Research Article
BibTex RIS Cite

Cephe Kaplama Malzemesi Bünyesinde Farklı Tane Boyutlarında Volkanik Tüf Agrega Kullanımının Fiziksel ve Mekanik Özelliklere Etkisi

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1446047

Abstract

Volkanizmanın farklı aşamalarında meydana gelen volkanik kökenli piroklastik kayaçlar yapı malzemesi üretiminde yaygın kullanım imkanı bulurlar. Çalışmada piroklastik kayaçlardan olan volkanik tüflerin malzeme olarak kullanılması amacıyla işletilmiş ancak beklenen performansı sağlayamadığı için terkedilmiş bir saha ele alınmaktadır. Atıl haldeki bu sahanın yapı malzemesi üretiminde değerli bir hammadde kaynağı olabilmesi adına agrega özelliklerin belirlenmesi bu doğrultuda farklı tane boyutlarında üretilen malzemenin fiziksel ve mekanik özelliklerinde değişim araştırılmıştır. Agrega türü yapı cephe kaplama malzemesine uygun görüldüğünden araştırma konusu bu yönde oluşturulmuştur. Beyaz çimentonun bağlayıcı olarak kullanıldığı çalışmada agregalar çeşitli tane boyutlarına göre sınıflandırılarak dört farklı numune tipi elde edilmiştir. Araştırmada volkanik tüf agreganın özelliklerinin belirlenmesinde çimento bağlayıcılı cephe kaplama malzemesi olarak yaygın kullanımı olan dış sıva uygulamaları metot olarak kabul edilmiştir. Bu doğrultuda dış sıva standartlarında belirtilen numune hazırlama ve test metotları çalışma kapsamını oluşturmaktadır. Beyaz çimentonun bağlayıcı olarak kullanıldığı çalışmada agregalar çeşitli tane boyutlarına göre sınıflandırılarak dört farklı numune tipi elde edilmiştir. Ayrıca yaygın dış sıva üretiminde kullanılan kırma taş agregalı referans numune hazırlanarak volkanik tüf agregalı diğer türlerle sonuçları karşılaştırılmıştır. Yapılan çalışma ile agrega tane boyutlarındaki farklılıkların malzemenin fiziksel ve mekanik özelliklerini etkilediği, bu doğrultuda hafif, dayanıklı bir cephe kaplama malzemesi üretilebileceği görülmüştür.

Ethical Statement

Araştırma etik beyan etmeyi gerektiren bir içeriğe sahip değildir.

