Research Article
BibTex RIS Cite

Design and Production of an Environmentally Friendly Cabin Type Full Automation Paint Removal Machine

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1401067

Abstract

Öz
Yaşlanmış boya ve vernik katmanlarının ahşap yüzeylerden etkili ve hasarsız bir şekilde çıkarılması hem estetik hem de uzun süreli malzeme kullanımı için oldukça önemlidir. Kazıma veya zımparalama gibi geleneksel yöntemler zaman alıcı ve büyük çaba gerektirmektedir. Ayrıca, boya sökücü kimyasallar gibi alternatif çözümler insan sağlığı ve çevre için önemli tehditler oluşturmaktadır. Bu problemlerden yola çıkılan bu çalışmada, yenilikçi bir çözüm olarak kabin tipi tam otomasyon bir boya temizleme makinesi (CAPREM) tasarlanmış ve üretilmiştir. CAPREM, basınçlı hava kullanarak yüzeye aşındırıcı madde püskürtmek suretiyle ahşap da dahil olmak üzere çeşitli malzemelerdeki boya ve vernik katmanlarını etkin bir şekilde ortadan kaldırmak üzere tasarlanmıştır. Hava basıncı, nozul çapı, fırlatma açısı, fırlatma mesafesi ve besleme hızı gibi parametreleri kontrol etme ve ayarlama yeteneğine sahip olan makine, farklı özellikteki katmanların temizlenmesi senaryoları için esnek bir altyapı sunmaktadır. Ayrıca CAPREM, endüstrideki aşındırıcı medyaların çeşitliliğini artırarak, kaplama tabakasının kaldırılması için çevre dostu bir çözüm sunmayı ve bu sayede birçok sektöre fayda sağlamayı ve bu alandaki araştırmaları ilerletmeyi amaçlamaktadır.

Ethical Statement

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

Supporting Institution

TUBITAK

Project Number

221O709

Thanks

This study is supported by TUBITAK (The Scientific and Technological Research Council of Turkey). The authors are grateful for the support of TUBITAK.

