Investigation of Hydrogen Production via Black Water Electrolysis
Year 2024,
EARLY VIEW, 1 - 1
Merve Gördesel Yıldız
,
Özgü Yörük
,
Duygu Uysal
,
Özkan Murat Doğan
Abstract
As an alternative to hydrogen production by electrolysis of water, using as raw material waste valorization and organic pollutants in wastewater are crucial issues. In this context, electrolysis of black water, produced as waste in olive oil production and high energy source potential due to the aromatic compounds in its content, was carried out in this study. Parametric studies were carried out by examining the effect of working conditions on hydrogen production. The experiments using a two-chamber electrolysis cell examined the effects of catalytic additive (Fe2+/3+), temperature (26oC-60oC-70oC-80oC), type of electrode (Cu/Cu, Zn/Zn and Pd/Pt) and electrolyte (H2SO4, H3PO4, HCl, C2H2O4 and C2H4O2), membrane and pretreatment applied to the membrane. In the electrolysis of black water with FeSO4 and acidic electrolyte (H2SO4) using a pretreated Nafion XL membrane on the Zn/Zn electrode pair, pure H2 formation at the cathode was determined. Under these conditions, 1.9 mA/cm2 current density was obtained at 1 V potential and room temperature.
Ethical Statement
The author(s) of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.
Supporting Institution
This research was supported by Gazi University Projects of Scientific Investigation Unit (Project No: 06/2019-03). We would like to thank Gazi University Projects of Scientific Investigation Unit.
Project Number
Gazi University Projects of Scientific Investigation Unit (Project No: 06/2019-03).
Thanks
We would like to express our sincere gratitude to Prof. Dr. Bekir Zühtü UYSAL for guiding us on this path with his valuable knowledge and constructive suggestions. Also, this research was supported by Gazi University Projects of Scientific Investigation Unit (Project No: 06/2019-03). We would like to thank Gazi University Projects of Scientific Investigation Unit.
References
- [1] Callegari A, Cecconet D, Molognoni D, Capodaglio A., “Sustainable processing of dairy wastewater: Long-term pilot application of a bio-electrochemical system”, J. Clean. Prod., 189: 563–569, (2018).
- [2] Chatzisymeon E, Foteinis S, Mantzavinos D, Tsoutsos T., “Life cycle assessment of advanced oxidation processes for olive mill wastewater treatment”, J. Clean. Prod., 54: 229–234, (2013).
- [3] Yarımtepe C.C, Ayman Öz N, Erdem S., “Zeytin karasuyunun arıtım yöntemleri”, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1: 85-110, (2015).
- [4] Sciancalepore V, De Stefano G, Piacquadio P., “Effects of the cold percolation system on the quality of virgin olive oil”, Eur. J. Lipid Sci. Technol., 102: 680–683, (2000).
- [5] Souilem S, El-Abbassi A, Kiai H, Hafidi A, Sayadi S, Galanakis C.M., “Olive oil production sector: Environmental effects and sustainability challenges”, Olive Mill Waste: Recent Advances for Sustainable Management., 1–28, (2017).
- [6] Tunalioğlu R, Bektaş T., “The problem of olive mill wastewater in Turkey and some solution alternatives”, Agriculturae Conspectus Scientificus, 77(1): 57-60, (2012).
- [7] Kaplan F., “Degradation of toxic phenolic compounds in olive oil mill wastewater by using the electro-fenton process using different graphite electrodes”, Master Thesis, Çukurova University, Graduate School of Natural and Applied Sciences, (2007).
- [8] Achak M, Elayadi F, Boumya W., “Chemical coagulation/flocculation processes for removal of phenolic compounds from olive mill wastewater: a comprehensive review”., Am. J. Appl. Sci., 16: 59–91, (2019).
- [9] Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mofarrah E, Mehranian M., “Application of the central composite designand response surface methodology to the advanced treatmentof olive oil processing wastewater using Fenton’s peroxidation”, J. Hazard Mater., 123: 187–195, (2005).
- [10] Kestioglou K, Yonar T, Azbar N., “Feasibility of physico-chemical treatment and advanced oxidation processes (AOPs) as a means of pretreatment of olive mill effluent”, Process Biochem., 40: 2409–2416, (2005).