References

  • [1] F.R. Rios, A.M.P. Mizusaki, C.R.L. Michelin, I.C. Rodrigues, “Volcanoclastic and epiclastic diagenesis of sandstones associated with volcano-sedimentary deposits from the upper Jurassic, Lower cretaceous, Paraná Basin, southern Brazil”, Journal of South American Earth Sciences, 128, (2023).
  • [2] J. Zhou, B. Liu, M. Shao, C. Yin, Y. Jiang, Y. Song, “Lithologic classification of pyroclastic rocks: A case study for the third member of the Huoshiling Formation, Dehui fault depression, Songliao Basin, NE China”, Journal of Petroleum Science and Engineering, 214, (2022).
  • [3] C. Helvacı, F. Erkül, “Volkaniklastik Kayaçlar Oluşumu, Genel Özellikleri ve Sınıflaması”, Dokuz Eylül Üniversitesi, Ders Notları, İzmir, (2001).
  • [4] H. Binici, O. Aksogan, M.Y. Durgun, “Corrosion of basaltic pumice, colemanite, barite and blast furnace slag coated rebars in concretes”, Constr Build Mater, 37: 629-637, (2012).
  • [5] A.M. Zeyad, B.A. Tayeh, M.O. Yusuf, “Strength and transport characteristics of volcanic pumice powder based high strength concrete”, Constr Build Mater, 216: 314-324, (2019).
  • [6] Q. Li, H. Lu, J. Li, S. Wu, Y. Wu, L. Wen, Y. He, F. Qi, “Characteristics and formation mechanism of the tight tuff reservoirs of the Upper Triassic Chang 7 member in the southern Ordos Basin, China”, Mar Petrol Geol, 139, (2022).
  • [7] D.P. Song, T. Huang, Q. Fang, A. Liu, Y.F. Gu, Y.Q. Liu, L.F. Liu, S.W. Zhang, “Feasibility exploration on the geopolymerization activation of volcanic tuff, parametrical optimization, and reaction mechanisms”, Journal of Materials Research and Technology-Jmr&T, 11: 618-632, (2021).
  • [8] K. Cabrera-Luna, P. Perez-Cortes, J.I. Escalante Garcia, “Pumice-based supersulfated cements in mortars: Effects of pumice fineness and activator ratio on physical and environmental characteristics”, Construction and Building Materials, 342, (2022).
  • [9] X. Wang, R. Feng, J. Li, S. Liu, C. Yan, “Wear characteristics and degradation mechanism of natural pumice concrete under ice friction during ice flood season”, Constr Build Mater, 341, (2022).
  • [10] Z. Safari, R. Kurda, B. Al-Hadad, F. Mahmood, M. Tapan, “Mechanical characteristics of pumice-based geopolymer paste”, Resources, Conservation and Recycling, 162, 105055, (2020).
  • [11] H. Madani, M.N. Norouzifar, J. Rostami, “The synergistic effect of pumice and silica fume on the durability and mechanical characteristics of eco-friendly concrete”, Constr Build Mater, 174: 356-368, (2018).
  • [12] H. Binici, O. Aksogan, A.H. Sevinc, A. Kucukonder, “Mechanical and radioactivity shielding performances of mortars made with colemanite, barite, ground basaltic pumice and ground blast furnace slag”, Constr Build Mater, 50: 177-183, (2014).
  • [13] A. Ababneh, F. Matalkah, “Potential use of Jordanian volcanic tuffs as supplementary cementitious materials”, Case Stud Constr Mat, 8: 193-202, (2018).
  • [14] T. Huang, S.-W. Zhang, L. Zhou, A. Li, H. Tao, “Self-cementation of the alkali-activated volcanic tuff coupling with thiol-functionalized expanded perlite that enhances the solidification and stabilization of the mercury-contaminated soil”, Chemical Engineering Journal, 428, 131059, (2022).
  • [15] D. Song, T. Huang, Q. Fang, A. Liu, Y.-F. Gu, Y.-Q. Liu, L.-F. Liu, S.-W. Zhang, “Feasibility exploration on the geopolymerization activation of volcanic tuff, parametrical optimization, and reaction mechanisms”, Journal of Materials Research and Technology, 11: 618-632, (2021).
  • [16] E. Ekinci, İ. Türkmen, F. Kantarci, M.B. Karakoç, “The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios”, Constr Build Mater, 201: 257-267, (2019).
  • [17] O. Şimşek, Y. Özçelik, “Köpük Beton Üretiminde İnşaat Yıkıntı Atığı İnce Agregası Kullanımı ve Optimum Su/Çimento Oranının Belirlenmesi”, Politeknik Dergisi, 27(1): 263-271, (2024).
  • [18] Ö.F. Murathan, “Use of Industrial Wastes in Clay Based Brick”, Politeknik Dergisi, 26(2): 871-874, (2023).