References

  • [1] Budakçı, M., Karamanoğlu, M., “Effects of Weathering on Some Physical Properties of Wood.” Kastamonu Univ. For. Fac. J. 14 (1) 37–47 (2014).
  • [2] Korkmaz, E., Özcan, C., Korkmaz, M., “An Application of Fuzzy Soft Sets to A Real-Life Problem: Classification of Wood Materials to Prevent Fire-Related Injuries and Deaths.” Appl. Soft Comput. 132 109875 (2023).
  • [3] Perçin, O., Doruk, Ş., and M. Altunok, “Effects of impregnation and heat treatment on some physical and mechanical properties of wood material,” J. Polytech 26, 1421–1429 (2023).
  • [4] Çetin, H., Physical and Chemical Analysis of Softwoods Exposed to Marine Borers. Bartın University Institue of Natural and Applied Science, Bartın (2009).
  • [5] Özgenç Ö., Yıldız, Ü., Yıldız, S., “The Wood Surface Protection With Some New Generation Wood Preservatives and Coating Processings Against Weathering Conditions.” Artvin Coruh Univ. J. For. Fac. 14 (2) 203–215 (2013).
  • [6] Budakçı, M., Togay, A., “The Color Changing Effect of Outdoor Conditions on Synthetic Varnish and a Diffusion Paint Applied Scotch Pine.” J. Ind. Arts Educ. Fac. Gazi Univ. 11 (10) 55–68 (2002).
  • [7] Kılıç, A., Hafızoğlu, H., “Influences of Weathering on Chemical Structure of Wood and Protection Treatments.” Turkish J. For. 8, 175–183 (2007).
  • [8] Kılıç K. and Söğütlü, C. “Varnish Adhesion Strength in Natural Aged Wood Material,” J. Polytech. 26, 847–854 (2023).
  • [9] Murodovna, R. M., Sergeevna, KG, “Wood – as a Decorative Material of the Interior.” Int. J. Integr. Educ. 5 (3) 310–315 (2022).
  • [10] Weeks, K. D., Look, W. D., “Exterior Paint Problems on Historic Woodwork”. Department of the Interior (ed) The Preservation of Historic Architecture. U.S. Government Printing Office, Washington DC (1982).
  • [11] Echt, A., Dunn, K. H., Mickelsen, R. L., Automated Abrasive Blasting Equipment for Use on Steel Structures. Appl. Occup. Environ. Hyg. 15 (10) 713–720 (2000).
  • [12] Wynne, J. H., Watson K. E. , Yesinowski J. P., et al. Report on Scientific Basis for Paint Stripping: Mechanism of Methylene Chloride Based Paint Removers. Naval Research Laboratory, Washington DC (2011).
  • [13] Chen, G. X., Kwee, T. J., Tan, K. P., et al. “Laser Cleaning of Steel for Paint Removal.” Appl. Phys. A. 101 249–253 (2010).
  • [14] Can A., and Özsoy, H. “A Different Perspective on Air Pollution Measurements,” J. Polytech. 26, 329–344 (2023).
  • [15] UNFCCC, “Paris Climate Agreement,” Paris, (2015).
  • [16] UNFCCC, “Kyoto Protocol to the United Nations Framework Convention on Climate Change,” Kyoto, (1997).
  • [17] Baglioni, M., Poggi, G., Giorgi R., et al. “Selective Removal of Over-paintings From “Street Art” Using an Environmentally Friendly Nanostructured Fluid Loaded in Highly Retentive Hydrogels.” J. Colloid Interface Sci. 595, 187–201 (2021).
  • [18] Carretti, E., Giorgi, R., Berti, D., et al. “Oil-in-Water Nanocontainers as Low Environmental Impact Cleaning Tools for Works of Art: Two Case Studies.” Langmuir 23 (11) 6396–6403 (2007).
  • [19] Li, M. Z., Liu W. W., Qing, X. C., et al. “Feasibility Study of a New Approach to Removal of Paint Coatings in Remanufacturing.” J. Mater. Process. Technol. 234, 102–112 (2016).
  • [20] Reddy, P. S., Kumar, P. R., Prasad D. V. S. S. S. V., et al. “Effect of Parameters and Surface Analysis on Eglin Steel by Shot Blasting Method.” Mater. Today Proc. 72 (6) 2833–2836 (2023).
  • [21] Efremov, D., Gerasimova, A., “Shotblasting Process for Surface Hardening.” Mater. Today Proc. 38 (4) 1685–1688 (2021).