- [11] Bettazzi E., Morelli M., Caffaz S., Caretti C., Azzari E., Lubello C., “Olive mill wastewater treatment: an experimental study”, Water Science&Technology., 54(8): 17- 25, (2006).
- [12] Oz A.N, Uzun Ç., “Ultrasound pretreatment for enhanced biogas production from olive mill wastewater”, Ultrasonics Sonochemistry, 22: 565–572, (2015).
- [13] Aggoun M, Arhab R, Cornu A, Portelli J, Barkat M, Graulet B., “Olive mill wastewater microconstituents composition according to olive variety and extraction process”, Food Chem., 209: 72–80, (2016).
- [14] Obied H.K, Bedgood D, Mailer R, Prenzler P.D, Robards K., “Impact of cultivar, harvesting time, and seasonal variation on the content of biophenols in olive mill waste”, J. Agric. Food Chem., 56: 8851–8858, (2008).
- [15] Rupani P.F, Singh R.P, Ibrahim M.H, Esa N., “Review of current palm oil mill effluent (POME) treatment methods: Vermicomposting as a sustainable practice”, World Appl. Sci. J., 11: 70–81, (2010).
- [16] Vuppala S, Bavasso I, Stoller M, Di Palma L, Vilardi G., “Olive mill wastewater integrated purification through pre-treatments using coagulants and biological methods: experimental, modelling and scale-up”, Clean. Prod., 236: 117622, (2019).
- [17] El Moudden H, El Idrissi Y, Belmaghraoui W, Belhoussaine O, El Guezzane C, Bouayoun T, Harhar H, Tabyaoui M., “Olive mill wastewater polyphenolbased extract as a vegetable oil shelf life extending additive”, Food Process and Preservation, 44, (2020).
- [18] Fleyfel, L.M, Leitner N.K.V, Deborde M, Matta J, El Najjar, N.H., “Olive oil liquid wastes–characteristics and treatments: A literature review”, Process Safety and Environmental Protection, 168: 1031-1048, (2022).
- [19] Caputo A.C, Scacchia F, Pelagagge P.M., “Disposal of byproducts in olive oil industry: waste-to-energy solutions”, Appl. Therm. Eng., 23: 197−214, (2003).
- [20] Miranda T, Esteban A, Rojas S, Montero I, Ruiz A., “Combustion analysis of different olive residues”, Int. J. Mol. Sci., 9: 512−525, (2008).
- [21] Ntaikou I, Antonopoulou G, Vayenas D, Lyberatos G., “Assessment of electrocoagulation as a pretreatment method of olive mill wastewater towards alternative processes for biofuels production”, Renew. Energy, 154: 1252–1262, (2020).
- [22] Mechnou I, Mourtah I, Raji Y, Ch´erif A, Lebrun L, Hlaibi M., “Effective treatment and the valorization of solid and liquid toxic discharges from olive oil industries, for sustainable and clean production of bio-coal”, J. Clean. Prod., 288: 125649, (2021).
- [23] Haddad K, Jeguirim M, Jerbi B, Chouchene A, Dutournié P, Thevenin N, Limousy L., “Olive mill wastewater: from a pollutant to green fuels, agricultural water source and biofertilizer”, ACS Sustainable Chemistry & Engineering, 5(10): 8988-8996, (2017).
- [24] Greco J.G, Toscanoa G, Cioffi M, Gianfreda L, Sannino F., “Dephenolisation of olive mill waste-waters by olive husk”, Water Research, 33: 3046–3050, (1999).
- [25] Russo E, Spallarossa A, Comite A, Pagliero M, Guida P, Belotti V, Schito A.M., “Valorization and potential antimicrobial use of olive mill wastewater (OMW) from Italian olive oil production”, Antioxidants, 11(5): 903, (2022).
- [26] Demirel, N., Karapınar, M., “Antimicrobial effects of olive oil blackwater Blacksea and Central Asian” Symposium on Food Technology, Ankara, Türkiye, (2000).
- [27] Sayadi S, Allouche N, Jaoua M, Aloui F., “Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment”, Process Biochemistry, 35: 725-735, (2000).