  • [19] L. Bostancı, “Atık Cam Tozu İçeren Alkali – Aktive Edilmiş Cüruf Harçlarının Mekanik, Por Yapısı, Termal Yalıtkanlık ve Mikro Yapı Özellikleri”, Politeknik Dergisi, 25(1): 75-87, (2022).
  • [20] Y. Eren, “Eldeş-Derbent-Tepeköy-Söğütözü (Konya) Arasının Jeolojisi”, Jeoloji Mühendisliği Anabilim Dalı, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya, (1993).
  • [21] Y. Eren, “Stratigraphy of autochthonous and cover units of the Bozdağlar massif NW Konya”, Geological Bulletin of Turkey, 36: 7-23, (1993).
  • [22] EN 998-1, “Specification for mortar for masonry - Part 1: Rendering and plastering mortar”, CEN (Ed.) European Committee for Standardization, (2017).
  • [23] EN 1015-10, “Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar”, CEN (Ed.) European Committee for Standardization, (2020).
  • [24] EN 13914-1, “Design, preparation and application of external rendering and internal plastering - Part 1: External rendering”, CEN (Ed.) European Committee for Standardization, (2016).
  • [25] TS 1481, “External Rendering”, TSE (1988).
  • [26] M. Dereli, M. Tosun, “Evaluation of Aluminium Production Waste in Building Material Production”, ICONARP International Journal of Architecture and Planning, 9(2): 991-1009, (2021).
  • [27] EN 1015-11, “Methods of test for mortar for masonry - Part 10: Determination of dry bulk density of hardened mortar”, CEN (Ed.) European Committee for Standardization, (2013).
  • [28] EN 13755, “Natural stone test methods - Determination of water absorption at atmospheric pressure”, CEN (Ed.) European Committee for Standardization, (2009).
  • [29] EN 1936, “Natural stone test methods - Determination of real density and apparent density, and of total and open porosity”, CEN (Ed.) European Committee for Standardization, (2007).
  • [30] EN 1015-18, “Methods of test for mortar for masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar”, CEN (Ed.) European Committee for Standardization, (2002).
  • [31] A. Kan, R. GÜL, “Properties of Volcanic Tuff Sands as a New Material for Masonry Mortar”, International Journal of Natural and Engineering Sciences, 2(2): 69-73, (2019).
  • [32] M.Y. Çelik, A. Ergül, “The influence of the water saturation on the strength of volcanic tuffs used as building stones”, Environmental Earth Sciences, 74(4): 3223-3239, (2015).
  • [33] I. Papayianni, “The longevity of old mortars”, Applied Physics A, 83(4): 685-688, (2006).
  • [34] J. Bochen, B. Słomka-Słupik, J. Ślusarek, “Experimental study on salt crystallization in plasters subjected to simulate groundwater capillary rise”, Construction and Building Materials, 308, 125039, (2021).
  • [35] R. Nogueira, A.P. Ferreira Pinto, A. Gomes, “Design and behavior of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses”, Cement and Concrete Composites, 89: 192-204, (2018).
  • [36] A. Apicella, L. D’Arienzo, S. Caridi, A. Pietrosanto, P. Scarfato, “Development of a multifunctional nanocomposite system for protection, consolidation and microbial growth prevention of porous stones: A case study for the conservation of tuff”, Case Studies in Construction Materials, 16, e00993, (2022).
  • [37] K.K. Al-Zboon, J. Al-Zou’by, “Effect of volcanic tuff on the characteristics of cement mortar”, European Journal of Environmental and Civil Engineering, 20(5): 520-531, (2016).
  • [38] W. Yi, Z. Xiling, Y. Jinglin, W. Wenxuan, T. Tian, “A comprehensive performance evaluation of the cement-based expanded perlite plastering mortar”, Science of The Total Environment, 858, 159705, (2023).
  • [39] R.H.M. Tc, “RILEM TC 203-RHM: Repair mortars for historic masonry”, Materials and Structures, 45(9): 1277-1285, (2012).
  • [40] M. Dereli, M. Tosun, “Analysis of the effects of adding pyroclastic rock to red mud for the production of a baked building material in terms of its resistance to frost actions”, SN Applied Sciences, 2(10), 1632, (2020).