  • [22] Deng, J., Feng, Y., Shi, P., et al. “Erosion Wear of Ceramic Nozzles in Sand Blasting Treatments.” J. Chinese Ceram. Soc. 23 (2) 323– 329 (2003).
  • [23] Tucker, R. C., “Introduction to Coating Design and Processing,” In: Tucker, RC (ed.) Thermal Spray Technology. ASM Handbook, pp. 76–88. ASM International, (2013).
  • [24] Zulkarnain, I., Mohamad K. N. A., Syakir, M. I., et al. “Sustainability-based Characteristics of Abrasives in Blasting Industry.” Sustainability, 13 (15) 8130 (2021).
  • [25] Dowling, A., Weaver, T., “Experimental Determination of the Insulating Ability of Corn By-Products.” J. Sustain. Agric. 30 (2) 15-27 (2007).
  • [26] Kohli, R., “Microabrasive Technology for Precision Cleaning and Processing Applications.” In: Kohli, R, Mittal KL, (ed.) Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques, pp. 509–548. Elsevier, Amsterdam, NL (2019).
  • [27] Metal Finishing Supply Company, Classic Portable Blast Equipments, URL: http://www.metalfinishingsupply.biz/clemco.cfm. Accessed August 11, (2023).
  • [28] Zhang, Y., Fu, X., Men, X., et al. “Analysis Of Gas-Solid Two-Phase Flow And Structure Optimization Of Mobile Shot Blasting Machine Recovery Device.” Sci. Rep. 12, 22220 (2022).
  • [29] Nué, C. L., Deschamps, A., Danoix, F., et al. “Influence Of Grinding And Shot-Peening On The Near-Surface Microstructure Of A Maraging Stainless Steel.” Materialia 20, 101220 (2021).
  • [30] Phillips, E. E., Murphy, R., Connors, J., et al. “Experimental Evaluation of OSB-Faced Structural Insulated Panels Subject to Blast Loads.” Eng. Struct. 229 111597 (2021).
  • [31] Rosenberg, B., Yuan, L., Fulmer, S., “Ergonomics of Abrasive Blasting: A Comparison of High Pressure Water and Steel Shot.” Appl. Ergon. 37 (5) 659–667 (2006).
  • [32] Clemco International, Blast Cabinets, URL: https://www.clemco-international.com/en?lang=2&p=13. Accessed September 20, (2023).
  • [33] Nudelman, A. K., Abbott, K., “Plastic media blasting.” Met. Finish. 98 (6) 485-492 (2000).
  • [34] Madl AK, Donovan EP, Gaffney SH, et al. “State-of-the-science Review of the Occupational Health Hazards of Crystalline Silica in Abrasive Blasting Operations and Related Requirements for Respiratory Protection.” J Toxicol Environ Health B Crit Rev. 11 (7) 548-608 (2008).
  • [35] Madl, A. K., Sun, X., Silva, R. M., et al. “Particle Toxicities,” In: McQueen, CA (ed.) Comprehensive Toxicology 3rd Edition Elsevier, Oxford, UK (2010).
  • [36] Bang, K. M., Mazurek, J. M., Wood, J. M., et al. “Silicosis Mortality Trends and New Exposures to Respirable Crystalline Silica - United States, 2001-2010.” Morb. Mortal. Wkly. Rep. 64 (5) 117–119 (2015).
  • [37] Deighton, M., “Fracture of Brittle Solids.” Phys. Bull. 27 (5) 220–221 (1976).
  • [38] Bouzid, S., Bouaouadja, N, “Effect of Impact Angle on Glass Surfaces Eroded by Sand Blasting.” J. Eur. Ceram. Soc. 20 (4) 481–488 (2000).
  • [39] Satıcı, M. E., Study About Shot Blasting and Shot peening Processes and Parameters Affecting on Them. Istanbul University Institute of Science, Istanbul (2004).
  • [40] Fonte, A. P. N, Rocha, M. P., Cademartori, P. H. G, “Influence of Abrasive Blasting and Hot Pressing Preparation on the Pinus Taeda Wood Surface.” Floresta e Ambient. 29 (3) 2–8 (2022).
  • [41] Li, X, Tang, K, He, L, et al. “Effect of Sand Blasting Treatment on Green Colour Preservation and Surface Characteristics of Moso Bamboo Culms.” Eur. J. Wood Wood Prod. 80(6) 1–8 (2022).