- [28] Comninellis C, Pugarin C., “Anodic oxidation of phenol for wastewater treatment”, J. Appl. Electrochem., 21: 415-418, (1991).
- [29] Lin S.H, Peng C.F., “Treatment of textile wastewater by electrochemical method”, Water Research, 28: 277-282, (1994).
- [30] Israilides C.J, Vlyssides A.G, Mourafeti V.N, Karvouni G., “Olive oil wastewater treatment with the use of an electrolysis system”, Bioresource Technology, 61(2): 163-170, (1997).
- [31] Belaid C, Kallel M, Khadraoui M, Lallev´e G, Ell Euch B, Fauvarque J.F., “Electrochemical treatment of olive mill wastewaters: Removal of phenolic compounds and decolourization”, Journal of Applied Electrochemistry, 36(10): 1175–1182, (2006).
- [32] Belaid C, Khadraoui M, Mseddi S, Kallel M, Elleuch, B, Fauvarque, J.F., “Electrochemical treatment of olive mill wastewater: treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools”, J. Environ. Sci., 25(1): 220-230, (2013).
- [33] Sasikumar G, Muthumeenal A, Pethaiah S.S, Nachiappan N, Balaji R., “Aqueous methanol eletrolysis using proton conducting membrane for hydrogen production”, Int. J. Hydrogen Energy, 33(21): 5905-5910, (2008).
- [34] Yıldız M.G, Yörük Ö, Uysal, D, Doğan, Ö.M, Uysal B.Z., “Parametric study on electrochemical reforming of glycerol for hydrogen production”, Int. J. Hydrogen Energy, 47(95): 40196-40203, (2022).
- [35] Çekirdek P. “Investıgation of electrochemical behaviour of dithiophosphonates anions by voltammetric methods”, PhD Thesis, Ankara University Graduate School of Natural and Applied Sciences. (2005).
- [36] Napoli L, Lavorante M.J, Franco J, Sanguinetti A, Fasoli H., “Effects on nafion® 117 membrane using different strong acids in various concentrations”, J. New Mater. Electrochem. Syst., 16(3): 151-156, (2013).
- [37] Fiorentino A, Gentili A, Isidori M, Lavorgna M, Parrella A, Temussi F., “Olive oil mill wastewater treatment using a chemical and biological approach”, J. Agric. Food Chem., 52(16): 5151-5154, (2004).
- [38] Vigo, F., Uliana, C., Novi, M., “Electro-oxidation of sodium lauryl sulfate solutions”, J. Appl. Electrochem., 18: 904-914, (1988).
- [39] Szpyrkowicz, L., Naumczyk, J., Zilio-Grndi, F., “Electrochemical treatment of tannery wastewater usin Ti/Pt and Ti/Pt/Ir electrodes”, Wat. Res., 29: 517-524, (1995).
- [40] Murphy, O. J., “Direct electrochemical oxidation of organics for wastewater treatment”, Wat. Res., 26: 443-451, (1992).
- [41] Gotsi M, Kalogerakis N, Psillakis E, Samara, P, Mantzavinos D., “Electrochemical oxidation of olive oil mill wastewaters”, Wat. Ress., 39(17): 4177-4187, (2005).
- [42] Yörük Ö, Yıldız M.G, Uysal D, Doğan Ö.M, Uysal B.Z., “Experimental investigation for novel electrode materials of coal-assisted electrochemical in-situ hydrogen generation: Parametric studies using single-chamber cell”, Int. J. Hydrogen Energy, 48(11): 4173-4181, (2023).
- [43] Kusoglu A, Savagatrup S, Clark K.T, Weber A.Z., “Role of mechanical factors in controlling the structure-function relationship of PFSA ionomers”, Macromolecules, 45: 7467, (2012).
- [44] Comninellis C, Nerini A., “Anodic oxidation of phenol in the presence of NaCl for wastewater treatment”, J. Appl. Electrochem., 25: 23–28, (1995).
- [45] Ribordy P, Pulgarin C, Kiwi J, Peringer P., “Electrochemical versus photochemical pretreatment of industrial wastewaters”, Water Sci. Techol., 35: 293–302, (1997).
- [46] Comninellis, C., “The electrochemical treatment of wastewater”, GWA, 11: 792-797, (1992).