The Effect of Using Volcanic Tuff Aggregate with Different Grain Sizes in Facade Cladding Material on Physical and Mechanical Properties

Year 2024, EARLY VIEW, 1 - 1
https://doi.org/10.2339/politeknik.1446047

Abstract

Pyroclastic rocks of volcanic origin formed at different stages of volcanism find widespread use in the production of building materials. The present study addressed a field that was operated for the use of volcanic tuff, one of the pyroclastic rocks, as a material but abandoned since it could not provide the expected performance. For this idle field to be a valuable raw material source in the production of building materials, changes in the physical and mechanical properties of the material produced in different particle sizes were investigated to determine the aggregate properties. Since the aggregate type was considered suitable for the building cladding material, the research topic was determined accordingly. In the study, in which white cement was used as a binder, four different sample types were obtained by classifying aggregates according to various particle sizes. In the study, in which white cement was used as a binder, four different sample types were obtained by classifying aggregates according to various particle sizes. The present study showed that differences in aggregate particle sizes affected the physical and mechanical properties of the material and a light and durable building cladding material could be produced accordingly.

Ethical Statement

The research does not have a content that requires ethical declaration.

References

  • [1] F.R. Rios, A.M.P. Mizusaki, C.R.L. Michelin, I.C. Rodrigues, “Volcanoclastic and epiclastic diagenesis of sandstones associated with volcano-sedimentary deposits from the upper Jurassic, Lower cretaceous, Paraná Basin, southern Brazil”, Journal of South American Earth Sciences, 128, (2023).
  • [2] J. Zhou, B. Liu, M. Shao, C. Yin, Y. Jiang, Y. Song, “Lithologic classification of pyroclastic rocks: A case study for the third member of the Huoshiling Formation, Dehui fault depression, Songliao Basin, NE China”, Journal of Petroleum Science and Engineering, 214, (2022).
  • [3] C. Helvacı, F. Erkül, “Volkaniklastik Kayaçlar Oluşumu, Genel Özellikleri ve Sınıflaması”, Dokuz Eylül Üniversitesi, Ders Notları, İzmir, (2001).
  • [4] H. Binici, O. Aksogan, M.Y. Durgun, “Corrosion of basaltic pumice, colemanite, barite and blast furnace slag coated rebars in concretes”, Constr Build Mater, 37: 629-637, (2012).
  • [5] A.M. Zeyad, B.A. Tayeh, M.O. Yusuf, “Strength and transport characteristics of volcanic pumice powder based high strength concrete”, Constr Build Mater, 216: 314-324, (2019).
  • [6] Q. Li, H. Lu, J. Li, S. Wu, Y. Wu, L. Wen, Y. He, F. Qi, “Characteristics and formation mechanism of the tight tuff reservoirs of the Upper Triassic Chang 7 member in the southern Ordos Basin, China”, Mar Petrol Geol, 139, (2022).
  • [7] D.P. Song, T. Huang, Q. Fang, A. Liu, Y.F. Gu, Y.Q. Liu, L.F. Liu, S.W. Zhang, “Feasibility exploration on the geopolymerization activation of volcanic tuff, parametrical optimization, and reaction mechanisms”, Journal of Materials Research and Technology-Jmr&T, 11: 618-632, (2021).
  • [8] K. Cabrera-Luna, P. Perez-Cortes, J.I. Escalante Garcia, “Pumice-based supersulfated cements in mortars: Effects of pumice fineness and activator ratio on physical and environmental characteristics”, Construction and Building Materials, 342, (2022).
  • [9] X. Wang, R. Feng, J. Li, S. Liu, C. Yan, “Wear characteristics and degradation mechanism of natural pumice concrete under ice friction during ice flood season”, Constr Build Mater, 341, (2022).
  • [10] Z. Safari, R. Kurda, B. Al-Hadad, F. Mahmood, M. Tapan, “Mechanical characteristics of pumice-based geopolymer paste”, Resources, Conservation and Recycling, 162, 105055, (2020).
  • [11] H. Madani, M.N. Norouzifar, J. Rostami, “The synergistic effect of pumice and silica fume on the durability and mechanical characteristics of eco-friendly concrete”, Constr Build Mater, 174: 356-368, (2018).
  • [12] H. Binici, O. Aksogan, A.H. Sevinc, A. Kucukonder, “Mechanical and radioactivity shielding performances of mortars made with colemanite, barite, ground basaltic pumice and ground blast furnace slag”, Constr Build Mater, 50: 177-183, (2014).
  • [13] A. Ababneh, F. Matalkah, “Potential use of Jordanian volcanic tuffs as supplementary cementitious materials”, Case Stud Constr Mat, 8: 193-202, (2018).
  • [14] T. Huang, S.-W. Zhang, L. Zhou, A. Li, H. Tao, “Self-cementation of the alkali-activated volcanic tuff coupling with thiol-functionalized expanded perlite that enhances the solidification and stabilization of the mercury-contaminated soil”, Chemical Engineering Journal, 428, 131059, (2022).