Design and Production of an Environmentally Friendly Cabin Type Full Automation Paint Removal Machine

Year 2025, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1401067

Abstract

Abstract
The effective and damage-free removal of deteriorated paint and varnish from wood surfaces is vital for both aesthetic and long-term material use. Traditional methods like scraping or sanding are labor-intensive and time-consuming. Moreover, alternative solutions like paint strippers pose significant threats to human health and the environment. To address these challenges, this study introduces a groundbreaking solution: the Cabin Type Full Automation Paint Removal Machine (CAPREM), designed and manufactured. The CAPREM is engineered to efficiently eliminate layers of paint and varnish from diverse materials, including wood, by blasting abrasive media onto the surface using compressed air. With the ability to control and adjust parameters such as air pressure, nozzle diameter, removal angle, removal distance, and feed rate, the machine offers flexibility for various coating layer removal scenarios. Furthermore, by enhancing the diversity of abrasive media, the CAPREM aims to provide an environmentally friendly solution for coating layer removal, benefiting multiple industries and advancing research in this field.

Project Number

221O709

References

  • [1] Budakçı, M., Karamanoğlu, M., “Effects of Weathering on Some Physical Properties of Wood.” Kastamonu Univ. For. Fac. J. 14 (1) 37–47 (2014).
  • [2] Korkmaz, E., Özcan, C., Korkmaz, M., “An Application of Fuzzy Soft Sets to A Real-Life Problem: Classification of Wood Materials to Prevent Fire-Related Injuries and Deaths.” Appl. Soft Comput. 132 109875 (2023).
  • [3] Perçin, O., Doruk, Ş., and M. Altunok, “Effects of impregnation and heat treatment on some physical and mechanical properties of wood material,” J. Polytech 26, 1421–1429 (2023).
  • [4] Çetin, H., Physical and Chemical Analysis of Softwoods Exposed to Marine Borers. Bartın University Institue of Natural and Applied Science, Bartın (2009).
  • [5] Özgenç Ö., Yıldız, Ü., Yıldız, S., “The Wood Surface Protection With Some New Generation Wood Preservatives and Coating Processings Against Weathering Conditions.” Artvin Coruh Univ. J. For. Fac. 14 (2) 203–215 (2013).
  • [6] Budakçı, M., Togay, A., “The Color Changing Effect of Outdoor Conditions on Synthetic Varnish and a Diffusion Paint Applied Scotch Pine.” J. Ind. Arts Educ. Fac. Gazi Univ. 11 (10) 55–68 (2002).
  • [7] Kılıç, A., Hafızoğlu, H., “Influences of Weathering on Chemical Structure of Wood and Protection Treatments.” Turkish J. For. 8, 175–183 (2007).
  • [8] Kılıç K. and Söğütlü, C. “Varnish Adhesion Strength in Natural Aged Wood Material,” J. Polytech. 26, 847–854 (2023).
  • [9] Murodovna, R. M., Sergeevna, KG, “Wood – as a Decorative Material of the Interior.” Int. J. Integr. Educ. 5 (3) 310–315 (2022).
  • [10] Weeks, K. D., Look, W. D., “Exterior Paint Problems on Historic Woodwork”. Department of the Interior (ed) The Preservation of Historic Architecture. U.S. Government Printing Office, Washington DC (1982).
  • [11] Echt, A., Dunn, K. H., Mickelsen, R. L., Automated Abrasive Blasting Equipment for Use on Steel Structures. Appl. Occup. Environ. Hyg. 15 (10) 713–720 (2000).
  • [12] Wynne, J. H., Watson K. E. , Yesinowski J. P., et al. Report on Scientific Basis for Paint Stripping: Mechanism of Methylene Chloride Based Paint Removers. Naval Research Laboratory, Washington DC (2011).
  • [13] Chen, G. X., Kwee, T. J., Tan, K. P., et al. “Laser Cleaning of Steel for Paint Removal.” Appl. Phys. A. 101 249–253 (2010).
  • [14] Can A., and Özsoy, H. “A Different Perspective on Air Pollution Measurements,” J. Polytech. 26, 329–344 (2023).
  • [15] UNFCCC, “Paris Climate Agreement,” Paris, (2015).
  • [16] UNFCCC, “Kyoto Protocol to the United Nations Framework Convention on Climate Change,” Kyoto, (1997).
  • [17] Baglioni, M., Poggi, G., Giorgi R., et al. “Selective Removal of Over-paintings From “Street Art” Using an Environmentally Friendly Nanostructured Fluid Loaded in Highly Retentive Hydrogels.” J. Colloid Interface Sci. 595, 187–201 (2021).