Karasu Elektrolizi Yoluyla Hidrojen Üretiminin İncelenmesi
Year 2024,
EARLY VIEW, 1 - 1
Merve Gördesel Yıldız
,
Özgü Yörük
,
Duygu Uysal
,
Özkan Murat Doğan
Abstract
Suyun elektrolizi yoluyla hidrojen üretimine alternatif olarak atıkların değerlendirilmesi ve atık sudaki organik kirleticilerin hammadde olarak kullanılması önemli konulardır. Bu bağlamda, bu çalışmada zeytinyağı üretiminde atık olarak ortaya çıkan ve içeriğindeki aromatik bileşikler nedeniyle enerji kaynağı potansiyeli yüksek olan karasuyun elektrolizi gerçekleştirilmiştir. Çalışma koşullarının hidrojen üretimine etkisi incelenerek parametrik çalışmalar yapılmıştır. İki bölmeli bir elektroliz hücresi kullanılarak yapılan deneylerde, katalitik katkı maddesinin (Fe2+/3+), sıcaklığın (26oC-60oC-70oC-80oC), elektrot tipinin (Cu/Cu, Zn/Zn ve Pd/Pt), elektrolit (H2SO4, H3PO4, HCl, C2H2O4 ve C2H4O2), membran ve membrana uygulanan ön işlemin etkisi parametrik olarak incelenmiştir. Zn/Zn elektrot çifti ve ön işleme tabi tutulmuş Nafion XL membranı kullanılarak karasuyun FeSO4 katkısı ve asidik elektrolit (H2SO4) ile elektrolizinde katotta saf H2 oluşumu belirlenmiştir. Bu koşullar altında 1 V potansiyelde ve oda sıcaklığında 1,9 mA/cm2 akım yoğunluğu elde edilmiştir.
Project Number
Gazi University Projects of Scientific Investigation Unit (Project No: 06/2019-03).
References
- [1] Callegari A, Cecconet D, Molognoni D, Capodaglio A., “Sustainable processing of dairy wastewater: Long-term pilot application of a bio-electrochemical system”, J. Clean. Prod., 189: 563–569, (2018).
- [2] Chatzisymeon E, Foteinis S, Mantzavinos D, Tsoutsos T., “Life cycle assessment of advanced oxidation processes for olive mill wastewater treatment”, J. Clean. Prod., 54: 229–234, (2013).
- [3] Yarımtepe C.C, Ayman Öz N, Erdem S., “Zeytin karasuyunun arıtım yöntemleri”, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1: 85-110, (2015).
- [4] Sciancalepore V, De Stefano G, Piacquadio P., “Effects of the cold percolation system on the quality of virgin olive oil”, Eur. J. Lipid Sci. Technol., 102: 680–683, (2000).
- [5] Souilem S, El-Abbassi A, Kiai H, Hafidi A, Sayadi S, Galanakis C.M., “Olive oil production sector: Environmental effects and sustainability challenges”, Olive Mill Waste: Recent Advances for Sustainable Management., 1–28, (2017).
- [6] Tunalioğlu R, Bektaş T., “The problem of olive mill wastewater in Turkey and some solution alternatives”, Agriculturae Conspectus Scientificus, 77(1): 57-60, (2012).
- [7] Kaplan F., “Degradation of toxic phenolic compounds in olive oil mill wastewater by using the electro-fenton process using different graphite electrodes”, Master Thesis, Çukurova University, Graduate School of Natural and Applied Sciences, (2007).
- [8] Achak M, Elayadi F, Boumya W., “Chemical coagulation/flocculation processes for removal of phenolic compounds from olive mill wastewater: a comprehensive review”., Am. J. Appl. Sci., 16: 59–91, (2019).
- [9] Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mofarrah E, Mehranian M., “Application of the central composite designand response surface methodology to the advanced treatmentof olive oil processing wastewater using Fenton’s peroxidation”, J. Hazard Mater., 123: 187–195, (2005).
- [10] Kestioglou K, Yonar T, Azbar N., “Feasibility of physico-chemical treatment and advanced oxidation processes (AOPs) as a means of pretreatment of olive mill effluent”, Process Biochem., 40: 2409–2416, (2005).