  • [15] D. Song, T. Huang, Q. Fang, A. Liu, Y.-F. Gu, Y.-Q. Liu, L.-F. Liu, S.-W. Zhang, “Feasibility exploration on the geopolymerization activation of volcanic tuff, parametrical optimization, and reaction mechanisms”, Journal of Materials Research and Technology, 11: 618-632, (2021).
  • [16] E. Ekinci, İ. Türkmen, F. Kantarci, M.B. Karakoç, “The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios”, Constr Build Mater, 201: 257-267, (2019).
  • [17] O. Şimşek, Y. Özçelik, “Köpük Beton Üretiminde İnşaat Yıkıntı Atığı İnce Agregası Kullanımı ve Optimum Su/Çimento Oranının Belirlenmesi”, Politeknik Dergisi, 27(1): 263-271, (2024).
  • [18] Ö.F. Murathan, “Use of Industrial Wastes in Clay Based Brick”, Politeknik Dergisi, 26(2): 871-874, (2023).
  • [19] L. Bostancı, “Atık Cam Tozu İçeren Alkali – Aktive Edilmiş Cüruf Harçlarının Mekanik, Por Yapısı, Termal Yalıtkanlık ve Mikro Yapı Özellikleri”, Politeknik Dergisi, 25(1): 75-87, (2022).
  • [20] Y. Eren, “Eldeş-Derbent-Tepeköy-Söğütözü (Konya) Arasının Jeolojisi”, Jeoloji Mühendisliği Anabilim Dalı, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya, (1993).
  • [21] Y. Eren, “Stratigraphy of autochthonous and cover units of the Bozdağlar massif NW Konya”, Geological Bulletin of Turkey, 36: 7-23, (1993).
  • [22] EN 998-1, “Specification for mortar for masonry - Part 1: Rendering and plastering mortar”, CEN (Ed.) European Committee for Standardization, (2017).
  • [23] EN 1015-10, “Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar”, CEN (Ed.) European Committee for Standardization, (2020).
  • [24] EN 13914-1, “Design, preparation and application of external rendering and internal plastering - Part 1: External rendering”, CEN (Ed.) European Committee for Standardization, (2016).
  • [25] TS 1481, “External Rendering”, TSE (1988).
  • [26] M. Dereli, M. Tosun, “Evaluation of Aluminium Production Waste in Building Material Production”, ICONARP International Journal of Architecture and Planning, 9(2): 991-1009, (2021).
  • [27] EN 1015-11, “Methods of test for mortar for masonry - Part 10: Determination of dry bulk density of hardened mortar”, CEN (Ed.) European Committee for Standardization, (2013).
  • [28] EN 13755, “Natural stone test methods - Determination of water absorption at atmospheric pressure”, CEN (Ed.) European Committee for Standardization, (2009).
  • [29] EN 1936, “Natural stone test methods - Determination of real density and apparent density, and of total and open porosity”, CEN (Ed.) European Committee for Standardization, (2007).
  • [30] EN 1015-18, “Methods of test for mortar for masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar”, CEN (Ed.) European Committee for Standardization, (2002).
  • [31] A. Kan, R. GÜL, “Properties of Volcanic Tuff Sands as a New Material for Masonry Mortar”, International Journal of Natural and Engineering Sciences, 2(2): 69-73, (2019).
  • [32] M.Y. Çelik, A. Ergül, “The influence of the water saturation on the strength of volcanic tuffs used as building stones”, Environmental Earth Sciences, 74(4): 3223-3239, (2015).
  • [33] I. Papayianni, “The longevity of old mortars”, Applied Physics A, 83(4): 685-688, (2006).
  • [34] J. Bochen, B. Słomka-Słupik, J. Ślusarek, “Experimental study on salt crystallization in plasters subjected to simulate groundwater capillary rise”, Construction and Building Materials, 308, 125039, (2021).
  • [35] R. Nogueira, A.P. Ferreira Pinto, A. Gomes, “Design and behavior of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses”, Cement and Concrete Composites, 89: 192-204, (2018).
  • [36] A. Apicella, L. D’Arienzo, S. Caridi, A. Pietrosanto, P. Scarfato, “Development of a multifunctional nanocomposite system for protection, consolidation and microbial growth prevention of porous stones: A case study for the conservation of tuff”, Case Studies in Construction Materials, 16, e00993, (2022).
  • [37] K.K. Al-Zboon, J. Al-Zou’by, “Effect of volcanic tuff on the characteristics of cement mortar”, European Journal of Environmental and Civil Engineering, 20(5): 520-531, (2016).
  • [38] W. Yi, Z. Xiling, Y. Jinglin, W. Wenxuan, T. Tian, “A comprehensive performance evaluation of the cement-based expanded perlite plastering mortar”, Science of The Total Environment, 858, 159705, (2023).
  • [39] R.H.M. Tc, “RILEM TC 203-RHM: Repair mortars for historic masonry”, Materials and Structures, 45(9): 1277-1285, (2012).
  • [40] M. Dereli, M. Tosun, “Analysis of the effects of adding pyroclastic rock to red mud for the production of a baked building material in terms of its resistance to frost actions”, SN Applied Sciences, 2(10), 1632, (2020).
There are 40 citations in total.