  • [18] Carretti, E., Giorgi, R., Berti, D., et al. “Oil-in-Water Nanocontainers as Low Environmental Impact Cleaning Tools for Works of Art: Two Case Studies.” Langmuir 23 (11) 6396–6403 (2007).
  • [19] Li, M. Z., Liu W. W., Qing, X. C., et al. “Feasibility Study of a New Approach to Removal of Paint Coatings in Remanufacturing.” J. Mater. Process. Technol. 234, 102–112 (2016).
  • [20] Reddy, P. S., Kumar, P. R., Prasad D. V. S. S. S. V., et al. “Effect of Parameters and Surface Analysis on Eglin Steel by Shot Blasting Method.” Mater. Today Proc. 72 (6) 2833–2836 (2023).
  • [21] Efremov, D., Gerasimova, A., “Shotblasting Process for Surface Hardening.” Mater. Today Proc. 38 (4) 1685–1688 (2021).
  • [22] Deng, J., Feng, Y., Shi, P., et al. “Erosion Wear of Ceramic Nozzles in Sand Blasting Treatments.” J. Chinese Ceram. Soc. 23 (2) 323– 329 (2003).
  • [23] Tucker, R. C., “Introduction to Coating Design and Processing,” In: Tucker, RC (ed.) Thermal Spray Technology. ASM Handbook, pp. 76–88. ASM International, (2013).
  • [24] Zulkarnain, I., Mohamad K. N. A., Syakir, M. I., et al. “Sustainability-based Characteristics of Abrasives in Blasting Industry.” Sustainability, 13 (15) 8130 (2021).
  • [25] Dowling, A., Weaver, T., “Experimental Determination of the Insulating Ability of Corn By-Products.” J. Sustain. Agric. 30 (2) 15-27 (2007).
  • [26] Kohli, R., “Microabrasive Technology for Precision Cleaning and Processing Applications.” In: Kohli, R, Mittal KL, (ed.) Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques, pp. 509–548. Elsevier, Amsterdam, NL (2019).
  • [27] Metal Finishing Supply Company, Classic Portable Blast Equipments, URL: http://www.metalfinishingsupply.biz/clemco.cfm. Accessed August 11, (2023).
  • [28] Zhang, Y., Fu, X., Men, X., et al. “Analysis Of Gas-Solid Two-Phase Flow And Structure Optimization Of Mobile Shot Blasting Machine Recovery Device.” Sci. Rep. 12, 22220 (2022).
  • [29] Nué, C. L., Deschamps, A., Danoix, F., et al. “Influence Of Grinding And Shot-Peening On The Near-Surface Microstructure Of A Maraging Stainless Steel.” Materialia 20, 101220 (2021).
  • [30] Phillips, E. E., Murphy, R., Connors, J., et al. “Experimental Evaluation of OSB-Faced Structural Insulated Panels Subject to Blast Loads.” Eng. Struct. 229 111597 (2021).
  • [31] Rosenberg, B., Yuan, L., Fulmer, S., “Ergonomics of Abrasive Blasting: A Comparison of High Pressure Water and Steel Shot.” Appl. Ergon. 37 (5) 659–667 (2006).
  • [32] Clemco International, Blast Cabinets, URL: https://www.clemco-international.com/en?lang=2&p=13. Accessed September 20, (2023).
  • [33] Nudelman, A. K., Abbott, K., “Plastic media blasting.” Met. Finish. 98 (6) 485-492 (2000).
  • [34] Madl AK, Donovan EP, Gaffney SH, et al. “State-of-the-science Review of the Occupational Health Hazards of Crystalline Silica in Abrasive Blasting Operations and Related Requirements for Respiratory Protection.” J Toxicol Environ Health B Crit Rev. 11 (7) 548-608 (2008).
  • [35] Madl, A. K., Sun, X., Silva, R. M., et al. “Particle Toxicities,” In: McQueen, CA (ed.) Comprehensive Toxicology 3rd Edition Elsevier, Oxford, UK (2010).
  • [36] Bang, K. M., Mazurek, J. M., Wood, J. M., et al. “Silicosis Mortality Trends and New Exposures to Respirable Crystalline Silica - United States, 2001-2010.” Morb. Mortal. Wkly. Rep. 64 (5) 117–119 (2015).
  • [37] Deighton, M., “Fracture of Brittle Solids.” Phys. Bull. 27 (5) 220–221 (1976).
  • [38] Bouzid, S., Bouaouadja, N, “Effect of Impact Angle on Glass Surfaces Eroded by Sand Blasting.” J. Eur. Ceram. Soc. 20 (4) 481–488 (2000).
  • [39] Satıcı, M. E., Study About Shot Blasting and Shot peening Processes and Parameters Affecting on Them. Istanbul University Institute of Science, Istanbul (2004).
  • [40] Fonte, A. P. N, Rocha, M. P., Cademartori, P. H. G, “Influence of Abrasive Blasting and Hot Pressing Preparation on the Pinus Taeda Wood Surface.” Floresta e Ambient. 29 (3) 2–8 (2022).
  • [41] Li, X, Tang, K, He, L, et al. “Effect of Sand Blasting Treatment on Green Colour Preservation and Surface Characteristics of Moso Bamboo Culms.” Eur. J. Wood Wood Prod. 80(6) 1–8 (2022).
There are 41 citations in total.