- [11] Bettazzi E., Morelli M., Caffaz S., Caretti C., Azzari E., Lubello C., “Olive mill wastewater treatment: an experimental study”, Water Science&Technology., 54(8): 17- 25, (2006).
- [12] Oz A.N, Uzun Ç., “Ultrasound pretreatment for enhanced biogas production from olive mill wastewater”, Ultrasonics Sonochemistry, 22: 565–572, (2015).
- [13] Aggoun M, Arhab R, Cornu A, Portelli J, Barkat M, Graulet B., “Olive mill wastewater microconstituents composition according to olive variety and extraction process”, Food Chem., 209: 72–80, (2016).
- [14] Obied H.K, Bedgood D, Mailer R, Prenzler P.D, Robards K., “Impact of cultivar, harvesting time, and seasonal variation on the content of biophenols in olive mill waste”, J. Agric. Food Chem., 56: 8851–8858, (2008).
- [15] Rupani P.F, Singh R.P, Ibrahim M.H, Esa N., “Review of current palm oil mill effluent (POME) treatment methods: Vermicomposting as a sustainable practice”, World Appl. Sci. J., 11: 70–81, (2010).
- [16] Vuppala S, Bavasso I, Stoller M, Di Palma L, Vilardi G., “Olive mill wastewater integrated purification through pre-treatments using coagulants and biological methods: experimental, modelling and scale-up”, Clean. Prod., 236: 117622, (2019).
- [17] El Moudden H, El Idrissi Y, Belmaghraoui W, Belhoussaine O, El Guezzane C, Bouayoun T, Harhar H, Tabyaoui M., “Olive mill wastewater polyphenolbased extract as a vegetable oil shelf life extending additive”, Food Process and Preservation, 44, (2020).
- [18] Fleyfel, L.M, Leitner N.K.V, Deborde M, Matta J, El Najjar, N.H., “Olive oil liquid wastes–characteristics and treatments: A literature review”, Process Safety and Environmental Protection, 168: 1031-1048, (2022).
- [19] Caputo A.C, Scacchia F, Pelagagge P.M., “Disposal of byproducts in olive oil industry: waste-to-energy solutions”, Appl. Therm. Eng., 23: 197−214, (2003).
- [20] Miranda T, Esteban A, Rojas S, Montero I, Ruiz A., “Combustion analysis of different olive residues”, Int. J. Mol. Sci., 9: 512−525, (2008).
- [21] Ntaikou I, Antonopoulou G, Vayenas D, Lyberatos G., “Assessment of electrocoagulation as a pretreatment method of olive mill wastewater towards alternative processes for biofuels production”, Renew. Energy, 154: 1252–1262, (2020).
- [22] Mechnou I, Mourtah I, Raji Y, Ch´erif A, Lebrun L, Hlaibi M., “Effective treatment and the valorization of solid and liquid toxic discharges from olive oil industries, for sustainable and clean production of bio-coal”, J. Clean. Prod., 288: 125649, (2021).
- [23] Haddad K, Jeguirim M, Jerbi B, Chouchene A, Dutournié P, Thevenin N, Limousy L., “Olive mill wastewater: from a pollutant to green fuels, agricultural water source and biofertilizer”, ACS Sustainable Chemistry & Engineering, 5(10): 8988-8996, (2017).
- [24] Greco J.G, Toscanoa G, Cioffi M, Gianfreda L, Sannino F., “Dephenolisation of olive mill waste-waters by olive husk”, Water Research, 33: 3046–3050, (1999).
- [25] Russo E, Spallarossa A, Comite A, Pagliero M, Guida P, Belotti V, Schito A.M., “Valorization and potential antimicrobial use of olive mill wastewater (OMW) from Italian olive oil production”, Antioxidants, 11(5): 903, (2022).
- [26] Demirel, N., Karapınar, M., “Antimicrobial effects of olive oil blackwater Blacksea and Central Asian” Symposium on Food Technology, Ankara, Türkiye, (2000).
- [27] Sayadi S, Allouche N, Jaoua M, Aloui F., “Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment”, Process Biochemistry, 35: 725-735, (2000).
