] Hasan, M.B., Al-Tameemi, I.M. and Abbas, M.N., “Orange Peels as a Sustainable Material for Treating Water Polluted with Antimony”, Journal of Ecological Engineering, 22(2): 25–35, (2021).
  • [9] Sundar, S. and Chakravarty, J., “Antimony toxicity”, International Journal of Environmental Research and Public Health, 7(12): 4267-4277, (2010).
  • [10] Wei, Q., Yang, J., Zhang, Y., Chang, G. and Du, B., “Determination of antimony(III) in environmental water samples in microemulsion system by the fluorescence quenching method”, Talanta, 58(3): 419–426, (2002).
  • [11] Gallignani, M., Ayala, C., Brunetto, M.R., Burguera, M., and Burguera, J.L., “Flow analysis-hydride generation-Fourier transform infrared spectrometric determination of antimony in pharmaceuticals”, Talanta, 59(5): 923–934, (2003).
  • [12] Zhu, Z., Yang, C., Yu, P., Zheng, H., Liu, Z., Xing, Z. and Hu, S., “Determination of antimony in water samples by hydride generation coupled with atmospheric pressure glow discharge atomic emission spectrometry”, Journal of Analytical Atomic Spectrometry, 34(2): 331–337, (2019).
  • [13] Rahman, L., Corns, W.T., Bryce, D.W. and Stockwell, P.B., “Determination of mercury, selenium, bismuth, arsenic and antimony in human hair by microwave digestion atomic fluorescence spectrometry”, Talanta, 52: 833–843, (2000).
  • [14] Yazıcı, E., Büyükpınar, Ç., Bodur, S., San, N., Komesli, O.T. and Bakırdere, S., “An accurate analytical method for the determination of antimony in tea and tap water samples: photochemical vapor generation-atom trapping prior to FAAS measurement”, Chemical Papers, 75: 3309–3316, (2021).
  • [15] Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F. and Berijani, S., “Determination of organic compounds in water using dispersive liquid-liquid microextraction”, Journal of Chromatography A, 1116(1–2): 1–9, (2006).
  • [16] Bodur, S. and Bakırdere, E.G., “Simultaneous determination of selected herbicides in dam lake, river and well water samples by gas chromatography mass spectrometry after vortex assisted binary solvent liquid phase microextraction”, Microchem. J., 145: 168–172, (2019).
  • [17] Pedersen-Bjergaard, S. and Rasmussen, K.E., “Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis”, Analytical Chemistry, 71(14): 2650– 2656, (1999).
  • [18] Jeannot, M.A. and Cantwell, F.F., “Solvent microextraction into a single drop”, Analytical Chemistry, 68(13): 2236–2240, (1996).
  • [19] Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F. and Berijani, S., “Determination of organic compounds in water using dispersive liquid-liquid microextraction”, Journal of Chromatography A, 1116(1–2): 1–9, (2006).
  • [20] Arthur, C.L. and Pawliszyn, J., “Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers”, Analytical Chemistry, 19: 2145-2148, (1990).
  • [21] Berijani, S., Assadi, Y., Anbia, M., Milani Hosseini, M.R. and Aghaee, E., “Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection. Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water”, Journal of Chromatography A, 1123(1): 1–9, (2006).
  • [22] Jeannot, M.A. and Cantwell, F.F., “Solvent microextraction into a single drop”, Analytical Chemistry, 68(13): 2236–2240, (1996).
  • [23] Hassan, M., Erbas, Z., Alshana, U. and Soylak, M., “Ligandless reversed-phase switchable-hydrophilicity solvent liquid–liquid microextraction combined with flame-atomic absorption spectrometry for the determination of copper in oil samples”, Microchem. J., 156: 104868, (2020).
  • [24] Martinez, A.W., Phillips, S.T., Carrilho, E., Thomas, S.W., Sindi, H. and Whitesides, G.M., “Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis”, Analytical Chemistry, 80(10): 3699–3707, (2008).
  • [25] Balasubramanian, S., Udayabhanu, A., Kumar, P.S., Muthamilselvi, P., Eswari, C., Vasantavada, A. and Kapoor, A., “Digital colorimetric analysis for estimation of iron in water with smartphone- assisted microfluidic paper-based analytical devices”, International Journal of Environmental Analytical Chemistry, 1–18, (2021).
  • [26] Fan, Y., Li, J., Guo, Y., Xie, L. and Zhang, G., “Digital image colorimetry on smartphone for chemical analysis: A review”, Measurement, 171: 108829, (2021).
  • [27] Firdaus, M.L., Saputra, E., Ginting, S.M., Wyantuti, S., Eddy, D.R., Rahmidar, L. and Yuliarto, B., “Smartphone-based digital image colorimetry for non-enzymatic detection of glucose using gold nanoparticles”, Sensing and Bio-Sensing Research, 35: 108829, (2022).
  • [28] Masawat, P., Harfield, A. and Namwong, A., “An iPhone-based digital image colorimeter for detecting tetracycline in milk”, Food Chemistry, 184: 23–29, (2015).
  • [29] Silva, A.F.S. and Rocha, F.R.P., “A novel approach to detect milk adulteration based on the determination of protein content by smartphone-based digital image colorimetry”, Food Control, 115: 108829, (2020).
  • [30] Yağmuroğlu, O., “Accurate and sensitive determination of Sb(III) in water samples using UV–VIS spectrophotometry after simultaneous complexation and preconcentration with deep eutectic solvent/DTZ probe-based liquid–liquid microextraction”, Environ Monit Assess, 195: 191, (2023).
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Ozan Yağmuroğlu 0000-0002-4703-6313