Details

Primary Language English
Subjects Plating Technology, Timber, Pulp and Paper
Journal Section Research Article
Authors

Mustafa Korkmaz 0000-0001-5595-2154

Mehmet Budakçı 0000-0002-7583-8532

İzham Kılınç 0000-0002-4145-1225

Project Number 221O709
Early Pub Date February 8, 2025
Publication Date
Submission Date December 6, 2023
Acceptance Date January 17, 2025
Published in Issue Year 2025 EARLY VIEW

Cite

APA Korkmaz, M., Budakçı, M., & Kılınç, İ. (2025). Design and Production of an Environmentally Friendly Cabin Type Full Automation Paint Removal Machine. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1401067
AMA Korkmaz M, Budakçı M, Kılınç İ. Design and Production of an Environmentally Friendly Cabin Type Full Automation Paint Removal Machine. Politeknik Dergisi. Published online February 1, 2025:1-1. doi:10.2339/politeknik.1401067
Chicago Korkmaz, Mustafa, Mehmet Budakçı, and İzham Kılınç. “Design and Production of an Environmentally Friendly Cabin Type Full Automation Paint Removal Machine”. Politeknik Dergisi, February (February 2025), 1-1. https://doi.org/10.2339/politeknik.1401067.
EndNote Korkmaz M, Budakçı M, Kılınç İ (February 1, 2025) Design and Production of an Environmentally Friendly Cabin Type Full Automation Paint Removal Machine. Politeknik Dergisi 1–1.
IEEE M. Korkmaz, M. Budakçı, and İ. Kılınç, “Design and Production of an Environmentally Friendly Cabin Type Full Automation Paint Removal Machine”, Politeknik Dergisi, pp. 1–1, February 2025, doi: 10.2339/politeknik.1401067.
ISNAD Korkmaz, Mustafa et al. “Design and Production of an Environmentally Friendly Cabin Type Full Automation Paint Removal Machine”. Politeknik Dergisi. February 2025. 1-1. https://doi.org/10.2339/politeknik.1401067.
JAMA Korkmaz M, Budakçı M, Kılınç İ. Design and Production of an Environmentally Friendly Cabin Type Full Automation Paint Removal Machine. Politeknik Dergisi. 2025;:1–1.
MLA Korkmaz, Mustafa et al. “Design and Production of an Environmentally Friendly Cabin Type Full Automation Paint Removal Machine”. Politeknik Dergisi, 2025, pp. 1-1, doi:10.2339/politeknik.1401067.
Vancouver Korkmaz M, Budakçı M, Kılınç İ. Design and Production of an Environmentally Friendly Cabin Type Full Automation Paint Removal Machine. Politeknik Dergisi. 2025:1-.