- [28] Comninellis C, Pugarin C., “Anodic oxidation of phenol for wastewater treatment”, J. Appl. Electrochem., 21: 415-418, (1991).
- [29] Lin S.H, Peng C.F., “Treatment of textile wastewater by electrochemical method”, Water Research, 28: 277-282, (1994).
- [30] Israilides C.J, Vlyssides A.G, Mourafeti V.N, Karvouni G., “Olive oil wastewater treatment with the use of an electrolysis system”, Bioresource Technology, 61(2): 163-170, (1997).
- [31] Belaid C, Kallel M, Khadraoui M, Lallev´e G, Ell Euch B, Fauvarque J.F., “Electrochemical treatment of olive mill wastewaters: Removal of phenolic compounds and decolourization”, Journal of Applied Electrochemistry, 36(10): 1175–1182, (2006).
- [32] Belaid C, Khadraoui M, Mseddi S, Kallel M, Elleuch, B, Fauvarque, J.F., “Electrochemical treatment of olive mill wastewater: treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools”, J. Environ. Sci., 25(1): 220-230, (2013).
- [33] Sasikumar G, Muthumeenal A, Pethaiah S.S, Nachiappan N, Balaji R., “Aqueous methanol eletrolysis using proton conducting membrane for hydrogen production”, Int. J. Hydrogen Energy, 33(21): 5905-5910, (2008).
- [34] Yıldız M.G, Yörük Ö, Uysal, D, Doğan, Ö.M, Uysal B.Z., “Parametric study on electrochemical reforming of glycerol for hydrogen production”, Int. J. Hydrogen Energy, 47(95): 40196-40203, (2022).
- [35] Çekirdek P. “Investıgation of electrochemical behaviour of dithiophosphonates anions by voltammetric methods”, PhD Thesis, Ankara University Graduate School of Natural and Applied Sciences. (2005).
- [36] Napoli L, Lavorante M.J, Franco J, Sanguinetti A, Fasoli H., “Effects on nafion® 117 membrane using different strong acids in various concentrations”, J. New Mater. Electrochem. Syst., 16(3): 151-156, (2013).
- [37] Fiorentino A, Gentili A, Isidori M, Lavorgna M, Parrella A, Temussi F., “Olive oil mill wastewater treatment using a chemical and biological approach”, J. Agric. Food Chem., 52(16): 5151-5154, (2004).
- [38] Vigo, F., Uliana, C., Novi, M., “Electro-oxidation of sodium lauryl sulfate solutions”, J. Appl. Electrochem., 18: 904-914, (1988).
- [39] Szpyrkowicz, L., Naumczyk, J., Zilio-Grndi, F., “Electrochemical treatment of tannery wastewater usin Ti/Pt and Ti/Pt/Ir electrodes”, Wat. Res., 29: 517-524, (1995).
- [40] Murphy, O. J., “Direct electrochemical oxidation of organics for wastewater treatment”, Wat. Res., 26: 443-451, (1992).
- [41] Gotsi M, Kalogerakis N, Psillakis E, Samara, P, Mantzavinos D., “Electrochemical oxidation of olive oil mill wastewaters”, Wat. Ress., 39(17): 4177-4187, (2005).
- [42] Yörük Ö, Yıldız M.G, Uysal D, Doğan Ö.M, Uysal B.Z., “Experimental investigation for novel electrode materials of coal-assisted electrochemical in-situ hydrogen generation: Parametric studies using single-chamber cell”, Int. J. Hydrogen Energy, 48(11): 4173-4181, (2023).
- [43] Kusoglu A, Savagatrup S, Clark K.T, Weber A.Z., “Role of mechanical factors in controlling the structure-function relationship of PFSA ionomers”, Macromolecules, 45: 7467, (2012).
- [44] Comninellis C, Nerini A., “Anodic oxidation of phenol in the presence of NaCl for wastewater treatment”, J. Appl. Electrochem., 25: 23–28, (1995).
- [45] Ribordy P, Pulgarin C, Kiwi J, Peringer P., “Electrochemical versus photochemical pretreatment of industrial wastewaters”, Water Sci. Techol., 35: 293–302, (1997).
- [46] Comninellis, C., “The electrochemical treatment of wastewater”, GWA, 11: 792-797, (1992).