Details

Primary Language English
Subjects Construction Materials, Material Characterization
Journal Section Research Article
Authors

Mustafa Dereli 0000-0003-4678-873X

Early Pub Date October 1, 2024
Publication Date
Submission Date March 2, 2024
Acceptance Date September 13, 2024
Published in Issue Year 2024 EARLY VIEW

Cite

APA Dereli, M. (2024). The Effect of Using Volcanic Tuff Aggregate with Different Grain Sizes in Facade Cladding Material on Physical and Mechanical Properties. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1446047
AMA Dereli M. The Effect of Using Volcanic Tuff Aggregate with Different Grain Sizes in Facade Cladding Material on Physical and Mechanical Properties. Politeknik Dergisi. Published online October 1, 2024:1-1. doi:10.2339/politeknik.1446047
Chicago Dereli, Mustafa. “The Effect of Using Volcanic Tuff Aggregate With Different Grain Sizes in Facade Cladding Material on Physical and Mechanical Properties”. Politeknik Dergisi, October (October 2024), 1-1. https://doi.org/10.2339/politeknik.1446047.
EndNote Dereli M (October 1, 2024) The Effect of Using Volcanic Tuff Aggregate with Different Grain Sizes in Facade Cladding Material on Physical and Mechanical Properties. Politeknik Dergisi 1–1.
IEEE M. Dereli, “The Effect of Using Volcanic Tuff Aggregate with Different Grain Sizes in Facade Cladding Material on Physical and Mechanical Properties”, Politeknik Dergisi, pp. 1–1, October 2024, doi: 10.2339/politeknik.1446047.
ISNAD Dereli, Mustafa. “The Effect of Using Volcanic Tuff Aggregate With Different Grain Sizes in Facade Cladding Material on Physical and Mechanical Properties”. Politeknik Dergisi. October 2024. 1-1. https://doi.org/10.2339/politeknik.1446047.
JAMA Dereli M. The Effect of Using Volcanic Tuff Aggregate with Different Grain Sizes in Facade Cladding Material on Physical and Mechanical Properties. Politeknik Dergisi. 2024;:1–1.
MLA Dereli, Mustafa. “The Effect of Using Volcanic Tuff Aggregate With Different Grain Sizes in Facade Cladding Material on Physical and Mechanical Properties”. Politeknik Dergisi, 2024, pp. 1-1, doi:10.2339/politeknik.1446047.
Vancouver Dereli M. The Effect of Using Volcanic Tuff Aggregate with Different Grain Sizes in Facade Cladding Material on Physical and Mechanical Properties. Politeknik Dergisi. 2024:1-.