Publication Date December 16, 2022
Submission Date October 27, 2022
Published in Issue Year 2022 Volume: 25 Issue: 4

Cite

APA Yağmuroğlu, O. (2022). Dijital Görüntüleme Temelli Kolorimetrik Analiz Yöntemi Kullanılarak Sıvı-Sıvı Mikroekstraksiyon ile Önderiştirme İşleminden Sonra Eser Seviyede Antimon(III) Tayini. Politeknik Dergisi, 25(4), 1827-1833. https://doi.org/10.2339/politeknik.1195273
AMA Yağmuroğlu O. Dijital Görüntüleme Temelli Kolorimetrik Analiz Yöntemi Kullanılarak Sıvı-Sıvı Mikroekstraksiyon ile Önderiştirme İşleminden Sonra Eser Seviyede Antimon(III) Tayini. Politeknik Dergisi. December 2022;25(4):1827-1833. doi:10.2339/politeknik.1195273
Chicago Yağmuroğlu, Ozan. “Dijital Görüntüleme Temelli Kolorimetrik Analiz Yöntemi Kullanılarak Sıvı-Sıvı Mikroekstraksiyon Ile Önderiştirme İşleminden Sonra Eser Seviyede Antimon(III) Tayini”. Politeknik Dergisi 25, no. 4 (December 2022): 1827-33. https://doi.org/10.2339/politeknik.1195273.
EndNote Yağmuroğlu O (December 1, 2022) Dijital Görüntüleme Temelli Kolorimetrik Analiz Yöntemi Kullanılarak Sıvı-Sıvı Mikroekstraksiyon ile Önderiştirme İşleminden Sonra Eser Seviyede Antimon(III) Tayini. Politeknik Dergisi 25 4 1827–1833.
IEEE O. Yağmuroğlu, “Dijital Görüntüleme Temelli Kolorimetrik Analiz Yöntemi Kullanılarak Sıvı-Sıvı Mikroekstraksiyon ile Önderiştirme İşleminden Sonra Eser Seviyede Antimon(III) Tayini”, Politeknik Dergisi, vol. 25, no. 4, pp. 1827–1833, 2022, doi: 10.2339/politeknik.1195273.
ISNAD Yağmuroğlu, Ozan. “Dijital Görüntüleme Temelli Kolorimetrik Analiz Yöntemi Kullanılarak Sıvı-Sıvı Mikroekstraksiyon Ile Önderiştirme İşleminden Sonra Eser Seviyede Antimon(III) Tayini”. Politeknik Dergisi 25/4 (December 2022), 1827-1833. https://doi.org/10.2339/politeknik.1195273.
JAMA Yağmuroğlu O. Dijital Görüntüleme Temelli Kolorimetrik Analiz Yöntemi Kullanılarak Sıvı-Sıvı Mikroekstraksiyon ile Önderiştirme İşleminden Sonra Eser Seviyede Antimon(III) Tayini. Politeknik Dergisi. 2022;25:1827–1833.
MLA Yağmuroğlu, Ozan. “Dijital Görüntüleme Temelli Kolorimetrik Analiz Yöntemi Kullanılarak Sıvı-Sıvı Mikroekstraksiyon Ile Önderiştirme İşleminden Sonra Eser Seviyede Antimon(III) Tayini”. Politeknik Dergisi, vol. 25, no. 4, 2022, pp. 1827-33, doi:10.2339/politeknik.1195273.
Vancouver Yağmuroğlu O. Dijital Görüntüleme Temelli Kolorimetrik Analiz Yöntemi Kullanılarak Sıvı-Sıvı Mikroekstraksiyon ile Önderiştirme İşleminden Sonra Eser Seviyede Antimon(III) Tayini. Politeknik Dergisi. 2022;25(4):1827-33.